

Lecture Notes in Computer Science 5367
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

John Domingue Chutiporn Anutariya (Eds.)

The Semantic Web

3rd Asian Semantic Web Conference, ASWC 2008
Bangkok, Thailand, December 8-11, 2008
Proceedings.

13

Volume Editors

John Domingue
The Open University Knowledge Media Institute
Walton Hall, Milton Keynes, MK6 7AA, United Kingdom
E-mail: j.b.domingue@open.ac.uk

Chutiporn Anutariya
Shinawatra University
99 Moo 10 Bangtoey, Samkok
Pathum Thani, 12160, Thailand
E-mail: chutiporn@shinawatra.ac.th

Library of Congress Control Number: 2008939865

CR Subject Classification (1998): H.4, H.3, C.2, H.5, F.3, I.2, K.4

LNCS Sublibrary: SL 3 – Information Systems and Application,
incl. Internet/Web and HCI

ISSN 0302-9743
ISBN-10 3-540-89703-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89703-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12571390 06/3180 5 4 3 2 1 0

Preface

This volume contains the main proceedings of the 3rd Annual Asian Semantic
Web Conference (ASWC 2008) held in Bangkok,Thailand, during December 8–11,
2008. As such, ASWC 2008 showcased the latest results in the research and appli-
cation of Semantic Web technologies—applying semantics at a planetary scale.

Over the last few years we have been witnessing a trend in which the Semantic
Web has been transforming from a niche research area to the mainstream in
academia and industry. The European Semantic Web Conference, held earlier
this year in Tenerife, saw a growth in the participation and engagement from
semantic start-up companies. This conference, showcasing an Asian perspective
and now having established itself, is also a sign that the Semantic Web is moving
to the mainstream.

In addition to the emergence in the mainstream, the Semantic Web contin-
ues to generate a significant volume of scientifically interesting research articles.
Research submissions to ASWC 2008 were scrutinized and filtered via a three-
phase reviewing process. First, each submission was evaluated by three members
from the Program Committee. Second, papers and the associated reviews were
meta-reviewed by members of the Senior Program Committee. In this second
phase the meta-reviewers led discussions between reviewers and produced an
acceptance recommendation. In the last phase, on the basis of the reviews and
associated meta-review recommendations, the final selections were made jointly
by the Programme Chairs. Although this process required substantial efforts
from the members of the Program Committee, it ensured that only papers of
the highest quality were accepted. The final acceptance of 37 papers for publi-
cation and presentation at the conference out of the 118 submissions resulted in
an acceptance rate of 31%. Of the papers we accepted these are split between
Asia (18) and Europe (17), with an additional 2 from the USA. The accepted
papers cover topics including: scalable reasoning and logic, ontology mapping,
ontology modelling and management, ontologies and tags, human language tech-
nologies and machine learning, querying, Semantic Web services and Semantic
Web applications.

We would like to thank all members of the Program Committee and Senior
Program Committee and the additional reviewers for their considerable and
timely efforts in reviewing the submissions, particularly during a period when
holidays are traditionally taken in many parts of the globe.

ASWC this year was fortunate to have three very compelling keynotes. Fabio
Ciravegna, Professor of Language and Knowledge Technologies at the University
of Sheffield, gave a talk entitled “Supporting Knowledge Management in Large
Distributed Organizations Using Semantic Web Technologies.” In his talk he
covered the challenges and requirements for Semantic Web technologies when

VI Preface

confronted with the task of knowledge acquisition and sharing in large complex
distributed environments giving examples from industrially focused projects.

Amit Sheth, Director of Kno.e.sis Center, at Wright State University, gave
the talk “Computing for Human Experience: Sensors, Perception, Semantics,
Web N.0, and Beyond.” Amit outlined an era of “computing for human experi-
ence” incorporating seamless interaction between the physical and virtual worlds
facilitated by advances in sensor technology and “edge computing” and linked
to emerging areas such as Internet of Things, Intelligence@Interfaces, Humanist
Computing, Relationship Web, PeopleWeb, EventWeb, and Experiential Com-
puting. In his presentation Amit highlighted the role that semantics would play
in this new era.

In his talk “Common Web Language for Humans and Computers,” Hiroshi
Uchida, Director of the UNDL Foundation, outlined the Universal Networking
Language and discussed its applications in a number of diverse areas of human
activity.

Six workshops were accepted at this year’s conference covering areas ranging
from new forms of reasoning to health care, life sciences, and human factors.

All members of the Organizing Committee were very dedicated to their tasks
and deserve our special gratitude. In particular we wish to thank the Conference
Chairs, Jerome Euzenat and R.K. Shyamasundar, the Steering Committee Chair,
Riichiro Mizoguchi, and all members of the Steering Committee for their valuable
advice and constant support to make this conference a success.

We would also like to thank Marco Ronchetti for his organization of the
ASWC workshops, Michal Zaremba and Elena Simperl for their work on the
Demos and Posters, respectively, and Huajun Chen for his efforts as Metadata
Chair at ASWC 2008. Huajun now joins the elite group of “Dogfood Czars” who
promote the use of Semantic Web technologies by the Semantic Web community.

On the business side we would like to thank the Industrial Track Chairs,
Roberta Cuel, Lyndon Nixon, and Laurentiu Vasiliu, for their innovation in
creating a “Software Solutions Track” with commercially inspired criteria and
an associated cash prize.

One of the main aspects which made this conference special was its particular
location in Bangkok, Thailand. We were three only because of the efforts of our
Local Organization Chairs, Asanee Kawtrakul and Rachanee Ungrangsi; our Lo-
cal Organizing Committee, Photchanan Ratanajaipan and Krissada Maleewong;
and our Local Organizing staff.

We thank Alessio Gugliotta for his unswerving support to the Program Chairs
in organizing the refereed paper program. We are also grateful to Springer for
agreeing to publish the proceedings in its Lecture Notes in Computer Science
series. Our gratitude also goes to all of our sponsors and STI International for
their continued organizational support. Finally, we would like to thank all the
colleaques who submitted their papers to the conference, and all the participants
who contributed to the interesting presentations and fruitful discussions.

Preface VII

We are happy that ASWC 2008 was a thrilling event and once again showed
the high levels of motivation, dedication, creativity, and performance of the
Semantic Web community.

December 2008 John Domingue
Chutiporn Anutariya

Organization

ASWC 2008 was organized by the Asian Institute of Technology, National Elec-
tronics and Computer Technology Center, and Shinawatra University, Thailand.

Steering Committee

Steering Committee Chair

Riichiro Mizoguchi Osaka Univesity, Japan

Steering Committee

Witold Abramowicz The Poznan University of Economics, Poland
Dieter Fensel University of Innsbruck, Austria
Fausto Giunchiglia University of Trento, Italy
Sung-Kook Han Wonkwang University, Korea
Hong-Gee Kim Seoul National University, Korea
Juanzi Li Tsinghua University, China
Daniel Schwabe PUC Rio, Brazil
Rudi Studer Universität Karlsruhe, Germany
R.K. Shyamasundar Tata Institute of Fundamental Research, India
Vilas Wuwongse Asian Institute of Technology, Thailand
Ning Zhong Maebashi Institute of Technology, Japan

Organizing Committee

Conference Chairs
Jerome Euzenat INRIA Rhône-Alpes, France
R.K. Shyamasundar Tata Institute of Fundamental Research, India

Program Chairs

John Domingue Open University, UK
Chutiporn Anutariya Shinawatra University, Thailand

Workshop Chair

Marco Ronchetti Trento University, Italy

Industrial Track Chairs
Roberta Cuel Trento University, Italy
Lyndon J.B. Nixon Free University of Berlin, Germany
Laurentiu Vasiliu DERI Galway, Ireland

X Organization

Demo Chair

Michal Zaremba STI International, Austria

Poster Chair

Elena Simperl STI International, Austria

Metadata Chair

Huajun Chen Zhejiang University, China

Local Organizing Chairs

Asanee Kawtrakul NECTEC, Thailand
Rachanee Ungrangsi Shinawatra University, Thailand

Local Organizing Committee

Photchanan Ratanajaipan Shinawatra University, Thailand
Krissada Maleewong Shinawatra University, Thailand

Program Committee

Senior Program Committee

Sean Bechhofer University of Manchester, UK
Dieter Fensel University of Innsbruck and STI International,

Austria
Aldo Gangemi CNR, Italy
Asun Gomez-Perez Universidad Politecnica de Madrid, Spain
Guus Schreiber Vrije Universiteit Amsterdam, The Netherlands
Daniel Schwabe PUC Rio, Brazil
Amit Sheth University of Georgia and Semagix, USA
Katia Sycara Carnegie Mellon University, USA

Program Committee

Harith Alani University of Southampton, UK
Yuan An Drexel University, USA
Jurgen Angele Ontoprise, Germany
Grigoris Antoniou FORTH, Greece
Lora Aroyo Free University of Amsterdam, The Netherlands
Budak Arpinar University of Georgia, USA
Walter Binder EPFL, Switzerland
Paolo Bouquet University of Trento, Italy
John Breslin University of Ireland, Ireland
Francois Bry University of Munich, Germany
Paul Buitelaar DFKI Saarbruecken, Germany
Christoph Bussler Cisco Systems, Inc., USA
Liliana Cabral Open University, UK

Organization XI

Enhong Chen University of Science and Technology of China,
China

Harry Chen Image Matters, USA
Oscar Corcho University of Manchester, UK
Isabel Cruz University Illinois at Chicago, USA
Bernardo Cuenca Grau Oxford University, UK
Mike Dean BBN Technologies, USA
Thierry Declerck DFKI Kaiserslautern, Germany
Paola Di Maio MFU, Thailand
Ian Dickinson Hewlett-Packard Labs, USA
Stefan Dietze Open University, UK
Ying Ding Indiana University, USA
Martin Dzbor Open University, UK
Achille Fokoue IBM Research, USA
Stefania Galizia Open University, UK
Fabien Gandon INRIA Sophia-Antipolis, France
Fausto Giunchiglia University of Trento, Italy
Marko Grobelnik J. Stefan Institute, Slovenia
Alessio Gugliotta Open University, UK
Volker Haarslev Concordia University, CA
Peter Haase University of Karlsruhe, Germany
Axel Hahn University of Oldenburg, Germany
Harry Halpin University of Edinburgh, UK
Siegfried Handschuh FZI Karlsruhe, Germany
Maruf Hasan Shinawatra University, Thailand
Manfred Hauswirth DERI Galway, Ireland
Martin Hepp University of Innsbruck and DERI, Austria
Masahiro Hori Kansai University, Japan
Andreas Hotho University of Kassel, Germany
Eero Hyvnen University of Helsinki, Finland
Giovambattista Ianni University of Calabria, Italy
Ryutaro Ichise National Institute of Informatics, Japan
Jason Jung Yeungnam University, Korea
Lalana Kagal MIT, USA
Bo-Young Kang Seoul National University, Korea
Vangelis Karkaletsis NCSR Demokritos, Greece
Vipul Kashyap Clinical informatics R&D, USA
Takahiro Kawamura Toshiba, Japan
Yoshinobu Kitamura Osaka University, Japan
Michel Klein Vrije Universiteit Amsterdam, The Netherlands
Matthias Klusch DFKI Saarbruecken, Germany
Manolis Koubarakis Technical University of Crete, Greece
Georgia Koutrika Stanford University, USA
Kouji Kozaki Osaka University, Japan
Ruben Lara Tecnologia, Informacion y Finanzas, Spain
Alain Leger France Telecom, France

XII Organization

Juanzi Li Tsinghua University, China
Alexander Loeser TU Berlin, Germany
Mihhail Matskin KTH Stockholm, SE
Yutaka Matsuo The University of Tokyo, Japan
Diana Maynard University of Sheffield, UK
Brian McBride Hewlett Packard, UK
Dennis McLeod University of Southern California, USA
Riichiro Mizoguchi Osaka University, Japan
Dunja Mladenic J. Stefan Institute, Slovenia
Ralf Moeller Hamburg University of Technology, Germany
Wolfgang Nejdl University of Hannover and L3S, Germany
Barry Norton Open University, UK
Ekawit Nantajeewarawat SIIT, Thailand
Daniel Oberle SAP AG, Germany
Leo Obrst MITRE, USA
Daniel Olmedilla L3S Hannover, Germany
Jeff Z. Pan University of Aberdeen, UK
Yue Pan IBM Research Lab, China
Massimo Paolucci DoCoMo, Germany
Terry Payne University of Southampton, UK
Carlos Pedrinaci Open University, UK
Paulo Pinheiro da Silva Stanford University, USA
Ruzica Piskac EPFL, Switzerland
Dimitris Plexousakis University of Crete, Greece
Axel Polleres DERI, NUI Galway, Ireland
Yuzhong Qu SouthEast University, China
Sudha Ram University of Arizona, USA
Ulrich Reimer University of Konstanz and FHS St. Gallen,

Switzerland
Marta Sabou The Open University, UK
Stefan Schlobach Vrije Universiteit Amsterdam, The Netherlands
Twittie Senivongse Chulalongkorn University, Thailand
Elena Simperl University of Innsbruck, Austria
Michael Stollberg STI International, Austria
Umberto Straccia ISTI-CNR, Italy
York Sure University of Karlsruhe, Germany
Vojtech Svatek University of Economics, Czech Republic
Valentina Tamma University of Liverpool, UK
Jie Tang Tsinghua University, China
Sergio Tessaris Free University Bozen, Italy
Robert Tolksdorf Free University Berlin, Germany
Paolo Traverso ITC/IRST, Italy
Raphael Troncy CWI Amsterdam, The Netherlands
Victoria Uren KMi The Open University, UK
Tomas Vitvar STI Innsbruck, Austria

Organization XIII

Holger Wache Vrije Universiteit Amsterdam, The Netherlands
Krzysztof Wecel Poznan University of Economics, Poland
Takahira Yamaguchi Keio University, Japan
Yong Yu Shanghai Jiao Tong University, China
Hai Zhuge Institute of Computing Technology, China

Additional Reviewers
Krissada Maleewong Shinawatra University, Thailand
Photchanan Ratanajaipan Shinawatra University, Thailand
Rachanee Ungrangsi Shinawatra University, Thailand

Local Organizing Committee

Local Organizing Committee

Photchanan Ratanajaipan Shinawatra University, Thailand
Krissada Maleewong Shinawatra University, Thailand

Local Organizing Staff

Kornschnok Dittawit Shinawatra University, Thailand
Nopachat Kalayanapan Shinawatra University, Thailand
Pawadee Keratichewanun Shinawatra University, Thailand
Panida Kijrattana Shinawatra University, Thailand

Sponsoring Institutions

Platinum Sponsors

EastWeb-AsiaLink project through Asian Institute of Technology, Thailand
National Electronics and Computer Technology Center, Thailand
Super project and Swing project through DERI-Galway, Ireland

Gold Sponsor

NeOn project through the Open University, UK
Shinawatra University, Thailand

Silver Sponsor

LarKC project through STI-Innsbruck, Austria

XIV Organization

Platinum Sponsor

Gold Sponsor

Silver Sponsor

Table of Contents

Scalable Reasoning and Logic

A Modularization-Based Approach to Finding All Justifications for
OWL DL Entailments . 1

Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, and Peter Haase

DL-Lite and Role Inclusions . 16
Roman Kontchakov and Michael Zakharyaschev

Temporal Ontology Language for Representing and Reasoning
Interval-Based Temporal Knowledge . 31

Sang-Kyun Kim, Mi-Young Song, Chul Kim, Sang-Jun Yea,
Hyun Chul Jang, and Kyu-Chul Lee

A Formal Semantics-Preserving Translation from Fuzzy Relational
Database Schema to Fuzzy OWL DL Ontology . 46

Fu Zhang, Z.M. Ma, Hailong Wang, and Xiangfu Meng

A Tableau Algorithm for Possibilistic Description Logic ALC 61
Guilin Qi and Jeff Z. Pan

SAOR: Authoritative Reasoning for the Web . 76
Aidan Hogan, Andreas Harth, and Axel Polleres

Scalable Distributed Ontology Reasoning Using DHT-Based
Partitioning . 91

Qiming Fang, Ying Zhao, Guangwen Yang, and Weimin Zheng

Versatile Semantic Modeling of Frame Logic Programs under Answer
Set Semantics . 106

Mario Alviano, Giovambattista Ianni, Marco Marano, and
Alessandra Martello

Ontology Mapping

Deriving Concept Mappings through Instance Mappings 122
Balthasar A.C. Schopman, Shenghui Wang, and Stefan Schlobach

Deep Semantic Mapping between Functional Taxonomies for
Interoperable Semantic Search . 137

Yoshinobu Kitamura, Sho Segawa, Munehiko Sasajima,
Shinya Tarumi, and Riichiro Mizoguchi

XVI Table of Contents

Ontology Modeling and Management

ROC: A Method for Proto-ontology Construction by Domain
Experts . 152

Nicole J.J.P. Koenderink, Mark van Assem, J. Lars Hulzebos,
Jeen Broekstra, and Jan L. Top

A Pattern Based Approach for Re-engineering Non-Ontological
Resources into Ontologies . 167

Andrés Garćıa-Silva, Asunción Gómez-Pérez,
Mari Carmen Suárez-Figueroa, and Boris Villazón-Terrazas

Efficient Index Maintenance for Frequently Updated Semantic Data 182
Yan Liang, Haofen Wang, Qiaoling Liu, Thanh Tran,
Thomas Penin, and Yong Yu

Towards a Component-Based Framework for Developing Semantic Web
Applications . 197

Raúl Garćıa-Castro, Asunción Gómez-Pérez,
Óscar Muñoz-Garćıa, and Lyndon J.B. Nixon

Bounded Ontological Consistency for Scalable Dynamic Knowledge
Infrastructures . 212

Maciej Zurawski, Alan Smaill, and Dave Robertson

An Editorial Workflow Approach For Collaborative Ontology
Development . 227

Raúl Palma, Peter Haase, Oscar Corcho,
Asunción Gómez-Pérez, and Qiu Ji

Identifying Key Concepts in an Ontology, through the Integration of
Cognitive Principles with Statistical and Topological Measures 242

Silvio Peroni, Enrico Motta, and Mathieu d’Aquin

Ontologies and Tags

The Art of Tagging: Measuring the Quality of Tags 257
Ralf Krestel and Ling Chen

STAN: Social, Trusted Annotation Network . 272
Hyun Namgoong, Kyoung-Mo Yang, Sung-Kwon Yang,
Charles Borchert, and Hong-Gee Kim

Consolidating User-Defined Concepts with StYLiD 287
Aman Shakya, Hideaki Takeda, and Vilas Wuwongse

Table of Contents XVII

Human Language Technologies and Machine Learning

An Integrated Approach for Automatic Construction of Bilingual
Chinese-English WordNet . 302

Renjie Xu, Zhiqiang Gao, Yingji Pan, Yuzhong Qu, and
Zhisheng Huang

Predicting Category Additions in a Topic Hierarchy 315
Janez Brank, Marko Grobelnik, and Dunja Mladenić

Catriple: Extracting Triples from Wikipedia Categories 330
Qiaoling Liu, Kaifeng Xu, Lei Zhang, Haofen Wang, Yong Yu, and
Yue Pan

Semantically Conceptualizing and Annotating Tables 345
Stephen Lynn and David W. Embley

Semantic Assistants – User-Centric Natural: Language Processing
Services for Desktop Clients . 360

René Witte and Thomas Gitzinger

Exploiting Gene Ontology to Conceptualize Biomedical Document
Collections . 375

Hai-Tao Zheng, Charles Borchert, and Hong-Gee Kim

Extracting Semantic Frames from Thai Medical-Symptom Phrases with
Unknown Boundaries . 390

Peerasak Intarapaiboon, Ekawit Nantajeewarawat, and
Thanaruk Theeramunkong

Refining Instance Coreferencing Results Using Belief Propagation 405
Andriy Nikolov, Victoria Uren, Enrico Motta, and Anne de Roeck

Named Entity Disambiguation: A Hybrid Statistical and Rule-Based
Incremental Approach . 420

Hien T. Nguyen and Tru H. Cao

Querying

Exposing Heterogeneous Data Sources as SPARQL Endpoints through
an Object-Oriented Abstraction . 434

Walter Corno, Francesco Corcoglioniti, Irene Celino, and
Emanuele Della Valle

Integrating Lightweight Reasoning into Class-Based Query Refinement
for Object Search . 449

Gong Cheng and Yuzhong Qu

XVIII Table of Contents

A Segmentation-Based Approach for Approximate Query over
Distributed Ontologies . 464

Yimin Wang, Guilin Qi, and Min Chen

A Robust Ontology-Based Method for Translating Natural Language
Queries to Conceptual Graphs . 479

Tru H. Cao, Truong D. Cao, and Thang L. Tran

Snippet Generation for Semantic Web Search Engines 493
Thomas Penin, Haofen Wang, Thanh Tran, and Yong Yu

Semantic Web Services and Semantic Web
Applications

Semantic Telecommunications Network Capability Services 508
Xiuquan Qiao, Xiaofeng Li, Tian You, and Lihao Sun

Understanding Semantic Web Applications . 524
Kouji Kozaki, Yusuke Hayashi, Munehiko Sasajima,
Shinya Tarumi, and Riichiro Mizoguchi

A Formal Model for Classifying Trusted Semantic Web Services 540
Stefania Galizia, Alessio Gugliotta, and Carlos Pedrinaci

Author Index . 555

A Modularization-Based Approach to Finding
All Justifications for OWL DL Entailments

Boontawee Suntisrivaraporn1, Guilin Qi2, Qiu Ji2, and Peter Haase2

1 Theoretical Computer Science, TU Dresden, Germany
meng@tcs.inf.tu-dresden.de

2 AIFB Institute, University of Karlsruhe, Germany
{gqi,qiji,pha}@aifb.uni-karlsruhe.de

Abstract. Finding the justifications for an entailment (i.e., minimal sets
of axioms responsible for it) is a prominent reasoning service in ontology
engineering, as justifications facilitate important tasks like debugging in-
consistencies or undesired subsumption. Though several algorithms for
finding all justifications exist, issues concerning efficiency and scalability
remain a challenge due to the sheer size of real-life ontologies. In this
paper, we propose a novel method for finding all justifications in OWL
DL ontologies by limiting the search space to smaller modules. To this
end, we show that so-called locality-based modules cover all axioms in
the justifications. We present empirical results that demonstrate an im-
provement of several orders of magnitude in efficiency and scalability of
finding all justifications in OWL DL ontologies.

1 Introduction

Since the Web Ontology Language (OWL) has become a W3C standard, it is
widely believed that ontologies play a prominent role in formal representation
of knowledge on the Semantic Web. The main advantages of employing OWL
in knowledge engineering are twofold. On the one hand, the well-defined seman-
tics of Description Logic (DL), which is the logical underpinning of OWL, helps
guarantee that everyone on the Web understands the described knowledge in a
consistent way. On the other hand, reasoning services can be exploited to derive
implicit knowledge from the one explicitly given. DL systems can, for example,
identify unsatisfiable concepts and classify a given ontology, i.e., compute all the
subsumption (subconcept–superconcept) relationships between the concepts de-
fined in the ontology. These “standard” reasoning services have proved essential
but not sufficient in engineering real-world ontologies. This is because building
ontologies is an error-prone endeavor. Although most DL systems can detect an
error (an unsatisfiable concept or undesired subsumption) in a given ontology,
additional reasoning is needed in order to find its justifications, i.e., minimal
subsets of the ontology that still have the error.

Several techniques for finding all justifications have been proposed in the
literature in the past decade which can be categorized into glass-box approaches
and black-box approaches.

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 B. Suntisrivaraporn et al.

Glass-box approaches require the decision (e.g., tableau) procedure to be mod-
ified, usually by adding labels to keep track of relevant axioms used during the
computation [14,12,11,1,2]. Most of the work in this direction considers specific
Description Logics, e.g., ALC, and a specific type of entailment, e.g., concept un-
satisfiability. In [14], Schlobach and Cornet proposed an extension to the tableau
algorithm for ALC with unfoldable TBoxes. The extension uses labels to keep
track of axioms used during the computation which directly corresponds to justi-
fications. They also coined the name “axiom pinpointing” for the task of finding
justifications for an entailment. Since glass-box approaches are based on modify-
ing the internals of a DL reasoning algorithm, an extension has to be developed
for each DL. Meyer et al. extended the idea to ALC with general concept in-
clusions (GCIs) [12], and Kalyanpur et al. extended it to the more expressive
DL SHIF(D) [11] and SHOIN (D) [10] which underly the core of OWL. In
[1], a general approach for extending a tableau-based algorithm to a pinpointing
algorithm is proposed which can be used to find all justifications for a given
entailment. Most previous work on glass-box methods considers tableau-based
reasoning algorithm. An exception is the work by Baader et al. [2] which ex-
tends the polytime classification algorithm in order to compute justifications for
a subsumption relation in the lightweight DL EL+, and also shows that axiom
pinpointing is inherently hard, i.e., determining whether there is a justification
within a given cardinality bound is NP-complete despite tractability of the un-
derlying DL.

The other class of approaches to axiom pinpointing is known as black-box,
where a DL reasoner is merely used to test specific entailment queries, and as
such its internals need not be modified. With a näıve pruning algorithm, a jus-
tification can be computed by invoking the DL reasoner linear number of times
[11,2]. The näıve algorithm essentially sweeps through all the axioms in the on-
tology and tests if the entailment still holds in absence of each axiom. Since
this approach is independent from reasoning algorithms, it can be easily imple-
mented on top of any existing DL reasoners. The main disadvantage, however,
is that it typically requires several calls to the DL reasoning services that are
already computationally expensive. Therefore, several optimization techniques
have very recently been proposed that help to reduce the number of calls to
the DL reasoner and hence speed up the black-box approach. Examples include
the ‘sliding window’ technique employed in the fast pruning algorithm [10], the
‘binary-search’ idea adapted to obtain a best-case logarithmic pruning algorithm
[3], and the ‘relevance-based selection function’ that syntactically select relevant
axioms from the ontology [9]. Based on a black-box pruning algorithm for com-
puting a single justification, the hitting set tree (HST) algorithm [13,10,9] can
be used to recursively compute all justifications.

Recently, ontology modularity and modularization have been studied exten-
sively, with various applications ranging from ontology re-use and optimization
of classical reasoning such as subsumption, as well as non-classical reasoning
such as incremental classification [5] and axiom pinpointing [3]. Closely related
to [9] is the modularization-based approach to axiom pinpointing where relevant

A Modularization-Based Approach to Finding All Justifications 3

Table 1. Syntax and semantics of SHOIQ concepts and axioms

Name Syntax Semantics

top � ∆I

concept name A AI ⊆ ∆I

nominal {a} {aI}
negation ¬C ∆I\CI

conjunction C �D CI ∩DI

exists restriction ∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}
at-least restriction ≥ n s.C {x ∈ ∆I | �{y : (x, y) ∈ sI ∧ y ∈ CI} ≥ n}

role name r rI ⊆ ∆I ×∆I

inverse role r− {(x, y) ∈ ∆I ×∆I | (y, x) ∈ rI}

role hierarchy r 	 s rI ⊆ sI

transitivity Trans(r) (x, y), (y, z) ∈ rI implies (x, z) ∈ rI

GCI C 	 D CI ⊆ DI

axioms are precisely those axioms in the module [3]. In order to exploit modu-
larity in black-box axiom pinpointing, Baader and Suntisrivaraporn showed that
the reachability-based module [16] covers all justifications for an entailment of
interest in EL+ [3].

In the present paper, we combine the relevance-based techniques developed
in [9] and the modularization-based techniques in [3] to effectively enhance the
HST pinpointing algorithm. Since the results in [3] are w.r.t. reachability-based
modules for EL+, we need to adopt the locality-based module [6] for SHOIQ.
Our main contributions in the present paper are twofold. In theory, we show that
the minimal locality-based module is a subsumption module (first defined in [3]),
i.e., it covers all justifications. As a consequence, it suffices to focus on axioms
in the module when finding all justifications and when testing subsumption. In
practice, we have implemented the approach using KAON2 as the black-box rea-
soner and evaluated it on realistic ontologies. Our empirical results demonstrate
an improvement of several orders of magnitude in the efficiency and scalability of
finding all justifications. The results thus render the black-box approach feasible
for application-scale OWL DL ontologies.

2 Preliminaries

In this section, we give formal definitions for SHOIQ ontologies, justifications
and locality-based modules. Then, we introduce selection functions and the HST
pinpointing algorithm.

Description logic and justifications

To make the paper self-contained, we first introduce the Description Logic (DL)
SHOIQ [7] which is the underpinning DL formalism of the Web Ontology Lan-
guage (OWL DL and OWL Lite).

4 B. Suntisrivaraporn et al.

Starting with disjoint sets of concept names CN, role names RN and individuals
Ind, a SHOIQ-role is either a role name r ∈ RN or an inverse role r− with
r ∈ RN. We denote by Rol the set of all SHOIQ-roles. SHOIQ-concepts can
be built using the constructors shown in the upper part of Table 1, where a ∈
Ind, r, s ∈ Rol with s a simple role1, n is a positive integer, A ∈ CN, and C, D
are SHOIQ-concepts.2 We use the standard abbreviations: ⊥ stands for ¬�;
C � D stands for ¬(¬C � ¬D); ∀r.C stands for ¬(∃r.¬C); and ≤ ns.C stands
for ¬(≥ (n + 1)s.C). We denote by Con the set of all SHOIQ-concepts.

A SHOIQ ontologyO is a finite set of role hierarchy axioms r
 s, transitivity
axioms Trans(r), and a general concept inclusion axioms (GCIs) C
 D with
r, s ∈ Rol and C, D ∈ Con.3 We write CN(O), RN(O) and Ind(O) to denote,
respectively, the set of concept names, role names and individuals occurring in
the the ontology O, and Sig(O) to denote the signature of O, i.e., CN(O) ∪
RN(O) ∪ Ind(O). Similarly, Sig(r), Sig(C) and Sig(α) are used to denote the
signature of a role, a concept and an axiom, respectively.

The DL semantics is defined by means of interpretations I with a non-empty
domain ∆I and a function ·I that maps each concept C ∈ Con to a subset of
the domain and each role r ∈ Rol to a binary relation over the domain. An
interpretation I is a model of an ontology O (I |= O), if the conditions given
in the semantics column of Table 1 are satisfied. The main types of entailments
are concept satisfiability: C is satisfiable w.r.t. O if there exists a model I of
O such that CI �= ∅; and concept subsumption: C is subsumed by D w.r.t. O
(written O |= C
 D or C
O D) if, for every model I of O, CI ⊆ DI . Without
loss of generality, we restrict attention to concept subsumption in what follows.
Considering an example ontology depicted in Figure 1, all DL reasoners are able
to detect that the subsumption Oex |= σ = (Endocarditis
 HeartDisease) holds.

Definition 1 (Justification). Let O be a SHOIQ ontology with an entailment
σ (i.e., O |= σ). A subset J ⊆ O is a justification for σ in O if J |= σ and, for
every J ′ ⊂ J , J ′ �|= σ.

Justifications for an entailment need not be unique. Moreover, given an ontology
and an entailment, the number of justifications may be exponential in the size
of the ontology. For the small example ontology Oex (see Figure 1), it is not
difficult to infer that there are precisely two justifications for σ: one consisting
of axioms marked by •, and the other by �.

Modularization
We now introduce the notions of syntactic locality and locality-based module,
which have been first introduced in [6]. Syntactic locality is used to define the
notion of module for a signature, i.e., a subset of the ontology that preserves the
meaning of names in the signature.
1 A simple role is neither transitive nor a superrole of a transitive role.
2 Concepts and roles in DL correspond to classes and properties in OWL, respectively.
3 A concept definition A ≡ C is an abbreviation of two GCIs A 	 C and C 	 A,

while ABox assertions C(a) and r(a, b) can be expressed as the GCIs {a} 	 C and
{a} 	 ∃r.{b}, respectively.

A Modularization-Based Approach to Finding All Justifications 5

α1 Pericardium 	 Tissue � ∃part-of.Heart

α2 Endocardium 	 Tissue � ∃part-of.HeartValve • �

� ∃part-of.HeartWall

α3 HeartValve 	 BodyValve � ∃part-of.Heart •
α4 HeartWall 	 BodyWall � ∃part-of.Heart �

α5 Pericarditis 	 Inflammation � ∃has-loc.Pericardium

α6 Endocarditis 	 Inflammation � ∃has-loc.Endocardium • �

α7 Inflammation 	 Disease � ∃acts-on.Tissue • �

α8 Disease � ∃has-loc.Heart 	 HeartDisease • �

α9 part-of 	 has-loc • �

α10 Trans(has-loc) • �

Fig. 1. An example ontology Oex; the minimal locality-based module Oloc
Endocarditis; and

the justifications for Endocarditis 	O HeartDisease

Definition 2 (Syntactic locality for SHOIQ). Let S be a signature. The
following grammar recursively defines two sets of concepts Con⊥(S) and Con�(S)
for a signature S:

Con⊥(S) ::= A⊥ | (¬C�) | (C �C⊥) | (∃r⊥.C) | (∃r.C⊥)
| (≥ n r⊥.C) | (≥ n r.C⊥)

Con�(S) ::= (¬C⊥) | (C�
1 � C�

2)

where A⊥ �∈ S is a concept name, C is a SHOIQ-concept, C⊥ ∈ Con⊥(S),
C�

i ∈ Con�(S) (for i = 1, 2), and Sig(r⊥) �⊆ S.
An axiom α is syntactically local w.r.t. S if it is of one of the following

forms: (i) r⊥
 r, (ii) Trans(r⊥), (iii) C⊥
 C or (iv) C
 C�. The set of all
SHOIQ-axioms that are syntactically local w.r.t. S is denoted by s local(S). A
SHOIQ-ontology O is syntactically local w.r.t. S if O ⊆ s local(S).

Intuitively, if an axiom α is syntactically local w.r.t. S, its interpretation is
directly affected by that of symbols in S, in the sense that α is true in every
interpretation I in which concept and role names from S are interpreted with
the empty set. Based on this notion, locality-based modules can be defined as
follows: Let O be a SHOIQ ontology, O′ ⊆ O a subset of it, and S a signature.
Then, O′ is a locality-based module for S in O if every axiom α ∈ O\O′ is
syntactically local w.r.t. S ∪ Sig(O′). Given an ontology O and a signature S,
there always exists a unique, minimal locality-based module [4], denoted by Oloc

S .
In the example ontology, it can be easily verified that the underlined axioms are
precisely those in Oloc

{Endocarditis}.

The notion of strong subsumption module (first introduced in [3]) is essential
for our modularization-based approach.

6 B. Suntisrivaraporn et al.

Definition 3 (Strong subsumption module). Let S ⊆ O be SHOIQ on-
tologies, and A a concept name. Then, S is a subsumption module for A in O
if, for all B ∈ CN(O): A
O B iff A
S B.

A subsumption module S for A in O is called strong if, for all B ∈ CN(O):
A
O B implies that J ⊆ S, for every justification J for A
 B in O.

Observe that the largest such strong subsumption module is the whole ontology
itself, and the smallest such module is precisely the union of all justifications
J for A
 B in O, for all superconcept B of A. For our purpose, the minimal
locality-based module is of interest since it is relative small (though not smallest)
and cheap to compute (i.e., quadratic time).

Selection functions
We introduce the notion of selection function in a single ontology given in [8],
which will be used in our algorithm to extract a subset of an ontology relevant
to a subsumption to some degree. Though applied to arbitrary DL languages,
we here restrict attention to SHOIQ:

Definition 4 (Selection function). Let L be the set of all SHOIQ axioms
over a set of signature. Then, a selection function for L is a mapping sL :
P(L)× L× N → P(L) s.t. sL(O, α, k) ⊆ O, where P(L) is the power set of L.

Intuitively, a selection function selects a subset of an ontology w.r.t. an axiom
at step k. A specific selection function based on syntactic relevance is employed
in our algorithm. We begin with defining direct relevance between two axioms.

Definition 5 (Direct relevance). Two axioms α and β are directly relevant
iff Sig(α) ∩ Sig(β) �= ∅.
The intuition is that two axioms are directly relevant if they share a common
(concept or role) name. Another relevance relation is given in [15]. However, that
relevance relation is tailored for unfoldable DL ALC, and as such the selection
function defined by it cannot be used to find all justifications in our setting, so
we do not consider it here.

Based on the notion of direct relevance, we can define the notion of relevance
between an axiom and an ontology.

Definition 6. An axiom α is relevant to an ontology O iff there exists an axiom
β in O such that α and β are directly relevant.

We introduce the relevance-based selection function which can be used to find
all the axioms in an ontology that are relevant to an axiom to some degree.

Definition 7 (Relevance-based selection function). Let O be an ontology,
α be an axiom and k be an integer. The relevance-based selection function,
written srel , is defined inductively as follows:
srel(O, α, 0) = ∅
srel(O, α, 1) = {β ∈ O : α and β are directly relevant}
srel(O, α, k) = {β ∈ O : β is directly relevant to srel(O, α, k − 1)}, where k > 1.

We call srel(O, α, k) the k-relevant subset of O w.r.t. α. For convenience, we
define sk(O, α) = srel(O, α, k) \ srel(O, α, k − 1) for k ≥ 1.

A Modularization-Based Approach to Finding All Justifications 7

Hitting set tree (HST) algorithm
We briefly introduce some notions regarding Reiter’s Hitting Set Tree algorithm
given in [13] which will be used in our algorithm to find all justifications. We
follow the reformulated notions in Reiter’s theory in [10]. Given a universal set
U , and a set S = {s1, ..., sn} of subsets of U which are conflict sets, i.e. subsets of
the system components responsible for the error. A hitting set T for S is a subset
of U such that si ∩ T �= ∅ for all 1 ≤ i ≤ n. A minimal hitting set T for S is a
hitting set such that no T ′ ⊂ T is a hitting set for S. A hitting set T is cardinality-
minimal if there is no other hitting set T ′ such that |T ′| < |T |. Reiter’s algorithm
is used to calculate minimal hitting sets for a collection S = {s1, ..., sn} of sets
by constructing a labeled tree, called a Hitting Set Tree (HST). In a HST, each
node is labeled with a set si ∈ S, and each edge is labeled with an element in
∪si∈Ssi. For each node n in a HST, let H(n) be the set of edge labels on the
path from the root of the HST to n. Then the label for n is any set s ∈ S such
that s ∩H(n) = ∅, if such a set exists. Suppose s is the label of a node n, then
for each σ ∈ s, n has a successor nσ connected to n by an edge with σ in its
label. If the label of n is the empty set, then we have that H(n) is a hitting set
of S. In the case of finding justifications, the universal set corresponds to the
ontology and a conflict set corresponds to a justification [10].

3 Justification Coverage in Locality-Based Modules

This section presents the main technical contribution of the paper that lays the
foundation of our modularization-based algorithm. We show that a locality-based
module for S={A} in O is a strong subsumption module for A in O.

Proposition 1. Let S be a signature, and I = (∆I , ·I) an interpretation such
that xI = ∅ for all (concept and role) names x �∈ S. Then, (C⊥)I = ∅ for every
concept C⊥ ∈ Con⊥(S), and (C�)I = ∆I for every concept C� ∈ Con�(S).

The proof is an easy induction on the structure of the concepts C⊥ and C�.
Intuitively, every concept in Con�(S) (Con⊥(S), resp.) behaves as if it were the
top concept (the bottom concept, resp.) in any interpretation I with xI = ∅ for
all x �∈ S. It follows that syntactically local axioms of the form C⊥
 C and
C
 C� are vacuously satisfied by such an interpretation I. This property of
syntactically local axioms is used to prove the following lemma.

Lemma 1. Let O be a SHOIQ ontology, A, B concept names in Sig(O) such
that A
O B, Oloc

A a locality-based module for {A} in O. If A
S B for an
S ⊆ O such that S �⊆ Oloc

A , then A
S′ B with S′ = S ∩ Oloc
A .

Proof. We show the contraposition by assuming that A �
S′ B and then demon-
strating that A �
S B. Since A �
S′ B, there must be a model I ′ of S′ and
an individual w ∈ ∆I′

such that w ∈ AI′\BI′
. Construct a new interpreta-

tion I based on I′ by setting xI := ∅ for all symbols (role or concept names)
x ∈ Sig(O)\Sig(Oloc

A). Obviously, w ∈ AI since I does not change the interpre-
tation of A ∈ Sig(Oloc

A). There are two possibilities for B: either BI = BI′
or

BI = ∅. In either case, we have that w �∈ BI .

8 B. Suntisrivaraporn et al.

It remains to show that I is a model of S, i.e., satisfies every axiom α =
(αL
 αR) in S. We make a case distinction as follows:

– α ∈ Oloc
A . It follows that α ∈ S′, and thus I ′ |= α. By construction, both I

and I′ agree on the interpretation of symbols in Sig(Oloc
A) and thus Sig(α).

Hence, I |= α as required.
– α �∈ Oloc

A . By definition of locality-based modules, α is syntactically local
w.r.t. S = Sig(Oloc

A) ∪ {A}. Then, there are four possibilities for α:
• α = r⊥
 r. First, assume that r⊥ is a role name. Then, r⊥ �∈ S and

thus r⊥ ∈ Sig(O)\Sig(Oloc
A). By construction of I, (r⊥)I = ∅. Otherwise,

r⊥ is an inverse role s−. Then, s ∈ Sig(r⊥) �⊆ S. It follows that s ∈
Sig(O)\Sig(Oloc

A), and thus (r⊥)I = sI = ∅. In both cases, I |= α as
required.

• α = Trans(r⊥). Analogous to the first case.
• α = C⊥
 C. By Proposition 1, (C⊥)I = ∅. Hence, I |= α.
• α = C
 C�. By Proposition 1, (C�)I = ∆I . Hence, I |= α.

Since I is a model of S such that w ∈ AI\BI , we have A �
S B, contradicting
the premise of the lemma. ❏

Now, we are ready to establish the required property of the modules:

Theorem 1 (Oloc
A is a strong subsumption module). Let O be a SHOIQ

ontology and A a concept name. Then Oloc
A is a strong subsumption module for

A in O.

Proof. The fact that Oloc
A is a subsumption module has been shown in [4]. It

remains to show that it is strong, i.e., every justification J ⊆ O for A
O B is
contained in Oloc

A , for every concept name B ∈ CN(O).
Assume to the contrary that there is a concept name B and a justification

J for A
O B that is not contained in Oloc
A . By Lemma 1, the strict subset

J ′ = J ∩Oloc
A of J is such that A
J′ B. Obviously, J is not minimal and hence

cannot be a justification for A
O B, contradicting the initial assumption. ❏

Intuitively, the (minimal) locality-based module for S = {A} in a SHOIQ-
ontology O contains all the relevant axioms for any subsumption σ = (A
O B),
in the sense that all responsible axioms for σ are included. In other words, in
order to find all justifications for a certain entailment in an OWL ontology,
it is sufficient to consider only axioms in the locality-based module. Since the
minimal locality-based modules are relatively very small (see, e.g., [6,16]), our
modularization-based approach proves promising. The empirical results on real-
life ontologies are described in Section 5.

4 Our Modularization-Based Algorithm

In this section, we propose a new algorithm for finding all justifications based
on the relevance-based algorithm and the modularization extraction algorithm.
Before we describe our algorithm, we need to recap the relevance-based algorithm
given in [9].

A Modularization-Based Approach to Finding All Justifications 9

Algorithm 1. REL ALL JUSTS(A
 B,O, s)
Data: An ontology O, a subsumption A 	 B and a selection function s.
Result: All justifications J
begin1

Globals : J ← ∅;2

O′ ← HS ← HS local ← ∅; k← 1;3

S ← s(O, A 	 B, k);4

while S = ∅ do5

O′ ← O′ ∪ S ;6

if HS local = ∅ then7

for P ∈ HS local do /* Get global hitting sets */8

if O \ P |= A 	 B then9

HS ← HS ∪ {P};10

HS local ← HS local \HS ;11

if (HS local = ∅) then12

return J /* Early termination */;13

HS temp ← HS local ;14

for P ∈ HS temp do /* Expand hitting set tree */15

(J ′,HS ′
local)← EXPAND HST(A 	 B,O′ \ P);16

J ← J ∪ J ′;17

HS local ← HS local ∪ {P ∪ P ′|P ′ ∈ HS ′
local} \ {P};18

else if O′ |= A 	 B then19

(J ,HS local)← EXPAND HST(A 	 B,O′);20

k ← k + 1;21

S ← sk(O, A 	 B);22

return J23

end24

The relevance-based algorithm (Algorithm 1) receives an ontology O, a sub-
sumption A
 B of O and a selection function s, and outputs the set of all
justifications J . We sketch the basic idea of the algorithm and refer to [9] for
details of the algorithm. First of all, we find the first k such that A
 B is
inferred by the k-relevant subset O′ of O, i.e., the “if” condition in line 19 is
satisfied. We then call Algorithm 2 to find a set of justifications for A
 B in
O′ and a set of local hitting sets, where a local hitting set is a hitting set for all
justifications in the selected sub-ontology, i.e., O′ in line 20. We then add to the
sub-ontology obtained in the previous iteration those axioms that are directly
relevant this sub-ontology. For those local hitting sets that are not hitting sets of
all justifications in the entire ontology O, we call Algorithm 2 to further expand
them, and so on.

To compute a single justification in Algorithm 2, we invoke a sub-procedure
SINGLE JUST(σ,O) which is a black-box pinpointing algorithm optimized either
by the sliding window technique in [10] or by binary search technique in [3].

The correctness of Algorithm 1 follows from Theorem 1 in [9].

10 B. Suntisrivaraporn et al.

Algorithm 2. EXPAND HST(A
 B,O)
Data: An ontology O and a subsumption A 	 B of O
Result: A set of justifications J for A 	 B in O and a set of hitting sets
begin1

HS ← HS1 ← ∅2

J ← SINGLE JUST(A 	 B,O)3

J ← J ∪ {J}4

for α ∈ J do /* Create all possible branches. */5

HS1 ← HS1 ∪ {{α}}6

while true do7

HS2 ← ∅8

for (P ∈ HS1) do9

if O \ P |= A 	 B then10

HS ← HS ∪ {P}11

else12

HS2 ← HS2 ∪ {P} /* Branches need to be expanded */13

if (HS1 = ∅) or (HS 2 = ∅) then14

return (J ,HS)15

HS1 ← ∅16

for P ∈ HS2 do17

J ← SINGLE JUST(A 	 B,O \ P)18

J ← J ∪ {J}19

for α ∈ J do20

HS1 ← HS1 ∪ {P ∪ {α}}21

end22

Theorem 2. Given an ontology O, a subsumption A
 B of O and a relevance-
based selection function srel , J returned by Algorithm 1 is the set of all justifi-
cations for A
 B.

Based on the algorithms introduced above, we propose our novel algorithm for
computing all the justification. The idea of our algorithm is straightforward:
to find all justifications for a subsumption A
 B in O, we first extract the
locality-based module Oloc

A for S = {A} in O and then apply Algorithm 1.
The method is outlined in Algorithm 3, where EXTRACT MODULE implements
the locality-based extraction algorithm in [4], and srel is the relevance-based
selection function. The correctness of the algorithm can be seen by Theorem 1
and Theorem 2. We illustrate the effectiveness of our algorithm by means of an
example:

Example 1. Consider an ontology O that contains the following axioms:

α1i : A1i
 P1i �Q1i � Z, α2i : P1i
 A2i � Z, α3i : Q1i
 A2i � Z

α4i : A2i
 P2i �Q2i � Z, α5i : P2i
 A3i � Z, α6i : Q2i
 A3i � Z,

A Modularization-Based Approach to Finding All Justifications 11

Algorithm 3. MODULE ALL JUSTS(A
 B,O)
Data: An ontology O and a subsumption A 	 B

Result: All justifications J
begin1

Oloc
A ← EXTRACT MODULE(O,A)2

return REL ALL JUSTS(A 	 B,Oloc
A , srel)3

end4

{ 11, 21, 41, 51}

11 21

{ 11, 31, 41, 51} { 11, 31, 41, 61}

41 51

31 41
61

{ 11, 21, 41, 61}

11 31 41 51

{ 11, 31, 41, 61}

11

11 31 41 61 11 21 41 61

Fig. 2. Finding all justifications by HST algorithm on the locality-based module. Each
rectangle represents a justification, and the bold rectangle indicates a justification
reuse. ‘×’ means early path termination, while ‘

√
’ means a hitting set is found.

for 1 ≤ i ≤ 10000. Obviously, O comprises 60 000 axioms and entails the sub-
sumption σ = (A11
 A31). While such an ontology clearly is not a realistic
ontology, it well demonstrates the need and potential of search space reduction.
If algorithm REL ALL JUSTS is applied directly to this ontology, one cannot
expect an acceptable performance when finding all justifications. This is be-
cause: (i) SINGLE JUST(σ,O) has to prune a very large set, and (ii) each sub-
sumption test is w.r.t. the entire ontology O since all the axioms O share a
common concept Z. In our modularization-based approach, however, we first
extract the locality-based module Oloc

A11
for S = {A11} in O, and then apply

REL ALL JUSTS to Oloc
A11

instead of O. Since the module contains only 6 axioms,
i.e., Oloc

A11
= {α11, α21, α31, α41, α51, α61}, both points above can be achieved in

much less time.
Figure 2 illustrates the process of finding all justifications by means of expand-

ing a hitting set tree (HST). To begin with, a justification {α11, α21, α41, α51} is
computed by SINGLE JUST(σ,Oloc

A11
), which is taken as the root of the tree. Since

Oloc
A11

dispensed with α11 does not entail σ, {α11} is a hitting set. On the other
hand, O′ = Oloc

A11
\{α21} still entails σ, and thus another justification can be com-

puted by calling SINGLE JUST(σ,O′). The process continues to expand HST un-
til it finds all other justifications for σ: {α11, α31, α41, α51}, {α11, α31, α41, α61},
{α11, α21, α41, α61}. Observe that the node following the branch {α51} is a result
of the optimization ‘justification reuse.’

12 B. Suntisrivaraporn et al.

Table 2. Benchmark ontologies and their characteristics

Ontologies �Axioms �Concepts �Roles Module size Extraction time
Average Maximum (sec)

Galen 4 529 2 748 413 75 530 6
Go 28 897 20 465 1 16 125 40
Nci 46 940 27 652 70 29 436 65

5 Empirical Results

Our algorithm has been realized by using KAON24 as the black-box reasoner. Of
course, the method (like other black-box approaches) can be applied to any other
reasoner, e.g., RacerPro5 and FaCT++6. To fairly compare with the pinpointing
algorithm in [10], we re-implemented it with KAON2 API (henceforth referred
to as ALL JUSTS algorithm). The experiments have been performed on a Linux
server with an Intel(R) CPU Xeon(TM) 3.2GHz running Sun’s Java 1.5.0 with
allotted 2GB heap space.

Benchmark ontologies used in our experiments are the Galen Medical Knowl-
edge Base7, the Gene Ontology (Go)8 and the US National Cancer Institute
thesaurus (Nci)9. The three biomedical ontologies are well-known to both the
life science and Semantic Web communities since they are employed in real-world
applications and often used as benchmarks for testing DL reasoners. Both Go

and Nci are formulated in the lightweight DL EL, while Galen uses expressiv-
ity of the more complex DL SHF . Some information concerning the size and
characteristics of the benchmark ontologies are given in the left part of Table 2.

Modularization reveals structures and dependencies of concepts in the ontologies
as argued in [4,16]. We extract the (minimal) locality-based module for S = {A}
in O, for every benchmark ontology O and each concept name A ∈ CN(O). The
size of the modules and the time required to extract them are shown in the last
three columns of Table 2. Observe that the modules in Galen are larger than
those in the other two ontologies although the ontology itself is smaller. This
suggests that Galen is more complex in the sense that more axioms in it are
non-local (thus relevant) according to Definition 2.
In the experiments, we consider three concept names in CN(O) for each benchmark
ontologyO such that one of them has the largest locality-based module10. For the
sake of brevity, we denote by subs(O) the set of all tested subsumptions A
 B
in O, with A one of the three concept names mentioned above and B an inferred

4 http://kaon2.semanticweb.org/
5 http://www.racer-systems.com/
6 http://owl.man.ac.uk/factplusplus/
7 http://www.openclinical.org/prj galen.html
8 http://www.geneontology.org
9 http://www.mindswap.org/2003/CancerOntology/nciOntology.owl

10 The concept name with largest module is hand-picked in order to cover hard cases in
our experiments, while the other two are randomly selected.

http://kaon2.semanticweb.org/
http://www.racer-systems.com/
http://owl.man.ac.uk/factplusplus/
http://www.openclinical.org/prj_galen.html
http://www.geneontology.org
http://www.mindswap.org/2003/CancerOntology/nciOntology.owl

A Modularization-Based Approach to Finding All Justifications 13

subsumer of A. For eachO of our benchmark ontologies, we compute all justifica-
tions for σ in O, where σ ∈ subs(O). In order to compare with the other existing
approaches, we perform the following for each σandO to compute all justifications:

1. ALL JUSTS(σ,O) (i.e., the algorithm in [10]).
2. REL ALL JUSTS(σ,O, srel);
3. MODULE ALL JUSTS(σ,O);

The justification results by MODULE ALL JUSTS are shown in Table 3, where
the ontology marked with � means that some run does not terminate within the
two hour time-out. Precisely, there are three subsumptions in Go and one in Nci,
for which the computation took more than two hours. The statistics given on
the right hand side of the table does not take into account these subsumptions.

Table 3. Justification results using the modularization-based approach

Ontologies �Subsumptions �Justifications Justification size
|subs(O)| Average Maximum Average Maximum

Galen 69 1.5 4 9.7 24
Go

� 53 3.2 11 5.3 9
Nci

� 23 1.6 8 5.4 9

To visualize the time performances of the three algorithms, we randomly
selected two subsumptions σ1 and σ2 from subs(O) for each ontology O and
compared their computation time required by the three algorithms. These sub-
sumptions are shown as follows:

Galen:σ1 AcuteErosionOfStomach
 GastricPathology
Galen:σ2 AppendicularArtery
 PhysicalStructure

Go:σ1 GO 0000024
 GO 0007582
Go:σ2 GO 0000027
 GO 0044238
Nci:σ1 CD97 Antigen
 Protein
Nci:σ2 APC 8024
 Drugs and Chemicals

The chart in Figure 3 depicts the overall computation time required for each
algorithm to find all justifications for each tested subsumption. Unlike the time
results reported in [10], which excluded the time for satisfiability checking, we re-
port here the overall computation time, i.e. the total time of the algorithm includ-
ing the time needed by the black-box reasoner for the standard reasoning tasks.
Observe that both ALL JUSTS and REL ALL JUSTS did not yield results within
the time-out of two hours on three out of six tested subsumptions (marked by
“TO” on the chart). Comparing these two algorithms (without modularization),
REL ALL JUSTS performs noticeably better than ALL JUSTS in most cases. For
instance, on the subsumptions Galen:σ2 and Nci:σ2, REL ALL JUSTS outper-
forms ALL JUSTS by about 10 and 20 minutes, respectively. On the subsumption
Go:σ2, both algorithms show a similar performance, i.e., time difference is less
than a minute. More explanations on the comparison between these two algo-
rithms can be found in [9].

14 B. Suntisrivaraporn et al.

TO TO TO TO TO TO

Subsumption

Module Size

Number of Justs

Justs Size(Avg)

0.01

0.1

1

10

100

1000

10000

Galen:X1 Galen:X2 GO:X1 GO:X2 NCI:X1 NCI:X2

293 133 25 26 436 9

4 2 10 1 2

19.5 6.5 6.9 6

T
im

e
(s

ec
)

ALL_JUSTS REL_ALL_JUSTS MODULE_ALL_JUSTS

1 1 2

6 6 6

Fig. 3. The time performance of three algorithms for finding all justifications

Interestingly, MODULE ALL JUSTS outperforms all the other algorithms on
all subsumptions, and the improvement is tremendous as can be seen in all
cases in the chart. This empirically confirms our initial conjecture that, given
the strongness property (in the sense of Definition 3) and the small size (see
Table 2 and [6,16]) of locality-based modules, our optimization should be highly
effective. As an example, MODULE ALL JUSTS took only 0.6 seconds to find
all the justifications for Nci:σ2, while REL ALL JUSTS needed 3 242 seconds. In
this case, the locality-based module for APC 8024 in Nci consists of 9 axioms,
whereas the whole ontology has some tens of thousands of axioms. Although
the selection function used in REL ALL JUSTS also prunes the search space by
considering only “k-directly relevant” axioms (see Definition 7) when HST algo-
rithm is executed, several irrelevant axioms (in the sense of syntactic locality)
are still considered.

6 Conclusion

In this paper, we proposed a novel approach for finding all justifications for an
entailment in OWL DL. The approach is based on the computation of minimal
locality-based modules. We first showed that locality-based modules always cover
all axioms in all justifications and exploited this property to limit the search
space when finding all justifications. Then, we presented a modularization-based
pinpointing algorithm that is based on relevance-based techniques and a hitting
set tree algorithm. Finally, we reported on several promising empirical results
that demonstrate an improvement of several orders of magnitude in efficiency and
scalability of finding all justifications in OWL DL ontologies. Our work is based
on locality-based modules. As future work, we shall investigate different kinds
of modules and selection functions that hopefully produce even more relevant
axioms for pinpointing.

A Modularization-Based Approach to Finding All Justifications 15

Acknowledgements. This work was partially supported by the DFG project
under grant BA1122/11-1 and the EU under the IST project NeOn (IST-2006-
027595) http://www.neon-project.org.

References

1. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. In: Olivetti, N.
(ed.) TABLEAUX 2007. LNCS, vol. 4548, pp. 11–27. Springer, Heidelberg (2007)

2. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+ . In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS, vol. 4667,
pp. 52–67. Springer, Heidelberg (2007)

3. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+ . In: Proceedings of KR-MED 2008: Representing
and Sharing Knowledge Using SNOMED (2008)

4. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: The-
ory and practice. J. of Artificial Intelligence Research (JAIR) 31, 273–318 (2008)

5. Cuenca Grau, B., Halaschek-Wiener, C., Kazakov, Y.: History matters: Incremen-
tal ontology reasoning using modules. In: Aberer, K., Choi, K.-S., Noy, N., Alle-
mang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi,
R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS,
vol. 4825, pp. 183–196. Springer, Heidelberg (2007)

6. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount:
Extracting modules from ontologies. In: Proc. of WWW 2007, Banff, Canada, pp.
717–726. ACM, New York (2007)

7. Horrocks, I., Sattler, U.: A tableaux decision procedure for SHOIQ. In: Proc. of
IJCAI 2005, pp. 448–453 (2005)

8. Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies.
In: Proc. of IJCAI 2005, pp. 254–259 (2005)

9. Ji, Q., Qi, G., Haase, P.: A relevance-based algorithm for finding justifications of
DL entailments. In: Technical report, University of Karlsruhe (2008),
http://www.aifb.uni-karlsruhe.de/WBS/gqi/papers/RelAlg.pdf

10. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of
OWL DL entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
267–280. Springer, Heidelberg (2007)

11. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.: Debugging unsatisfiable classes in
OWL ontologies. Journal of Web Semantics 3(4), 268–293 (2005)

12. Meyer, T., Lee, K., Booth, R.: Knowledge integration for description logics. In:
Proc. of AAAI 2005, pp. 645–650. AAAI Press, Menlo Park (2005)

13. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

14. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Proc. of IJCAI 2003, pp. 355–362 (2003)

15. Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent
terminologies. J. Autom. Reasoning 39(3), 317–349 (2007)

16. Suntisrivaraporn, B.: Module extraction and incremental classification: A prag-
matic approach for EL+ ontologies. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 230–244. Springer,
Heidelberg (2008)

http://www.aifb.uni-karlsruhe.de/WBS/gqi/papers/RelAlg.pdf

DL-Lite and Role Inclusions

R. Kontchakov and M. Zakharyaschev

School of Computer Science and Information Systems
Birkbeck College London, UK

http://www.dcs.bbk.ac.uk/∼{roman,michael}

Abstract. We give a classification of the complexity of DL-Lite logics
extended with role inclusion axioms. We show that the data complex-
ity of instance checking becomes P-hard in the presence of functionality
constraints, and coNP-hard if arbitrary number restrictions are allowed,
even with primitive concept inclusions. The combined complexity of sat-
isfiability in this case jumps to ExpTime. On the other side, the com-
bined complexity for the logics without number restrictions depends only
on the form of concept inclusions and can range from NLogSpace and
P to NP; the data complexity for such logics stays in LogSpace.

1 Introduction

Description logic (DL), a discipline conceived in the 1990s as a family of knowl-
edge representation formalisms, which stemmed from semantic networks and
frames, has now been recognised as a ‘cornerstone of the Semantic Web’ for pro-
viding a formal basis for the Web Ontology Language (OWL). DL-Lite is part of
both OWL 1.1 (currently a W3C member submission) and OWL 2; it belongs to
the group of OWL fragments ‘that trade expressive power for efficiency of rea-
soning.’ Notably, ‘DL-Lite admits sound and complete reasoning in LogSpace

with respect to the size of the data (facts). DL-Lite includes most of the main
features of conceptual models such as UML class diagrams and ER diagrams.’

Although in many practical cases DL reasoners can cope quite well with
tasks of much higher complexity, new challenges are arising that require really
tractable reasoning. Typical examples are ontologies with a huge terminology
(TBox) or large number of facts (ABox). DL-Lite was tailored to provide efficient
query answering, which becomes increasingly important for data integration [16],
the Semantic Web [13], P2P data management [3] and ontology-based data ac-
cess [5,7]. E.g., in a standard data integration scenario, the information about
objects and relationships between them (ABox) is stored in relational databases,
while a special ontology (TBox) defines a new ‘logical’ view of the stored data
so that the user can query the integrated resources in terms of this ontology. In
this case, one may be interested in the combined complexity of reasoning, when
both TBox and ABox are regarded as inputs (e.g., to check consistency), as well
as the data complexity, i.e., the complexity of solving a problem (say, instance
checking or query answering) when the TBox and the query are fixed and only
the ABox may vary. DL-Lite boasts polynomial-time combined complexity and

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 16–30, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

DL-Lite and Role Inclusions 17

LogSpace data complexity. Moreover, conjunctive queries to DL-Lite ontologies
can be rewritten into first-order (or SQL) queries to the underlying databases,
so that the existing relational DB engines can be used to evaluate them.

The idea of DL-Lite has actually given rise not to a single language but rather
a family of related formalisms [6,7,8,10]. Some of them are expressive enough
to capture EER and UML class diagrams [1], others enjoy particularly simple
procedures for rewriting queries into SQL [8]. Unfortunately, a mechanical union
of two languages of the family can easily ruin their nice computation properties.
This situation poses a general research problem of investigating the impact of
various DL constructs on the computational complexity of reasoning in DL-Lite
logics. The impact of Boolean operators in concept inclusions as well as arbitrary
number restrictions on roles was comprehensively analysed in [2].

Table 1. Complexity of DL-Lite logics with role inclusions (≤ and ≥ mean upper
and lower bounds, respectively; the most important new results are typeset in bold)

concept number combined comp. data complexity
language inc. restric. of satisfiability inst. checking query answering

DL-LiteRcore core − NLogSpace ≤ [Th.1] in LogSpace in LogSpace

DL-LiteR,F
core core f ExpTime ≥ [Th.3] P ≥ [Th.6] P

DL-LiteR,N
core core + ExpTime coNP ≥ [Th.5] coNP

DL-LiteRkrom Krom − NLogSpace ≤ [Th.1] in LogSpace coNP ≥[7]

DL-LiteR,F
krom Krom f ExpTime coNP ≥ [Th.4] coNP

DL-LiteR,N
krom Krom + ExpTime coNP coNP

DL-LiteRhorn Horn − P ≤ [Th.1] in LogSpace in LogSpace [8]

DL-LiteR,F
horn Horn f ExpTime P ≥[8] P ≤[11]

DL-LiteR,N
horn Horn + ExpTime coNP coNP

DL-LiteRbool Bool − NP ≤ [Th.1] in LogSpace [Th.2] coNP

DL-LiteR,F
bool Bool f ExpTime coNP coNP

DL-LiteR,N
bool Bool + ExpTime ≤[12] coNP coNP ≤[12]

Here we investigate DL-Lite languages with role inclusion axioms, which are
indispensable in data modelling (and are present in RDFS), and give a complete
picture of the trade-off between their expressiveness and computational complex-
ity. The obtained new results are as follows (cf. Table 1): (i) One cannot keep the
data complexity of instance checking in LogSpace and have functionality con-
straints (or any kind of number restrictions) together with role inclusions in the
language: even logics with extremely primitive concept inclusions become P-hard
(coNP-hard if arbitrary number restrictions are allowed).1 (ii) The combined
complexity of satisfiability in this case jumps to ExpTime. On the other hand,
for the Horn fragment with functionality constraints, instance checking is P-
complete for data complexity. Although this problem is not first-order reducible,
it can be reformulated in Datalog [14]. (iii) On the positive side, it turns out that
the combined complexity for the logics with role inclusions but without number
restrictions depends only on the form of concept inclusions and can range from

1 The proof of [8, Theorem 6, item 2] is incorrect (although the result holds).

18 R. Kontchakov and M. Zakharyaschev

NLogSpace and P to NP; the data complexity of instance checking for such
logics stays in LogSpace. (iv) Another positive observation is that the addition
of conjunction to the left-hands side of concept inclusions does not affect com-
plexity too much: although the combined complexity of satisfiability may rise,
the data complexity stays the same: as the latest flavours of DL-LiteA [9] contain
only ‘core’ concept inclusions, Table 1 suggests that they can be extended to the
Horn languages without damaging their computational properties.

2 The DL-Lite Family and Its Neighbours

We begin by defining a description logic that can be regarded as the supremum
of the original DL-Lite family [6,7,8,10] in the lattice of description logics. This
supremum will be called DL-LiteR,N

bool . The language of DL-LiteR,N
bool contains ob-

ject names a0, a1, . . . , atomic concept names A0, A1, . . . , and atomic role names
P0, P1, . . . ; its complex roles R and concepts C are defined as follows:

B ::= ⊥ | Ai | ≥ q R, R ::= Pi | P−
i ,

C ::= B | ¬C | C1 � C2,

where q ≥ 1. The concepts of the form B are called basic. A DL-LiteR,N
bool TBox,

T , is a finite set of concept inclusion and role inclusion axioms of the form:

C1
 C2 and R1
 R2,

and an ABox, A, is a finite set of assertions of the form Ak(ai) and Pk(ai, aj).
Taken together, T and A constitute the DL-LiteR,N

bool knowledge base K = (T ,A).
As usual in description logic, an interpretation I consists of a nonempty do-

main ∆I and an interpretation function ·I such that AI
i ⊆ ∆I , P I

i ⊆ ∆I ×∆I ,
and aI

i �= aI
j , for all i �= j (the unique name assumption, not adopted in OWL,

can be safely removed; it is standard in the DL community and can only make
proofs a bit harder). The role and concept constructors are interpreted in I in
the standard way:

(P−
i)I = {(y, x) ∈ ∆I ×∆I | (x, y) ∈ P I

i }, (inverse role)

⊥I = ∅, (the empty set)

(≥q R)I =
{
x ∈ ∆I | �{y ∈ ∆I | (x, y) ∈ RI} ≥ q

}
, (‘at least q R-successors’)

(¬C)I = ∆I \ CI , (‘not in C’)

(C1 � C2)I = CI
1 ∩ CI

2 , (‘both in C1 and C2’)

where �X denotes the cardinality of X . We also use the standard abbreviations:
C1 �C2 := ¬(¬C1 � ¬C2), � := ¬⊥, ∃R := (≥ 1 R) and ≤ q R := ¬(≥ q + 1 R).

The satisfaction relation |= is also standard: I |= C1
 C2 iff CI
1 ⊆ CI

2 ,
I |= R1
 R2 iff RI

1 ⊆ RI
2 , I |= Ak(ai) iff aI

i ∈ AI
k , and I |= Pk(ai, aj) iff

(aI
i , aI

j) ∈ P I
k . A knowledge base (KB) K = (T ,A) is said to be satisfiable

DL-Lite and Role Inclusions 19

if there is an interpretation satisfying all the members of T and A; such an
interpretation is called a model of K.

We will consider restrictions of DL-LiteR,N
bool along three axes: Boolean op-

erators (bool) on concepts, number restrictions (N) and role inclusions (R). A
DL-LiteR,N

bool TBox T is a Krom TBox if its concept inclusions are of the form:

B1
 B2 or B1
 ¬B2 or ¬B1
 B2, (Krom)

where the Bi are basic concepts. T is called a Horn TBox if its concept inclusions
are of the form:

B1 � · · · �Bn
 B. (Horn)

We use �kBk
 �iB
′
i as an abbreviation for the set of inclusions �kBk
 B′

i.
Finally, we call T a core TBox if its concept inclusions are of the form:

B1
 B2 or B1
 ¬B2. (core)

As B1
 ¬B2 is equivalent to B1 � B2
 ⊥, core TBoxes can be regarded as
sitting precisely in the intersection of Krom and Horn TBoxes.

The fragments of DL-LiteR,N
bool with Krom, Horn and core TBoxes will be

denoted by DL-LiteR,N
krom, DL-LiteR,N

horn and DL-LiteR,N
core , respectively.

Let α ∈ {core, krom, horn, bool}. Denote by DL-LiteR,F
α the fragment of

DL-LiteR,N
α in which number restrictions can occur only in functionality con-

straints of the form ≥ 2R
 ⊥ (RI is functional if (x, y), (x, z) ∈ RI implies
y = z). The fragment of DL-LiteR,N

α without number restrictions, i.e., concepts
of the form ≥ q R, for q > 1, is denoted by DL-LiteRα . The fragments obtained by
omitting role inclusions—that is, DL-LiteNα (with arbitrary number restrictions),
DL-LiteFα (with functionality constraints only), and DL-Liteα (without number
restrictions)—have been analysed in [2]. Note that our notation is somewhat
different from the original one; cf. [6,7,10,8,2].

.

.

Project

Research Visiting Academic

Staff

ProjectMgr

worksIn

manages

1, ∗

1, ∗
1, 2

Committee

AdminJobhasAdmin

chairs
0, 1

cov

disj

Fig. 1. EER diagram

We illustrate the expressiveness of the DL-Lite logics introduced above by
considering the EER diagram in Fig. 1. It can be represented in the DL-Lite
syntax using TBox axioms of the following types:

– ∃manages
 ProjectMgr and ∃manages−
 Project to define the domain and
range of the relationship ‘manages’;

20 R. Kontchakov and M. Zakharyaschev

– Project
 ≥ 1manages− and �
 ≤ 2 manages− to impose the cardinality
constraints on ‘manages’;

– Committee
 AdminJob to define the class hierarchy;
– Research � Visiting
 ⊥ and ProjectMgr
 Academic � Visiting to impose the

disjointness and covering constraints;
– chairs
 hasAdmin to define the relationship hierarchy.

Note that relation hierarchies can only be expressed in the languages DL-LiteRα
(and their extensions), covering constraints in DL-Litebool (and its extensions),
cardinality constraints ‘1,*’ in all languages, constraints of the form ‘0,1’ and
‘1,1’ in DL-LiteFα , and arbitrary cardinality constraints in DL-LiteNα .

We will concentrate on three standard reasoning tasks for our logics L:

– satisfiability: given an L-KB K, decide whether K is satisfiable;
– instance checking: given an object name a, a basic concept B and an L-KB
K, decide whether aI ∈ BI whenever I |= K;

– query answering: given a positive existential query q(x), an L-KB K and a
tuple a of object names from its ABox, decide whether K |= q(a).

As is well known, many other reasoning tasks for description logics are LogSpace

reducible to the satisfiability problem; for details see [2]. In particular, this is
true of instance checking: an object a is an instance of concept B in every model
of K = (T ,A) iff the KB (T ∪ {A¬B
 ¬B}, A ∪ {A¬B(a)}) is not satisfiable,
where A¬B is a fresh concept name.

Our aim is to investigate (i) the combined complexity of the satisfiability
problem for the logics of our family, where the whole KB K is regarded as an
input, and (ii) the data complexity (or ABox complexity) of the instance checking
and query answering problems, where the given TBox is assumed to be fixed,
while the input ABox can vary.

3 DL-LiteR
bool and First-Order Logic with One Variable

First we consider the logic DL-LiteRbool and its fragments. The key observation
which clearly explains their computational behaviour is that the satisfiability
problem for DL-LiteRbool knowledge bases is LogSpace reducible to the satisfi-
ability problem for the one-variable fragment QL1 of first-order logic (without
equality and function symbols) and that this reduction preserves the properties
of core, Krom, or Horn formulas.

Let K = (T ,A) be a DL-LiteRbool KB. Denote by role(K) the set of role names
occurring in T and A, by role±(K) the set {Pk, P−

k | Pk ∈ role(K)}, and by
ob(A) the set of object names in A.

With every ai ∈ ob(A) we associate the individual constant ai ofQL1 and with
every concept name Ai the unary predicate Ai(x) from the signature of QL1.
For each pair of roles Pk, P−

k ∈ role±(K), we introduce a pair of fresh unary
predicates EPk(x) and EP−

k (x), which will represent the domain and range of
Pk, respectively (in other words, EPk(x) and EP−

k (x) are the sets of points

DL-Lite and Role Inclusions 21

with at least one Pk-successor and at least one Pk-predecessor, respectively).
Additionally, for each pair of roles Pk, P−

k ∈ role±(K), we take a pair of fresh
individual constants dpk and dp−k of QL1, which will serve as ‘representatives’ of
the points from the domains of Pk and P−

k (provided that they are not empty).
Furthermore, for each pair ai, aj ∈ ob(A) and each R ∈ role±(K), we take a
fresh propositional variable Raiaj of QL1 to encode R(ai, aj). By induction on
the construction of a DL-LiteRbool concept C we define the QL1-formula C∗:

⊥∗ = ⊥, (Ai)∗ = Ai(x), (∃R)∗ = ER(x),
(¬C)∗ = ¬C∗(x), (C1 � C2)∗ = C∗

1 (x) ∧ C∗
2 (x).

A DL-LiteRbool TBox T corresponds then to the QL1-sentence:

T ∗ =
∧

C1�C2∈T
∀x

(
C∗

1 (x) → C∗
2 (x)

)
∧

∧
R1�R2∈T

[
∀x

(
ER1(x) → ER2(x)

)
∧ ∀x

(
inv(ER1)(x) → inv(ER2)(x)

)]
,

where inv(ER) = EP−
k if R = Pk and inv(ER) = EPk if R = P−

k . For every
role R ∈ role±(K), we also need the following QL1-sentence:

ε(R) = ∀x
(
ER(x) → inv(ER)(inv(dr))

)
,

where inv(dr) = dp−k if R = Pk and inv(dr) = dpk if R = P−
k . This sentence

says that if the domain of R is not empty then its range is not empty either: it
contains the representative inv(dr).

It should be clear how to translate a DL-LiteRbool ABox A into QL1:

A† =
∧

A(ai)∈A
A(ai) ∧

∧
P (ai,aj)∈A

Paiaj ∧
∧

R∈role±(K)
ai,aj∈ob(A)

(
Raiaj → inv(R)ajai

)
,

where inv(R)ajai is the propositional variable P−
k ajai if R = Pk and Pkajai if

R = P−
k . Finally, for the DL-LiteRbool knowledge base K = (T ,A), we set

K† =
[
T ∗ ∧

∧
R∈role±(K)

ε(R)
]

∧
[
A† ∧

∧
R∈role±(K)
ai,aj∈ob(A)

(
Raiaj → ER(ai)

)]
.

Lemma 1. A DL-LiteRbool knowledge base K is satisfiable iff the QL1-sentence
K† is satisfiable.

Proof. Every model for K gives rise to a model for K† in the obvious way. The
converse can be proved by ‘unravelling’ a first-order model for K† similarly to
the unravelling construction in [2]. We only note here the main difference from
that construction for DL-LiteNbool: as DL-LiteRbool has no number restrictions, one

22 R. Kontchakov and M. Zakharyaschev

can create as many R-successors to a point as required without violating the
TBox axioms (it was not the case for DL-LiteNbool; on the other hand, the latter
does not have role inclusions, which may force additional R-successors). ❑

As ·† is computable in LogSpace and K† is a universal sentence, we can use the
known complexity results for the relevant fragments of QL1 (see, e.g., [4]):

Theorem 1. The satisfiability problem is NLogSpace-complete for DL-LiteRcore
and DL-LiteRkrom, P-complete for DL-LiteRhorn and NP-complete for DL-LiteRbool.

Now we show that as far as data complexity is concerned, satisfiability of
DL-LiteRbool KBs can be solved using only logarithmic space in the size of the
ABox. In what follows, without loss of generality, we assume that all role names
of a given KB K = (T ,A) occur in its TBox and write role±(T) instead of
role±(K). Let Σ(T) = {ER(dr) | R ∈ role±(T)} and, for Σ0 ⊆ Σ(T), let

coreΣ0(T) =
∧

ER(dr)∈Σ0

ER(dr) ∧
∧

R∈role±(T)

(
T ∗[dr] ∧

∧
R′∈role±(T)

ε(R′)[dr]
)
,

projΣ0
(K, a) =

∧
inv(ER)(inv(dr))∈Σ(T)\Σ0

¬ER(a) ∧ T ∗[a] ∧ A�(a),

where T ∗[c] and ε(R′)[c] are instantiations of the universal quantifier in the
respective formulas with the constant c, and

A�(a) =
∧

A(a)∈A
A(a) ∧

∧
Pk∈role(K)

[∧
Pk(a,a1)∈A

EPk(a) ∧
∧

Pk(a1,a)∈A
EP−

k (a)
]
.

Lemma 2. K is satisfiable iff there is a subset Σ0 of Σ(T) such that coreΣ0(T)
is satisfiable and projΣ0

(K, a) is satisfiable for every a ∈ ob(A).

Proof. If I |= K, then we take Σ0 = {ER(dr) | R ∈ role±(T), (∃R)I �= ∅}
and the first-order model M induced by I. It should be clear that we have
M |= coreΣ0(T) and M |= projΣ0

(K, a), for all a ∈ ob(A).
Conversely, let MΣ0 be an Herbrand model of coreΣ0(T) and Ma an Herbrand

model of projΣ0
(K, a), for a ∈ ob(A). By definition, the domain of MΣ0 consists

of |role±(T)| elements and the domains of the Ma are singletons. Clearly, MΣ0 |=
T ∗ and MΣ0 |= ε(R), for every R ∈ role±(T), and Ma |= T ∗, for every a ∈
ob(A). We construct a model M by taking the disjoint union of MΣ0 with all of
the Ma, where we set Pkaia

M
j to be true iff Pk′ (ai, aj) ∈ A or P−

k′ (aj , ai) ∈ A for
a sub-role Pk′ of Pk. Let us show that M |= K†. We have M |= T ∗ because T ∗

is universal, does not contain constants and is true in every component model.
Consider now ε(R) = ∀xψ(x), where ψ(x) = (ER(x) → inv(ER)(inv(dr))). We
show that, for every d in the domain of M, we have M |= ψ[d]. If d is of the
form dr′

M, for some R′ ∈ role±(T), then clearly M |= ψ[d], since MΣ0 |= ε(R).
If d is of the form aM, for a ∈ ob(A), then it trivially holds if Ma �|= ER(a).
Otherwise, Ma |= ER(a), and so inv(ER)(inv(dr)) /∈ Σ(T) \ Σ0. Therefore,
M |= inv(ER)(inv(dr)) and M |= ψ[d]. And we clearly have M |= R† ∧ A†. ❑

DL-Lite and Role Inclusions 23

This lemma states that satisfiability of a DL-LiteRbool KB can be checked locally:
one guesses which roles are empty and which are not (i.e., the set Σ0) and then
checks whether each object in the ABox (independently of the others) satisfies
the TBox and the role emptiness constraints Σ0. This observation suggests a
high degree of parallelism in the satisfiability check:

Theorem 2. The data complexity of the satisfiability and instance checking
problems for DL-LiteRbool knowledge bases is in LogSpace.

Proof. Follows from two observations: (i) the size of coreΣ0(T) and projΣ0
(K, a)

does not depend on |A|, and (ii) projΣ0
(K, a) can be computed using extra log |A|

memory cells whereas coreΣ0(T) does not depend on A at all. ❑

In fact, one can improve the above result by showing that the data complexity
of satisfiability for DL-LiteRbool KBs belongs to the parallel complexity class AC0
(see, e.g., [17]): coreΣ0(T) and projΣ0

(K, a) can be realised by unbounded fan-in
circuits with AND, OR and NOT gates, whose size is polynomial in |A| and
depth does not depend on |A|.

Let us now extend DL-LiteRbool and its fragments with number restrictions.

4 Satisfiability: DL-LiteR,F
core Is ExpTime-Hard

As follows from [12, Theorem 12], satisfiability of DL-LiteR,N
bool knowledge bases

can be decided in ExpTime. Our aim is to show that this upper bound cannot
be improved even for the seemingly rather weak language DL-LiteR,F

core . We need
the following observation showing that in certain cases in the core and Krom
languages we can actually use intersections in the left-hand side of concept in-
clusions, which is not allowed by the syntax of DL-LiteR,F

core .
Suppose that a knowledge base K contains a concept inclusion of the form

A1�A2
 C. Define a new KB K′ by replacing this axiom in K with the following
set of new axioms, where R1, R2, R3, R12, R23 are fresh role names:

A1
 ∃R1 A2
 ∃R2, (1)
R1
 R12, R2
 R12, ≥ 2R12
 ⊥, (2)

∃R−
1
 ∃R−

3 , ∃R3
 C, (3)

R3
 R23, R2
 R23, ≥ 2R−
23
 ⊥. (4)

Lemma 3. (i) If I |= K′ then I |= K, for every interpretation I.
(ii) If I |= K and CI �= ∅ then there is an extension I ′ of I such that it agrees

with I on every symbol of K and I′ |= K′.

Proof. (i) Let I |= K′ and x ∈ AI
1 ∩ AI

2 . By (1), there is y with (x, y) ∈ RI
1 ,

and so y ∈ (∃R−
1)I , and there is z with (x, z) ∈ RI

2 . By (2), (x, y), (x, z) ∈ RI
12

and thus y = z. By (3), y ∈ (∃R−
3)I and then there is u with (u, y) ∈ RI

3
and u ∈ (∃R3)I , whence u ∈ CI and, by (4), (u, y) ∈ RI

23, and we also have
(x, y) ∈ RI

23. It follows from (4) that u = x; so x ∈ CI . Thus, I |= K.

24 R. Kontchakov and M. Zakharyaschev

(ii) Take some point c ∈ CI and define an extension I′ of I to the new
role names by setting RI′

1 = {(x, x) | x ∈ AI
1 }, RI′

2 = {(x, x) | x ∈ AI
2 },

RI′
3 = {(x, x) | x ∈ (A1 � A2)I} ∪ {(c, x) | x ∈ (A1 � ¬A2)I}, RI′

12 = RI′
1 ∪ RI′

2
and RI′

23 = RI′
2 ∪RI′

3 . It is readily seen that I ′ |= K′. ❑

We are now in a position to prove the following:

Theorem 3. The satisfiability problem for DL-LiteR,F
core KBs is ExpTime-hard.

Proof. First we show how to encode polynomial-space-bounded alternating Tur-
ing machines (ATMs) by means of DL-LiteR,F

horn KBs. As APSpace = ExpTime,
where APSpace is the class of problems accepted by polynomial-space-bounded
ATMs (see, e.g., [15]), this will establish ExpTime-hardness of satisfiability for
DL-LiteR,F

horn. And then we will use Lemma 3 to get rid of the conjunctions in the
left-hand side of the concept inclusions involved in this encoding of ATMs.

Without loss of generality, we can only consider ATMs M with binary com-
putational trees. This means that, for every non-halting state q and every sym-
bol a from the tape alphabet, M has precisely two instructions of the form
(q, a) �0

M (q′, a′, d′) and (q, a) �1
M (q′′, a′′, d′′), where d′, d′′ ∈ {→,←} and →

(respectively, ←) means ‘move the head right (left) one cell.’ We remind the
reader that each non-halting state of M is either an and-state or an or-state.

Given such an ATMM, a polynomial function p(n) such that any run ofM on
any input of length n uses ≤ p(n) tape cells, and an input word a = a1, . . . , an,
we construct a DL-LiteR,F

horn knowledge base KM,a with the following properties:
(i) the size of KM,a is polynomial in the size of M, a, and (ii) M accepts a
iff KM,a is not satisfiable. Denote by Q the set of states and by Σ the tape
alphabet of M. To encode the instructions of M, we need the following roles:

– Sq, S
0
q , S1

q , for each q ∈ Q: informally, x ∈ ∃S−
q means that x represents

a configuration of M with the state q, and x ∈ ∃Sk
q that the next state,

according to the transition �k
M, is q, where k = 0, 1;

– Hi, H
0
i , H1

i , for each i ≤ p(n): informally, x ∈ ∃H−
i means that x represents

a configuration of M where the head scans the ith cell, and x ∈ ∃Hk
i that,

according to the transition �k
M, k = 0, 1, in the next configuration the head

scans the ith cell;
– Cia, C0

ia, C1
ia, for all i ≤ p(n) and a ∈ Σ: informally, x ∈ ∃C−

ia means that x
represents a configuration of M where the ith cell contains a, and x ∈ ∃Ck

ia

that, according to �k
M, in the next configuration the ith cell contains a.

This intended meaning can be encoded using the following TBox axioms: for
every instruction (q, a) �k

M (q′, a′,→) of M and every i < p(n),

∃S−
q � ∃H−

i � ∃C−
ia
 ∃Hk

i+1 � ∃Sk
q′ � ∃Ck

ia′ , (5)

and for every instruction (q, a) �k
M (q′, a′,←) of M and every i, 1 < i ≤ p(n),

∃S−
q � ∃H−

i � ∃C−
ia
 ∃Hk

i−1 � ∃Sk
q′ � ∃Ck

ia′ , (6)

DL-Lite and Role Inclusions 25

To preserve the symbols on the tape that are not in the active cell, we use the
following axioms, for k = 0, 1, i, j ≤ p(n) with j �= i, and a ∈ Σ:

∃H−
j � ∃C−

ia
 ∃Ck
ia (7)

and to uniquely identify the head position, state and content of each cell, for
i, j ≤ p(n) with i �= j, q′, q′′ ∈ Q with q′ �= q′′ and a′, a′′ ∈ Σ with a′ �= a′′:

∃H−
i � ∃H−

j
 ⊥, ∃S−
q′ � ∃S−

q′′
 ⊥, ∃C−
ia′ � ∃C−

ia′′
 ⊥. (8)

To ‘synchronise’ our roles, we need two more (functional) roles T0 and T1 to rep-
resent the 0- and 1-successors of a configuration, and a number of role inclusions
are added to the TBox: for all k = 0, 1, i ≤ p(n), q ∈ Q and a ∈ Σ,

Ck
ia
 Cia, Hk

i
 Hi, Sk
q
 Sq, (9)

Ck
ia
 Tk, Hk

i
 Tk, Sk
q
 Tk, ≥ 2Tk
 ⊥. (10)

It remains to encode the acceptance conditions for M on a. This can be done
with the help of role names Y0, Y1 and concept names A, D: for q ∈ Q, k = 0, 1,

∃S−
q
 A, q an accepting state, (11)

Yk
 Tk, ≥ 2T−
k
 ⊥, ∃T−

k �A
 ∃Y −
k , (12)

∃S−
q � ∃Yk
 A, q an or-state, (13)

∃S−
q � ∃Y0 � ∃Y1
 A, q an and-state, (14)

A �D
 ⊥. (15)

The TBox T of the DL-LiteR,F
horn knowledge base KM,a we are constructing con-

sists of axioms (5)–(15). The ABox A of KM,a is comprised of the following
assertions, for some object name s:

s : ∃S−
q0

, s : ∃H−
1 , s : ∃C−

iai
, for i ≤ p(n), and s : D, (16)

where q0 is the initial state and ai the ith symbol on the input tape, i ≤ p(n).
Clearly, KM,a = (T ,A) is a DL-LiteR,F

horn KB and its size is polynomial in the
size of M, a. The proof of the following lemma is routine and left to the reader.

Lemma 4. The ATM M accepts a iff the KB KM,a is not satisfiable.

Before applying Lemma 3 to eliminate the conjunctions in the left-hand side of
(5)–(7), (12)–(14), one has to show that if KM,a is satisfiable then it is satisfiable
in an interpretation I with I |= KM,a and CI

2 �= ∅, for any C2 occurring in an
axiom of the form C0 � C1
 C2 in KM,a. Details are left to the reader. ❑

5 Instance Checking with Number Restrictions

Theorem 4. The instance checking problem (and query answering problem) for
DL-LiteR,F

krom is data complete for coNP.

26 R. Kontchakov and M. Zakharyaschev

Proof. The coNP upper bound follows from [12, Theorem 12]. We prove the
matching lower bound by reduction of the non-satisfiability problem for 2+2CNF,
which is known to be coNP-complete [18]. Given a 2+2CNF

ϕ =
∧n

k=1(ak,1 ∨ ak,2 ∨ ¬ak,3 ∨ ¬ak,4),

where each ak,j is one of the propositional variables a1, . . . , am, we construct a
DL-LiteR,F

krom KB (T ,Aϕ) whose TBox T does not depend on ϕ and ABox Aϕ is
a linear encoding of ϕ. We will use the object names f , c1, . . . , cn and a1, . . . , am,
role names S, Sf and Pj , Pj,t, Pj,f, for 1 ≤ j ≤ 4, and concept names A, D.

Define Aϕ to be the set of the following assertions, for 1 ≤ k ≤ n:

S(f, ck), P1(ck, ak,1), P2(ck, ak,2), P3(ck, ak,3), P4(ck, ak,4),

and let T consist of the axioms:

≥ 2Pj
 ⊥, for 1 ≤ j ≤ 4, (17)
Pj,f
 Pj , Pj,t
 Pj , for 1 ≤ j ≤ 4, (18)

¬∃Pj,t
 ∃Pj,f, for 1 ≤ j ≤ 4, (19)

∃P−
j,f
 ¬A, ∃P−

j,t
 A, for 1 ≤ j ≤ 4, (20)

∃P1,f � ∃P2,f � ∃P3,t � ∃P4,t
 ∃S−
f , (21)

≥ 2 S−
 ⊥, Sf
 S, ∃Sf
 D. (22)

It should be clear that (T ,Aϕ) is LogSpace computable (in |ϕ|). Note, however,
that axiom (21) does not belong to DL-LiteR,F

krom because of the conjunctions in
its left-hand side. However, they can be eliminated with the help of Lemma 3.
So let us prove that (T ,Aϕ) |= D(f) iff ϕ is not satisfiable.

Suppose first that ϕ is satisfiable. Then there is an assignment a of the truth-
values t and f to the propositional variables such that a(ak,1) = t or a(ak,2) = t
or a(ak,3) = f or a(ak,4) = f, for all k ∈ {1, . . . , n}. Consider the interpretation
I with ∆I = {x1, . . . , xm, y1, . . . , yn, z} and

– fI = z, cIk = yk, for 1 ≤ k ≤ n, aI
i = xi, for 1 ≤ i ≤ m,

– AI = {xi | a(ai) = t} ∪ {yk | 1 ≤ k ≤ n} ∪ {z},
– P I

j,t = {(yk, aI
k,j) | 1 ≤ k ≤ n, a(ak,j) = t} ∪ {(xi, xi) | a(ai) = t} ∪ {(z, z)},

P I
j,f = {(yk, aI

k,j) | 1 ≤ k ≤ n, a(ak,j) = f} ∪ {(xi, xi) | a(ai) = f},
P I

j = P I
j,t ∪ P I

j,f, for 1 ≤ j ≤ 4,
– SI = {(z, yk) | 1 ≤ k ≤ n},

SI
f = {(z, yk) | 1 ≤ k ≤ n, a(ak,1 ∨ ak,2 ∨ ¬ak,3 ∨ ¬ak,4) = f} = ∅,

– DI = {z | a(ϕ) = f} = ∅.

It is not hard to check that I |= (T ,Aϕ), and clearly I �|= D(f).
Assume now that ϕ is not satisfiable and I |= (T ,Aϕ). Define an assignment

a by taking a(ai) = t iff aI
i ∈ AI . As ϕ is not satisfiable, there is k, 1 ≤ k ≤ n,

such that a(ak,1) = a(ak,2) = f, a(ak,3) = a(ak,4) = t. In view of (19), for each j,
1 ≤ j ≤ 4, we have cIk ∈ (∃Pj,t)I ∪(∃Pj,f)I , and by (18), cIk ∈ (∃Pj)I . Therefore,

DL-Lite and Role Inclusions 27

by (17) and (20), cIk ∈ (∃Pj,t)I if a(ak,j) = t and cIk ∈ (∃Pj,f)I if a(ak,j) = f, and
hence, by (21), cIk ∈ (∃S−

f)I . Then by (22), we have fI ∈ (∃Sf)I and fI ∈ DI .
It follows that (T ,Aϕ) |= D(f). ❑

If the functionality constraints are relaxed just a bit to allow for axioms of the
form ≥ 2R
 A then the same complexity result holds for the core fragment:

Theorem 5. The instance checking problem (and query answering problem) for
DL-LiteR,N

core is data complete for coNP.

Proof. The coNP upper bound again follows from [12, Theorem 12], and the
matching lower bound is proved by reduction of the non-satisfiability problem for
2+2CNF. The main difference from the previous proof is that DL-LiteR,N

core , unlike
DL-LiteR,F

krom, cannot express ‘covering conditions’ like (19). It turns out, however,
that we can use number restrictions to represent this kind of constraints. Given
a 2+2CNF ϕ, we take the ABox Aϕ constructed in the proof of Theorem 4 (and
computable in LogSpace in |ϕ|). The (ϕ independent) DL-LiteR,N

core TBox T ,
describing the meaning of any such representation of 2+2CNF ψ in terms of Aψ ,
is also defined in the same way as in that proof except that axiom (19) is now
replaced by the following set of axioms:

Tj,1
 Tj, Tj,2
 Tj, Tj,3
 Tj, (23)

≥ 2T−
j
 ⊥, (24)

∃Pj
 ∃Tj,1, ∃Pj
 ∃Tj,2, (25)

∃T−
j,1 � ∃T−

j,2
 ∃T−
j,3, (26)

≥ 2 Tj
 ∃Pj,t ∃Tj,3
 ∃Pj,f, (27)

where Tj, Tj,1, Tj,2, Tj,3 are fresh role names, for 1 ≤ j ≤ 4. It should be clear
that (T ,Aϕ) is LogSpace computable (in |ϕ|). The conjunctions in the left-
hand side of (21) and (26) can be eliminated by using Lemma 3. So it remains
to prove that (T ,Aϕ) |= D(f) iff ϕ is not satisfiable.

Suppose first that ϕ is satisfiable. Then there is an assignment a of the truth-
values t and f to propositional variables such that a(ak,1) = t or a(ak,2) = t or
a(ak,3) = f or a(ak,4) = f, for all k, 1 ≤ k ≤ n. Consider the interpretation I
with ∆I = {x1, . . . , xm, z} ∪ {yk, uk,j,1, uk,j,2 | 1 ≤ j ≤ 4, 1 ≤ k ≤ n} and

– fI = z, cIk = yk, for 1 ≤ k ≤ n, aI
i = xi, for 1 ≤ i ≤ m,

– AI = {xi | 1 ≤ i ≤ m, a(ai) = t},
– P I

j,t = {(yk, aI
k,j) | 1 ≤ k ≤ n, a(ak,j) = t}, for 1 ≤ j ≤ 4,

– P I
j,f = {(yk, aI

k,j) | 1 ≤ k ≤ n, a(ak,j) = f}, for 1 ≤ j ≤ 4,
– P I

j = P I
j,t ∪ P I

j,f, for 1 ≤ j ≤ 4,
– T I

j,1 = {(yk, uk,j,1) | 1 ≤ k ≤ n}, for 1 ≤ j ≤ 4,
– T I

j,2 = {(yk, uk,j,2) | 1 ≤ k ≤ n, a(ak,j) = t} ∪
{(yk, uk,j,1) | 1 ≤ k ≤ n, a(ak,j) = f}, for 1 ≤ j ≤ 4,

– T I
j,3 = {(yi, uk,j,1) | 1 ≤ k ≤ n, a(ak,j) = f}, for 1 ≤ j ≤ 4,

28 R. Kontchakov and M. Zakharyaschev

– T I
j = T I

j,1 ∪ T I
j,2, for 1 ≤ j ≤ 4,

– SI
f , SI and DI are defined in the same way as in the proof of Theorem 4.

It is not hard to check that I |= (T ,Aϕ), and clearly I �|= D(f).
Assume now that ϕ is not satisfiable and I |= (T ,Aϕ). Define an assignment

a by taking a(ai) = t iff aI
i ∈ AI . As ϕ is not satisfiable, there is k, 1 ≤ k ≤ n,

such that a(ak,1) = a(ak,2) = f, a(ak,3) = a(ak,4) = t.
For each j, 1 ≤ j ≤ 4, we have cIk ∈ (∃Pj)I ; by (25), cIk ∈ (∃Tj,1)I , (∃Tj,2)I .

So there are v1, v2 such that (cIk , v1) ∈ T I
j,1 and (cIk , v2) ∈ T I

j,2. If v1 �= v2 then
cIk ∈ (≥ 2Tj)I and, by (27), cIk ∈ (Pj,t)I . Otherwise, if v1 = v2 = v, we have
by (26), v ∈ (∃T−

j,3)
I , and so by (23) and (24), cIk ∈ (∃Tj,3)I , from which, by (27),

cIk ∈ (Pj,f)I . Therefore, cIk ∈ (∃Pj,t)I ∪(∃Pj,f)I , and by (18), cIk ∈ (∃Pj)I . Thus,
by (17) and (20), cIk ∈ (∃Pj,t)I if a(ak,j) = t and cIk ∈ (∃Pj,f)I if a(ak,j) = f, and
hence, by (21), cIk ∈ (∃S−

f)I . Then by (22), we have fI ∈ (∃Sf)I and fI ∈ DI .
It follows that (T ,Aϕ) |= D(f). ❑

However, the core fragment with only functionality constraints is data complete
for P (the lower bound would follow from [8, Theorem 6, item 2] but the proof
there is fallacious).

Theorem 6. The instance checking problem (and query answering problem) for
DL-LiteR,F

core is data complete for P.

Proof. The polynomial upper bound follows from [11]. We prove the matching
lower bound by reduction of the entailment problem for Horn-CNF, which is
known to be P-complete (see, e.g., [4, Exercise 2.2.4]). Given a Horn-CNF

ϕ =
∧n

k=1(¬ak,1 ∨ ¬ak,2 ∨ ak,3) ∧
∧p

l=1 al,0,

where each ak,j and each al,0 is one of the propositional variables a1, . . . , am, we
construct a DL-LiteR,F

core knowledge base (T ,Aϕ) whose TBox T does not depend
on ϕ and ABox Aϕ is computed in LogSpace from ϕ. We will need the object
names c1, . . . , cn and vk,j,i, for 1 ≤ k ≤ n, 1 ≤ j ≤ 3, 1 ≤ i ≤ m (for each
variable, we take one object name for each possible occurrence of this variable
in each non-unit clause), role names S, St and Pj , Pj,t, for 1 ≤ j ≤ 3, and a
concept name A. Define Aϕ to be the set containing the assertions:

S(v1,1,i, v1,2,i), S(v1,2,i, v1,3,i), S(v1,3,i, v2,1,i), S(v2,1,i, v2,2,i), S(v2,2,i, v2,3,i), . . .
. . . , S(vn,2,i, vn,3,i), S(vn,3,i, v1,1,i), for 1 ≤ i ≤ m,

Pj(vk,j,i, ck) iff ak,j = ai, for 1 ≤ i ≤ m, 1 ≤ k ≤ n, 1 ≤ j ≤ 3,

A(v1,1,i) iff al,0 = ai, for 1 ≤ i ≤ m, 1 ≤ l ≤ p

(all objects for each variable are organised in an S-cycle and Pj(vk,j,i, ck) ∈ Aϕ

iff the variable ai occurs in the kth non-unit clause of ϕ in the jth position).

DL-Lite and Role Inclusions 29

And let T consist of the following concept and role inclusions:

St
 S, ≥ 2 S
 ⊥, A
 ∃St, ∃S−
t
 A, (28)

Pj,t
 Pj , ≥ 2Pj
 ⊥, A
 ∃Pj,t, for 1 ≤ j ≤ 2, (29)

P3,t
 P3, ≥ 2 P−
3
 ⊥, (30)

∃P−
1,t � ∃P−

2,t
 ∃P−
3,t, (31)

∃P3,t
 A. (32)

It should be clear that (T ,Aϕ) is LogSpace computable (in |ϕ|). As in the
previous proofs, here we have an axiom, namely (31), that does not belong to
DL-LiteR,F

core because of the conjunctions in its left-hand side. As before, this
conjunction is eliminated with the help of Lemma 3. Our aim is to show that
(T ,Aϕ) |= A(v1,1,i0) iff ϕ |= ai0 .

Suppose ϕ �|= ai0 . Then there is an assignment a with a(ϕ) = t and a(ai0) = f.
We construct a model I for (T ,Aϕ) such that I �|= A(v1,1,i0). Define I by taking
∆I = {xk,j,i, zk,j,i | 1 ≤ k ≤ n, 1 ≤ j ≤ 3, 1 ≤ i ≤ m} ∪ {yk | 1 ≤ k ≤ n},
cIk = yk, for 1 ≤ k ≤ n, vIk,j,i = xk,j,i, for 1 ≤ k ≤ n, ≤ j ≤ 3, 1 ≤ i ≤ m. The
extensions of the concept and role names are defined as in Fig. 2. It is routine
to check that we indeed have I |= (T ,Aϕ) and I �|= A(v1,1,i0).

.

.

a1 a2 a3 a4 a5

¬a1 ∨ ¬a2 ∨ a3 ¬a2 ∨ ¬a4 ∨ a5

zk,j,i

xk,j,i

y1 y2
St, S

S

Pj,t, Pj

Pj

¬A

A

Fig. 2. The model I satisfying (T ,Aϕ), for ϕ = (¬a1 ∨ ¬a2 ∨ a3) ∧ (¬a2 ∨ ¬a4 ∨ a5)

Conversely, assume now that ϕ |= ai0 . Consider some I |= (T ,Aϕ) and define
a to be the assignment such that a(ai) = t iff vI1,1,i ∈ AI , for 1 ≤ i ≤ m. By (28),
for each i, 1 ≤ i ≤ m, we have either vIk,j,i ∈ AI , for all k, j with 1 ≤ k ≤ n,
1 ≤ j ≤ 3, or vIk,j,i /∈ AI , for all k, j with 1 ≤ k ≤ n, 1 ≤ j ≤ 3.

Now, if we have a(ak,1) = t and a(ak,2) = t, for 1 ≤ k ≤ n then, by (29), cIk ∈
(∃P−

1,t)
I , (∃P−

2,t)
I . By (31), cIk ∈ (∃P−

3,t)
I and hence, by (30), vIk,3,i ∈ (∃P3,t)I ,

where ak,3 = ai, which means, by (32), that vIk,3,i ∈ AI , and so vI1,1,i ∈ AI and
a(ai) = t. It follows that a(ϕ) = t, and hence a(ai0) = t, which, by definition,
means that vI1,1,i0

∈ AI . As I was an arbitrary model of (T ,Aϕ), we can conclude
that (T ,Aϕ) |= A(v1,1,i0). ❑

6 Conclusion

The results obtained in this paper and [2] show the following: (1) One can add
either number restrictions or role inclusions to the basic (core, horn, krom and

30 R. Kontchakov and M. Zakharyaschev

bool) DL-Lite logics without changing their complexity. (2) However, taken to-
gether, these constructs spoil the nice computational properties of the basic
DL-Lite logics. (3) If both of them are really needed for an application, one
should try and restrict their interaction (e.g., by avoiding axioms of the form
R
 P with functional role P , as suggested in [9]). Exploring in depth this in-
teraction, as well as the impact of other constructs (transitive roles, Booleans on
roles, etc.) on the computational properties of DL-Lite logics is an interesting
and practically important area for further research.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Com-
plexity of reasoning over Entity-Relationship models. In: Proc. of DL, pp. 163–170
(2007)

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-Lite in the light
of first-order logic. In: Proc. of AAAI, pp. 361–366 (2007)

3. Bernstein, P., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L.,
Zaihrayeu, I.: Data management for peer-to-peer computing: A vision. In: Proc. of
WebDB (2002)

4. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer, Heidelberg (1997)

5. Borgida, A., Brachman, R., McGuinness, D., Alperin Resnick, L.: CLASSIC: A
structural data model for objects. In: Proc. of ACM SIGMOD, pp. 59–67 (1989)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: Proc. of AAAI, pp. 602–607. AAAI
Press, Menlo Park (2005)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tailoring
OWL for data intensive ontologies. In: Proc. of OWLED (2005)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proc. of KR, pp. 260–270 (2006)

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.:
Linking data to ontologies: the description logic DL-LiteA. In: Proc. OWLED
(2006)

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning 39, 385–429 (2007)

11. Eiter, T., Gottlob, G., Ortiz, M., Šimkus, M.: Query answering in the description
logic Horn-SHIQ. In: Proc. of JELIA (2008)

12. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the
description logic SHIQ. In: Proc. of IJCAI, pp. 399–404 (2007)

13. Heflin, J., Hendler, J.: A portrait of the Semantic Web in action. IEEE Intelligent
Systems 16, 54–59 (2001)

14. Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics by a reduction
to disjunctive Datalog. J. of Automated Reasoning 39, 351–384 (2007)

15. Kozen, D.: Theory of Computation. Springer, Heidelberg (2006)
16. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of PODS, pp.

233–246 (2002)
17. Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)
18. Schaerf, A.: On the complexity of the instance checking problem in concept lan-

guages with existential quantification. J. Intell. Infor. Systems 2, 265–278 (1993)

Temporal Ontology Language for Representing
and Reasoning Interval-Based Temporal

Knowledge

Sang-Kyun Kim1, Mi-Young Song1, Chul Kim1, Sang-Jun Yea1,
Hyun Chul Jang1, and Kyu-Chul Lee2

1 Korea Institute of Oriental Medicine, South Korea
{skkim,smyoung,chulnice,tomita,hcjang}@kiom.re.kr

2 Dept. of Computer Engineering, Chungnam National University, South Korea
kclee@cnu.ac.kr

Abstract. W3C Web Ontology working group has recently developed
OWL as an ontology language for the Semantic Web. However, because
OWL does not have the full-fledged semantics for temporal information,
it cannot perform reasoning about temporal knowledge. Entities in the
real world are changing according to the passage of time and new facts
are occurring due to events. If knowledge in the KBs does not have the
temporal information, it becomes incomplete and incorrect. Therefore,
we in this paper propose an ontology language TL-OWL, which extends
OWL to have the temporal semantics in order to represent and reason
the temporal information in the Semantic Web.

1 Introduction

Semantic Web has a vision that a machine understands and processes information
in web automatically by describing semantics to web. For a machine to process
information, knowledge that a machine and humans can share must be described.
Semantic Web provides knowledge on web resources by using ontology. OWL is
an ontology language for the Semantic Web that has recently been developed by
the W3C Web Ontology Working Group. However, since OWL does not have time
information, questions depending on time cannot be accurately processed.

For example, let’s assume as follows: When four cases happen, each case has
time interval x, y, u, v according to when it happens and the relation between
time interval is x before y, y overlaps u, and u before v. OWL describes each
four cases and time as individuals, and the time relationship can be connected
by property of the individuals. However, since OWL cannot perform the tran-
sitive reasoning among time relations, the relation of x before v cannot be rea-
soned. Instead, if the rule-based reasoning such as before(x,v) :- before(x,y) &
overlaps(y,u) & before(u,v), questions can be answered. However, generally, the
problem of the rule-based reasoning has known to be the semi-decidable. But if
semantics on time to ontology can be provided, the temporal reasoning based on
ontology such as x before y ∨ y overlaps u ∨ u before v → x before v is possible
without using the rule-based reasoning.

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 31–45, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

32 S.-K. Kim et al.

In artificial intelligent field, the researches [3] that represent and reason the
temporal concepts by using Temporal Description Logics that deals with time
based on Description Logics have been suggested. Researches on Temporal De-
scription Logics are classified into Point-based Description Logics [9,12] and
Interval-based Description Logics [2,4,5,10] according to how time information
can be formalized. However, it is difficult to determine which way has better ex-
pression and reasoning. In order to provide the temporal reasoning in Semantics
Web, the capability of OWL DL is needed, but both methods do not have that.

Therefore, in order to solve problems of OWL and Temporal Description Log-
ics, we propose an interval-based temporal web ontology language TL-OWL
which is extended language of OWL to have semantic on time interval.

The remainder of this paper is organized as following. In section 2, we briefly
introduce TL-ALCF . In section 3, we propose an interval-based temporal web
ontology language, TL-OWL. In section 4, we compare our work with prior
efforts for the related subjects. Finally, in section 5, we summarize this paper.

2 A Temporal Description Logic

In this section, we briefly introduce a class of interval-based temporal Descrip-
tion Logic, TL-ALCF proposed by Artale and Franconi. They show that the
subsumption problem is decidable and supply sound and complete procedures
for computing subsumption. TL-ALCF is composed by the temporal logic TL
which is able to express temporally quantified terms and the non-temporal De-
scription Logic ALCF [6] extending ALC with features (i.e., functional roles). In
this formalism an action is represented through temporal constraints on world
states where each state is a collection of properties of the world holding at a
certain time. The intended meaning of TL-ALCF is explained as the following
example.

Reserve-Flight .= �(x y) (� f x)(� m y). ((�TICKET :
Unreserved)@x � (�TICKET : Reserved)@y)

Fig. 1. Temporal dependencies of the intervals in which Reserve-Flight holds

Fig. 1 shows the temporal dependencies of the intervals in which the concept
Reserve-Flight holds. Reserve-Flight denotes any action occurring at some
interval involving a �TICKET that was once unreserved and then reserved, where
�TICKET is a parametric feature and Reserved and Unreserved are non-temporal
concepts. The parametric feature �TICKET plays the role of formal parameter of
the action, mapping any individual action of type Reserve-Flight to the ticket
to be reserved, independently from time. Temporal variables are introduced by
the temporal existential quantifier “�” – excluding the special temporal variable

Temporal Ontology Language 33

�, usually called now, and intended as the occurring time of the action type being
defined. The temporal constraints (� f x)(� m y) state that the interval denoted
by x should finish with the interval denoted by � and that � should meet y, where
f and m are Allen’s temporal relations [1] of Fig. 2.

Fig. 2. The Allen’s interval relationships

As the evaluation of concept at the interval, (�TICKET : Unreserved)@x and
(�TICKET : Reserved)@y state that �TICKET : Unreserved is qualified at x and
�TICKET : Reserved is qualified at y. In the concept description, the operator :
is the selection of feature, which is the role quantification that is interpreted as
a partial function. The following table shows the syntax of TL-ALCF . See [2]
for the detailed semantic descriptions of TL-ALCF .

Table 1. The syntax of TL-ALCF

TL E, F → C | (non-temporal concept)
E � F | (conjunction)
E@X | (qualifier)
E[Y]@X | (substitutive qualifier)
�(X)Tc.E (existential quantifier)

Tc → (� (V) Y) | (X (V) �) | (X (V) Y) (temporal constraint)
Tc → Tc | Tc Tc

V, W → V , W | (disjunction)
b | a | m | mi | o | oi | (Allen’s relations)
s | si | d | di | f | fi | =

X, Y → x | y | z | . . . (temporal variables)
X → X | X X

ALCF C, B → A | (atomic concept)
� | ⊥ | ¬C | C �B | C �B | ∀R.C | ∃R.C |
p ↓ q | (agreement)
p ↑ q | (disagreement)
p ↑| (undefinedness)
p : C | (selection)

p, q → f | (atomic feature)
�g | (atomic parametric feature)
p ◦ q | (path)

34 S.-K. Kim et al.

3 A Temporal Web Ontology Language

We propose an interval-based temporal ontology language TL-OWL, which adds
a temporal language TL to OWL DL, where TL is the temporal part(TL) of TL-
ALCF as introduced in Sect. 2.

3.1 Requirements of TL-OWL

W3C Web Ontology Working Group has recently developed OWL which is an
ontology language for the Semantic Web. In OWL specification, OWL is defined
in two forms of syntax; First, OWL has a frame-like abstract syntax which
can be easily understood and created. Second, OWL has a RDF/XML exchange
syntax interpreted as RDF graphs since OWL is defined as an extension to RDF.
The direct model-theoretic semantic and the RDF-compatible model-theoretic
semantic are also defined to provide a formal meaning for the abstract syntax
and the exchange syntax, respectively. A mapping from the abstract syntax to
RDF graphs is defined and the two model semantics are shown to have the same
consequences on OWL ontologies that can be written in the abstract syntax.

OWL however cannot perform the temporal reasoning since it does not have
the temporal semantics as introduced in Sect. 1. The reasoning capability is usu-
ally provided in the temporal description logics [3], but all of them cannot reach
the expressivity of OWL DL. Therefore, in this paper we propose an interval-
based temporal ontology language TL-OWL(TemporaL Web Ontology Language),
which adds the temporal semantics to OWL DL.

In order to describe TL-OWL, we follow steps of the OWL specification:
First, we define a high-level abstract syntax for TL-OWL. Second, we define
two formal semantics for TL-OWL. One of these semantics is the direct model-
theoretic semantics for TL-OWL ontologies written in the abstract syntax. The
other is the RDF-compatible model-theoretic semantics as an extension of the
RDF semantics, which provides semantics for TL-OWL ontologies written in the
exchange syntax. And third, a mapping from the abstract syntax to RDF graphs
is defined and the two model theories are shown to have the same consequences
on TL-OWL ontologies. Finally, we show the reasoning in TL-OWL.

3.2 Abstract Syntax

An abstract syntax for OWL is needed since OWL is not very readable when
written as RDF triples. This abstract syntax is closer to that of a frame lan-
guage like OIL. As for a similar way with OWL, in this section, we define an
abstract syntax for TL-OWL in the form of EBNF(Extended BNF) in Table 2.
OWL syntax is not given in this table, but only OWL constructors required to
understand TL-OWL are written as an italic font.

Temporal concepts in TL-ALCF can be represented of the form: �(X)(Tc).
(Q0 � Q1@X1 � ... � Qn@Xn), where X is a set of temporal variables, Tc is
a set of temporal constraints, and (Q0 � Q1@X1 � ... � Qn@Xn) is a conjunc-
tion of qualifiers. However, there is a problem that this normal form cannot be

Temporal Ontology Language 35

Table 2. The EBNF version of an abstract syntax
y

Abstract Syntax
vID (variableID) ::= URIreference
featureID ::= URIreference
axiom ::= ‘TemporalClass(’ classID [‘Deprecated’] { annotation } temporalDescription ‘)’
axiom ::= ‘TemporalVariable(’ vID [‘Deprecated’] { annotation } { temporalRelation } ‘)’
temporalDescription ::= ‘intersectionOf(’ Qualification { Qualification } ‘)’
Qualification ::= ‘Qualification(onVariable(’ vID ‘) bindVariable(’ description ‘))’ |

‘Qualification(onVariable(’ vID ‘) onSubstitutiveVariable(’ vID ‘)
bindSubstitutiveVariable(’ description ‘))’

temporalRelation ::= ‘before(’ vID ‘)’ | ‘after(’ vID ‘)’ | ‘meets(’ vID ‘)’ | ‘metBy(’ vID ‘)’ |
‘overlaps(’ vID ‘)’ | ‘overlappedBy(’ vID ‘)’ | ‘starts(’ vID ‘)’ | ‘startedBy(’ vID ‘)’ |
‘during(’ vID ‘)’ | ‘contains(’ vID ‘)’ | ‘finish(’ vID ‘)’ | ‘finishedBy(’ vID ‘)’ | ‘equal(’ vID ‘)’

axiom ::= ‘DatatypeProperty(’ datavaluedPropertyID ... [‘Functional’ | ‘ParametricFunctional’] ... ‘)’ |
‘ObjectProperty(’ individualvaluedPropertyID ... [‘Functional’ | ‘ParametricFunctional’ |
‘InverseFunctional’ | ‘InverseParametricFunctional’] ... [‘pathOf(’ featureID featureID ‘)’] ‘)’

description ::= classID | restriction | feature | ‘intersectionOf(’ description ‘)’ |
‘unionOf(’ { description } ‘)’ | ‘complementOf(’ { description } ‘)’ | ‘oneOf(’ { individualID } ‘)’

restriction ::= ‘restriction(’ datavaluedPropertyID dataRestrictionComponent
{ dataRestrictionComponent } ‘)’ |

‘restriction(’ individualvaluedPropertyID individualRestrictionComponent
{ individualRestrictionComponent } ‘)’

dataRestrictionComponent ::= ‘allValuesFrom(’ dataRange ‘)’ | ‘someValuesFrom(’ dataRange ‘)’ |
‘selectValuesFrom(’ dataRange ‘)’ | ‘value(’ dataLiteral ‘)’ | cardinality

individualRestrictionComponent ::= ‘allValuesFrom(’description‘)’ | ‘someValuesFrom(’description‘)’ |
‘selectValuesFrom(’ description ‘)’ | ‘value(’ individualID ‘)’ | cardinality

feature ::= ‘agreementOf(’ featureID featureID ‘)’ | ‘disagreementOf(’ featureID featureID ‘)’ |
‘undefinednessOf(’featureID ‘)’

represented as RDF triples. Therefore, in this paper we propose an abstract syn-
tax and a RDF/XML exchange syntax for TL-OWL, which can be represented
as RDF graphs.

TL-OWL has four axioms for TL-OWL classes and properties of TemporalClass,
TemporalVariable, DatatypeProperty, and ObjectProperty. A TemporalClass can rep-
resent a temporal concept in TL-OWL. A TemporalClass contains one or more
temporalDescriptions as properties and a temporalDescription contains a conjunc-
tion of Qualifications which bind a temporal variable and a non-temporal concept.
A bindSubstitutiveVariabledenotes a temporal substitutive qualifier which renames
the variable Y to X and supplies a way of making coreference between two tem-
poral variables. A TemporalVariable can represent the constraints among temporal
variables. The TemporalVariable is identified with a variableID and has one or more
of Allen’s temporal relations as properties, where each temporal relation can re-
fer another TemporalVariable. A DatatypeProperty and a ObjectProperty are the
axioms defined in OWL, but in TL-OWL the ObjectProperty can have the addi-
tional types of ParametricFunctional and InverseParametricFunctional, and pathOf
– a construct of the feature logic [6] – to represent a path between two featureIDs.
A DatatypeProperty can have only an additional type of ParametricFunctional.

The description of OWL can contain constructs for feature logics which con-
sist of agreementOf, disagreementOf, and undefinednessOf. A selectValuesFrom is
declared within the restriction constructor for a selection operator (:).

By using above axioms and constructors, we can see that all the interval-
based temporal concepts can be represented as the abstract syntax along with

36 S.-K. Kim et al.

preserving temporal semantics. It is easy to proof by checking the syntax of
temporal concepts inductively. For an example, the Reserve-Flight concept of
Fig. 1 can be represented to an abstract syntax as follows:

TemporalClass (ex:Reserve-Flight

intersectionOf (

Qualification (

onVariable (ex:x)

bindVariable (

restriction (

onProperty (ex:TICKET)

selectValuesFrom (ex:Unreserved)

)))

Qualification (

onVariable (ex:y)

bindVariable (

restriction (

onProperty (ex:TICKET)

selectValuesFrom (ex:Reserved)

)))))

TemporalVariable(ex:x finishedBy NOW)

TemporalVariable(ex:y metBy NOW)

Fig. 3. The abstract syntax of the Reserve-Flight concept

3.3 Direct Model-Theoretic Semantics

The direct model-theoretic semantics for TL-OWL goes directly from ontologies
in the abstract syntax to a standard model theory.

Vocabularies and Interpretations. When considering a TL-OWL ontology,
the vocabulary must include all the URI references and literals in that ontology.
The following is a definition for a TL-OWL vocabulary.

Definition 1. A TL-OWL vocabulary V consists of a set of literals VL and nine
sets of URI references, VC, VTC , VTV , VD, VI , VDP , VIP , VAP , and VO. In any
vocabulary VC , VTC , VTV , and VD are disjoint and VDP , VIP , VAP , and VOP

are pairwise disjoint. VC , the class names of a vocabulary, contains owl:Thing
and owl:Nothing. VTC , the temporal class names of a vocabulary, VTV , the tem-
poral variable names of a vocabulary, VD, the datatype names of a vocabulary,
contains the URI references for the built-in OWL datatypes and rdfs:Literal.
VAP , the annotation property names of a vocabulary, contains owl:versionInfo,
rdfs:label, rdfs:comment, rdfs:seeAlso, and rdfs:isDefinedBy. VIP , the individual-
valued property names of a vocabulary, VDP , the data-valued property names of
a vocabulary, VOP , the URI references for the built-in TL-OWL ontology prop-
erties, and VI , the individual names of a vocabulary, VO, the ontology names of
a vocabulary, do not have any required members.

Temporal Ontology Language 37

Definition 2. A datatype map D is a partial mapping from URI references to
datatypes that maps xsd:string and xsd:integer to the appropriate XML Schema
datatypes.

Definition 3. Let D be a datatype map. An abstract TL-OWL interpretation
with respect to D with vocabulary VL, VC , VTC , VTV , VD, VI , VDP , VIP , VAP ,
VO is a tuple of the form: I = 〈 R, T, EC, ER, L, S, LV 〉 where (with P being
the power set operator)
Definition. 2 is same as that of the OWL specification. Definition. 1 and Defi-
nition. 3 are similar to the definition for the OWL vocabulary and the abstract
OWL interpretation except that temporal semantics are added. Thus, in this
section we do not explain those of the OWL interpretations in details.

EC provides meaning for URI references that are used as TL-OWL classes and
datatypes. ER provides meaning for URI references that are used as TL-OWL
properties. As for the formal semantics given in TL-ALCF , TL-OWL classes
and properties have semantics for temporal structure T such as EC: VTC →
P(T×O) and ER: VDP → P(T×O×LV), where O is URI references and LV is
the literal values. L provides meaning for typed literals. S provides meaning for
URI references that are used to denote TL-OWL individuals.

Interpretations for Constructs. EC is extended to the syntactic constructs
of qualifications, descriptions, temporal relations, features as follows:

NOW, a built-in TL-OWL temporal variable, denotes the current interval of
evaluation. The thirteen temporal relations defined as built-in TL-OWL proper-
ties can represent the temporal network between two temporal variables. The for-
mal semantics for EC and ER in TL-ALCF are defined as ECV,t,H and ERV,t,H,
where V is a variable assignment function associating an interval value to a tem-
poral variable, t is an interval, and H is a set of constraints over the assignments.
We in this paper omit the subscripts to simplify notations if there are not any
misunderstandings. We denote the domain of partial functions by dom, which
can be interpreted as a Functional type of properties.

Interpretations for Axioms. An abstract TL-OWL interpretation, I, satisfies
TL-OWL axioms in the following table. Optional parts of axioms are given in
square brackets ([...]). tri (1 ≤ i ≤ n) can be one out of the thirteen temporal
relations in TemporalVariable.

Interpretations of Ontology. The definitions for the satisfiability, consis-
tency, and entailment of TL-OWL ontology are given in this section. These
definitions will be used in Definition. 8 and Theorem. 1.

Definition 4. Let D be a datatype map. An Abstract TL-OWL interpretation,
I, with respect to D with vocabulary consisting of VL, VC , VTC , VTV , VD, VI ,
VDP , VIP , VAP , VO, satisfies a TL-OWL ontology, O, iff

1. each URI reference in O used as a class ID (temporal class ID, temporal
variable ID, datatype ID, individual ID, data-valued property ID, individual-
valued property ID, annotation property ID, annotation ID, ontology ID)
belongs to VC (VTC , VTV , VD, VI , VDP , VIP , VAP , VO, respectively);

38 S.-K. Kim et al.

2. each literal in O belongs to VL;
3. I satisfies each directive in O, except for Ontology Annotations;
4. there is some o ∈ R with 〈o,S(owl:Ontology)〉 ∈ ER(rdf:type) such that for

each Ontology Annotation of the form Annotation(p v), 〈o,S(v)〉 ∈ ER(p)
and that if O has name n, then S(n) = o; and

5. I satisfies each ontology mentioned in an owl:imports annotation directive of
O.

Definition 5. A collection of abstract TL-OWL ontologies and axioms and facts
is consistent with respect to datatype map D iff there is some interpretation I
with respect to D such that I satisfies each ontology and axiom and fact in the
collection.

Definition 6. A collection O of abstract TL-OWL ontologies and axioms and
facts entails an abstract TL-OWL ontology or axiom or fact O’ with respect to
a datatype map D if each interpretation with respect to map D that satisfies each
ontology and axiom and fact in O also satisfies O’.

3.4 Mapping to RDF Graphs

We in this section provide a mapping from the abstract syntax to the exchange
syntax for TL-OWL. Further, in Sect. 3.5 we show that this mapping preserves
the meaning of TL-OWL ontologies.

The exchange syntax for TL-OWL is RDF/XML and the meaning of a TL-
OWL ontology in RDF/XML is determined from the RDF graph that results
from the RDF parsing of the RDF/XML document. The way of translating
a TL-OWL ontology in abstract syntax form into the exchange syntax is by
giving a transformation of each directive into a collection of RDF triples. Ta-
ble reftable:Triples gives the transformation rules that transform the abstract
syntax of Table 3 and Table 4 to the TL-OWL exchange syntax. The left col-
umn of the table is an abstract syntax, the center column is its transformation
into triples, and the right column is an identifier for the main node of the trans-
formation. Repeating components are listed using ellipses, as in Qualification1
... Qualificationn. Optional portions are enclosed in square brackets. The triples
in the transformation rules that may or may not be generated are indicated by
flagging with [opt]. Some transformations in the table are for directives. Other
transformations are for parts of directives. Thus, the transformation rules for
the directives call for other rules for components of the directive.

Table 3. Interpretations for Constructs

Abstract Syntax Interpretations
NOW EC(NOW) is a current interval
before(x) {[u1,v1] ∈ T | EC(x)=[u2,v2] implies v1 < u2}
other temporal relations
qualification(x bindVariable(c)) EC(c), t=V(x)
qualification(x y bindSubstitutiveVariable(c)) EC(c), H=H∪{y→V(x)}
restriction(p selectValuesFrom(e)) {x ∈ domp | ER(p)(x) ∈ EC(e)}
agreementOf(p q) {x ∈ domp ∩ domq | ER(p)(x) = ER(q)(x)}
disagreementOf(p q) {x ∈ domp ∩ domq | ER(p)(x) �= ER(q)(x)}
undefinednessOf(p) O \ domp

Temporal Ontology Language 39

Table 4. Interpretations for Axioms

Abstract Syntax Interpretations
TemporalClass(c q1 ... qn) EC(c) = EC(q1) ∩ ... ∩ EC(qn)
TemporalVariable(c tr1 ... trn) EC(c) = ER(tr1) ∪ ... ∪ ER(trn)
DatatypeProperty(p ... [ParametricFunctional]) [ER(p) is parametric functional]
ObjectProperty(p ... [ParametricFunctional]) [ER(p) is parametric functional]
[InverseParametricFunctional]) [ER(p) is inverse parametric functional]
[pathOf(x y]) [〈u,v〉 ∈ ER(x) ∩ 〈v,w〉 ∈ ER(y) implies

〈u,w〉 ∈ ER(p), u∈domx, v∈domy]

Table 5. Transformation to Triples

Abstract Syntax (and
sequences) - S Transformation - T(S)

Main
Node -

M(T(S))
vID vID rdf:type tl:TemporalVariable . vID
featureID featureID rdf:type owl:FunctionalProperty . featureID

featureID rdf:type tl:ParametricFunctionalProperty [opt] . featureID
Qualification(vID C) :x rdf:type tl:Qualification . :x

:x rdf:type rdfs:Class [opt] .
:x tl:onVariable T(vID) .
:x tl:bindVariable T(C) .

Qualification(vID1 vID2 C) similar :x
restriction(ID :x rdf:type owl:Restriction . :x
selectValuesFrom(selection)) :x rdf:type rdfs:Class . [opt]

:x owl:onProperty T(ID) .
:x tl:selectValuesFrom T(selection) .

TemporalClass(classID classID rdf:type tl:TemporalClass .
[Deprecated] classID rdf:type rdfs:Class [opt] .
annotation1 ... annotationm [classID rdf:type owl:DeprecatedClass .]
Qualification1 ... Qualificationn classID T(annotation1) ... classID T(annotationm) .

classID owl:intersectionOf T(SEQ Quantification1 ...
Quantificationn) .

TemporalVariable(classID classID rdf:type tl:TemporalVariable .
[Deprecated] classID rdf:type rdfs:Class [opt] .
annotation1 ... annotationm [classID rdf:type owl:DeprecatedClass .]
temporalRelation1 ... classID T(annotation1) ... classID T(annotationm) .
temporalRelationn classID owl:unionOf T(SEQ temporalRelation1 ...

temporalRelationn) .
ObjectProperty(ID ID rdf:type owl:ObjectProperty .
[Deprecated] ID rdf:type rdf:Property . [opt]
annotation1 ... annotationm [ID rdf:type owl:DeprecatedProperty .]
[ParametricFunctional| ID T(annotation1) ... ID T(annotationm) .
InverseParametricFunctional] [ID rdf:type tl:ParametircFunctional .]
pathOf(featureID1 featureID2) [ID rdf:type tl:InverseParametircFunctional .]
...) [ID tl:pathOf T(SEQ featureID1 featureID2) .]

...
DatatypeProperty(ID similar
agreementOf(featureID1 :x rdf:type rdfs:Class .
featureID2) :x tl:agreementOf T(SEQ featureID1 featureID2) . :x
disagreementOf(featureID1 similar :x
undefinednessOf(featureID) similar :x
before(vID1 vID2) vID1 rdf:type tl:temporalVariable .

vID2 rdf:type tl:temporalVariable .
vID1 before vID2 .

other temporal relations

The Reserve-Flight concept in an abstract syntax form can be transformed
into RDF graphs by using the above transformation rules. The following is the
exchange syntax of the Reserve-Flight concept in the form of RDF/XML.

<tl:TemporalClass rdf:about="#Reserve-Flight">

<owl:intersectionOf rdf:parseType="Collection">

40 S.-K. Kim et al.

<tl:Qualification>

<tl:onVariable rdf:resource="#x"/>

<tl:bindVariable>

<owl:Restriction>

<owl:onProperty rdf:resource="#TICKET"/>

<tl:selectValuesFrom rdf:resource="#Unreserved"/>

</owl:Restriction>

</tl:bindVariable>

</tl:Qualification>

<tl:Qualification>

<tl:onVariable rdf:resource="#y"/>

<tl:bindVariable>

<owl:Restriction>

<owl:onProperty rdf:resource="#TICKET"/>

<tl:selectValuesFrom rdf:resource="#Reserved"/>

</owl:Restriction>

</tl:bindVariable>

</tl:Qualification>

</owl:intersectionOf>

</tl:TemporalClass>

<tl:TemporalVariable rdf:about="#x">

<tl:finishedBy rdf:resource="#tl:NOW"/>

</tl:TemporalVariable>

<tl:TemporalVariable rdf:about="#y">

<tl:metBy rdf:resource="#tl:NOW"/>

</tl:TemporalVariable>

Fig. 4. The RDF/XML representation of the Reserve-Flight concept

3.5 RDF-Compatible Model-Theoretic Semantics

The model-theoretic semantics for TL-OWL is defined as an extension of the
RDF semantics. There is a correspondence between the direct model-theoretic
semantics for the abstract syntax and the semantics defined in this section. As
a way noted in the OWL specification, if any conflict should ever arise between
these two forms, then the direct model-theoretic semantics takes precedence.

From the RDF semantics and the OWL semantics, for V a set of URI refer-
ences and literals containing the RDF and RDFS vocabulary and D a datatype
map, a D-interpretation of V is a tuple I = 〈RI, TI, PI, EXTI, SI, LI, LVI〉. RI
is the domain of discourse. TI is the time intervals of I, PI is a subset of RI, the
properties of I. EXTI is used to give meaning to properties, and is a mapping
from PI to P(RI × RI). SI is a mapping from URI references in V to their de-
notations in RI. LI is a mapping from typed literals in V to their denotations in
RI. LVI is a subset of RI that has literal values.

The set of classes CI is defined as CI = {x ∈ RI | 〈x,SI(rdfs:Class)〉 ∈ EXTI
(SI(rdf:type)) ∧ 〈TI,x〉 ∈ CI}, and the mapping CEXTI from CI to P(RI) is
defined as CEXTI(c) = {x ∈ RI | 〈x,c〉 ∈ EXTI(SI(rdf:type)) ∧ 〈TI,x〉 ∈ CI}.

Temporal Ontology Language 41

Definition 7. Let D be a datatype map that includes datatypes for rdf:XML Lit-
eral, xsd:integer and xsd:string. ATL-OWL interpretation, I =〈RI , TI , PI , EXTI,
SI , LI , LVI 〉, of a vocabulary V, where V includes the RDF and RDFS vocabular-
ies, is a D-interpretation of V that satisfies all the constraints in this section.

The following tables from Table 6 to Table 10 give the constraints of TL-OWL di-
rectives and constructs for the RDF-compatible model-theoretic semantics with
the D-interpretation.

Table 6. Conditions concerning parts of TL-OWL universe and syntactic categories

If E is then Note
SI(E)∈ CEXTI(SI(E))= and

tl:TemporalClass CI ITC ITC ⊆ CI
This defines ITC as the set of TL-OWL
classes

tl:TemporalVariable ITV ITV ⊆ CI
This defines ITV as the set of TL-OWL
temporal variables

tl:Qualification CI ITQ ITQ ⊆ CI
This defines ITQ as the set of TL-OWL
qualifications

Table 7. Characteristics of TL-OWL classes and properties

If E is then if e ∈ CEXTI(SI(E)) then Note

tl : TemporalClass CEXTI(e) ⊆ IOT Instances of TL-OWL classes are TL-
OWL individuals.

tl : TemporalVariable CEXTI(e) ⊆ T TL-OWL temporal variables are time in-
tervals.

If E is then c ∈ CEXTI(SI(E)) iff c ∈
IOOP ∪ IODP and Note

tl : Parametric-
FunctionalProperty

〈x,y1〉, 〈x,y2〉 ∈ EXTI(c) implies y1
= y2, independently from time

Both individual-valued and datatype
properties can be parametric functional
properties.

If E is then c ∈ CEXTI(SI(E)) iff c ∈
IOOP and Note

tl : InverseParametric-
FunctionalProperty

〈x1,y〉, 〈x2,y〉 ∈ EXTI(c) implies x1
= x2, independently from time

Individual-valued properties can be in-
verse parametric functional properties.

Table 8. Conditions on TL-OWL restrictions and qualifications

If then x ∈ IOR, y ∈ IOC ∪ IDC, p ∈ IOOP ∪
IODP, and CEXTI(x) =

〈x,y〉 ∈ EXTI(SI(tl:selectValuesFrom)) ∧ {u∈domp | EXTI(p)(u)∈CEXTI(y)}
〈x,p〉 ∈ EXTI(SI(owl:onProperty))

If then z ∈ ITQ, d ∈ IOC ∪ IDC, x,y ∈ ITV, and
CEXTI(z) =

〈z,d〉 ∈ EXTI(SI(tl:bindVariable)) ∧ {u∈IOT | u∈CEXTI(d), t = V(x)}
〈z,x〉 ∈ EXTI(SI(tl:onVariable))
〈z,d〉 ∈ EXTI(SI(tl:bindSubstitutiveVariable)) {u∈IOT | u∈CEXTI(d), H = H∪{y→V(x)}}
∧ 〈z,x〉 ∈ EXTI(SI(tl:onVariable)) ∧
〈z,y〉 ∈ EXTI(SI(tl:onSubstitutiveVariable))

Table 9. Conditions on TL-OWL features

If E is then 〈x,y〉 ∈ EXTI(SI(E)) iff

tl : agreementOf x∈IOC, y is a sequence of p,q over IOOP ∪ IODP, CEXTI(x)={u ∈ domp
∩ domq | EXTI(p)(u) = EXTI(q)(u)}

tl : disagreementOf x∈IOC, y is a sequence of p,q over IOOP ∪ IODP, CEXTI(x)={u ∈ domp
∩ domq | EXTI(p)(u) �= EXTI(q)(u)}

tl : undefinednessOf x∈IOC, y is a partial function over IOOP ∪ IODP, CEXTI(x)=IOT-domp

tl : pathOf x∈IOOP, y is a sequence of p,q over IOOP, and u∈domp and v∈domq,
〈u,v〉 ∈ EXTI(p) ∩ 〈v,w〉 ∈ EXTI(q) implies 〈u,w〉 ∈ EXTI(x)

42 S.-K. Kim et al.

Table 10. Conditions on TL-OWL temporal relations

If E is then x ∈ CEXTI(SI(E)) iff
tl : NOW CEXTI(x) is the current interval

If E is 〈x,y〉 ∈ EXTI(SI(E)) iff
tl : before CEXTI(x)=[u1,v1] ∧ CEXTI(y)=[u2,v2] implies v1 < u2
other temporal relations

We now show that the two model theories, the direct model-theoretic seman-
tics from Sect. 3.3 and the RDF-compatible model-theoretic semantics from this
section, have the same consequences on TL-OWL ontologies that can be written
in the abstract syntax.

Definition 8. Let K and Q be collections of RDF graphs and D be a datatype
map. Then K TL-OWL entails Q with respect to D iff every TL-OWL interpre-
tation with respect to D (of any vocabulary V that includes the RDF and RDFS
vocabularies and the TL-OWL vocabulary) that satisfies all the RDF graphs in
K also satisfies all the RDF graphs in Q. K is TL-OWL consistent iff there
is some TL-OWL interpretation that satisfies all the RDF graphs in K.

Theorem 1. Let O and O’ be collections of TL-OWL ontologies and axioms
and facts in abstract syntax form. Given a datatype map D that maps xsd:string
and xsd:integer to the appropriate XML Schema datatypes and that includes the
RDF mapping for rdf:XMLLiteral, then O entails O’ with respect to D if and
only if the translation of O TL-OWL entails the translation of O’ with respect
to D.

Proof (sketch): This theorem can be proved by a structural induction for all of
directives and constructs, but the description of its complete proof is too long.
Therefore, in this paper we only introduce the outline of the proof due to the
restriction of pages.

Given a datatype map D, a separated TL-OWL vocabulary is defined into
a set of URI references V’ = VO + VC + VTC + VTV + VD + VI + VOP
+ VDP + VAP + VXP. The translation of the separated TL-OWL vocabulary
T(V’) consists of all the triples of the form
v rdf:type owl:Ontology. v ∈ VO, v rdf:type owl:Class. v ∈ VC, v rdf:type
tl:TemporalClass. v ∈ VTC, v rdf:type tl:TemporalVariable. v ∈ VTV, v rdf:type
rdfs:Datatype. v ∈ VD, v rdf:type owl:Thing. v ∈ VI, v rdf:type owl:Object
Property. v ∈ VOP, v rdf:type owl:DatatypeProperty. v ∈ VDP, v rdf:type
owl:AnnotationProperty. v ∈ VAP, v rdf:type owl:OntologyProperty. v ∈ VXP.

Further, a collection of TL-OWL ontologies, axioms, and facts in abstract
syntax form, O, with a separated vocabulary is defined with the new notion of
a separated vocabulary V = VO + VC + VTC + VTV + VD + VI + VOP
+ VDP + VAP + VXP, where all URI references used as ontology names are
taken from VO, class IDs are taken from VC, temporal class IDs are taken from
VTC, temporal variable IDs are taken from VTV, datatype IDs are taken from
VD, individual IDs are taken from VI, individual-valued property IDs are taken

Temporal Ontology Language 43

from VOP, data-valued property IDs are taken from VDP, annotation property
IDs are taken from VAP, and ontology property IDs are taken from VXP.

Then the above theorem can be paraphrased as the following : Let O and O’
be collections of TL-OWL ontologies, axioms, and facts in abstract syntax form.
Then O direct entails O’ if and only if T(O) TL-OWL entails T(O’).

In order to prove this theorem, first, we inductively check whether all the
constructs of descriptions and qualifications and all the directives of Tempo-
ralClass, TemporalVariable, ObjectProperty and DatatypeProperty satisfy the
above theorem.

Suppose O entails O’. Let I be a TL-OWL DL interpretation that satisfies
T(O). Then from the above structural induction, there is some direct interpre-
tation I’ such that for any abstract TL-OWL ontology or axiom or fact X over
V’, I satisfies T(X) iff I’ satisfies X. Thus I’ satisfies each ontology in O. Because
O entails O’, I’ satisfies O’, so I satisfies T(O’). Thus T(K),T(V’) TL-OWL DL
entails T(Q). Conversely, suppose T(O) TL-OWL DL entails T(O’). Let I’ be an
direct interpretation that satisfies K. Then from the above structural induction,
there is some TL-OWL DL interpretation I such that for any abstract TL-OWL
ontology X over V’, I satisfies T(X) iff I’ satisfies X. Thus I satisfies T(O). Be-
cause T(O) TL-OWL DL entails T(O’), I satisfies T(O’), so I’ satisfies O’. Thus
O entails O’. Consequently, by the correspondence of two semantics, we can
conclude that O direct entails O’ if and only if T(O) TL-OWL entails T(O’)

3.6 Reasoning in TL-OWL

Artale and Franconi present a subsumption reasoning for TL-ALCF . The cal-
culus is based on the idea of separating the inference on the temporal part(TL)
from the inference on the DL part(ALCF). This is achieved by first looking
for a normal form of concepts. The normalization procedure generates a com-
pleted existential form of the form: �(X)Tc.(Q0�Q1@X1� ...�Qn@Xn), where
each Q is a non-temporal concept, X is a set of temporal variable and Tc is a
set of temporal constraints. Thanks to the completed existential form, concept
subsumption in TL-ALCF can be reduced to concept subsumption between non-
temporal concepts and to subsumption between temporal constraint networks,
i.e., a labeled directed graph 〈X, Tc, Q@X〉, where arcs are labeled with a set of
arbitrary temporal relationship and nodes are labeled with non-temporal con-
cepts. Moreover, Artale and Franconi show that the subsumption problem in
TL-ALCF can be reduced to the subsumption between ALCF concepts, i.e.,
the non-temporal part (see Theorem 7.11 in [2]).

The temporal description logic to formalize TL-OWL is TL-SHOIN (D),
which extends the non-temporal part(ALCF) of TL-ALCF to SHOIN (D). By
this extension this logic can have the expressivity of OWL DL. Moreover, if the
completed existential form for TL-SHOIN (D) can be shown by the normaliza-
tion procedure, the reduction of TL-ALCF can be also used in TL-SHOIN (D).

Most steps of the normalization procedure shown in TL-ALCF is for the tem-
poral part so that it can be sufficient that only simple form1 of TL-SHOIN (D)

1Artale calls a negation normal form to a simple form.

44 S.-K. Kim et al.

is defined to obtain the completed existential form for TL-SHOIN (D). We de-
fine the simple form excluding those of TL-ALCF as follows. These are similar to
simple forms presented in [7] and the simple form of TL-ALCF is also presented
in Fig. 14 of [2].

¬ � nR.C → � (n + 1)R.C ¬∃T.d → ∀T.¬d
¬ � (n + 1)R.C → � nR.C ¬∀T.d → ∃T.¬d
¬ � 0R.C → C � ¬C

As for TL-ALCF case, without loss of generality, the normalization proce-
dure for TL-SHOIN (D) reduces the subsumption problem in TL-SHOIN (D)
to the subsumption between SHOIN (D) concepts. It can be also shown that
a TL-SHOIN (D) concept in completed existential form, 〈X, Tc, Q@X〉, is sat-
isfiable if and only if the non-temporal concepts labeling each node in X are
satisfiable. Moreover, following the above reduction, the subsumption problem
of TL-SHOIN (D) is decidable because that of SHOIN (D) is decidable. The
proof is similar to the one for TL-ALCF (see Proposition 7.8 and Theorem 7,11
in [2]) and we here do not mention it because it is straightforward.

4 Related Work

OWL-Time ontology [13] has recently been proposed to describe the temporal
contents of Web pages as well as the temporal properties of Web services. The
OWL-Time was formerly the DAML-Time and is currently published as the
status of W3C working draft. The ontology provides a vocabulary to represent
the topological relations among instants and intervals, along with information
about duration and datetime. It is also shown how the ontology can be used
within OWL-S by several examples. OWL-Time however is not an ontology
language, but a time ontology based on OWL. It therefore have to use the rule-
based reasoning to solve the problem as introduced in Sect. 1.

[11] and [8] present a new temporal ontology language based on OWL, which
is a similar approach to ours. In order to represent time and temporal aspects
such as change in ontologies, they introduce time slices (the temporal parts of
an individual) and fluents (properties that hold between timeslices) and define
their semantics based on Description Logic. They however do not show the formal
reasoning algorithm such as subsumption and entailment. We can not also be
convinced that the reasoning for the language is decidable.

5 Conclusions

OWL as an ontology language for Semantic Web can represent and reason the
knowledge for information resources on web. It however cannot perform the
reasoning for temporal information, since OWL cannot represent the temporal
semantics. Therefore, we propose an interval-based temporal ontology language
TL-OWL, which can represent and reason time information on Semantic Web. In

Temporal Ontology Language 45

order to formalize TL-OWL the abstract and the exchange syntax of TL-OWL
and their model semantics are defined. These two semantics are also shown to
have the same consequences on TL-OWL ontologies that can be written in the
abstract syntax. Finally, we show that the resoning in TL-OWL is decidable.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. In: Communications
of the ACM, vol. 26(11), pp. 832–843. ACM, New York (1983)

2. Artale, A., Franconi, E.: A Temporal Description Logic for Reasoning about Ac-
tions and Plans. Journal of Artificial Intelligence Research 9, 463–506 (1998)

3. Artale, A., Franconi, E.: A Survey of Temporal Extensions of Description Logics.
Annals of Mathematics and Artificial Intelligence 4(1), 171–210 (2001)

4. Bettini, C.: Time dependent concepts: Representation and reasoning using tempo-
ral description logics. Data & Knowledge Engineering 22(1), 1–38 (1997)

5. Halpern, J.Y., Moses, Y.: A Propositional Modal Logic of Time Intervals. Journal
of ACM 38(4), 935–962 (1991)

6. Hollunder, B., Nutt, W.: Subsumption Algorithms for Concept Languages, Tech-
nical Research Report RR-90-04, DFKI, Germany (1990)

7. Horrocks, I., Sattler, U.: A tableaux decision procedure for SHOIQ. In: Proc. of the
19th International Joint Conference on Artificial Intelligence, pp. 448–453 (2005)

8. Milea, V., Frasincar, F., Kaymak, U., Noia, T.: An OWL-based Approach Towards
Representing Time in Web Information Systems. In: Proc. of the 4th International
Workshop of Web Information Systems Modeling Workshop, pp. 791–802 (2007)

9. Schild, K.D.: Combining terminological logics with tense logic. In: Proc. of the 6th
Portuguese Conference on Artificial Intelligence (1993)

10. Schmiedel, A.: A temporal terminological logic. In: Proc. of the AAAI 1990, pp.
640–645 (1990)

11. Welty, C., Fikes, R., Makarios, S.: A Reusable Ontology for Fluents in OWL. In:
Proc. of the International Conference on Formal Ontology in Information Systems,
pp. 226–236 (2006)

12. Wolter, F., Zakharyaschev, M.: Temporalizing description logics, Frontiers of Com-
bining Systems. Studies Press-Wiley, Chichester (1999)

13. W3C Working Draft, Time Ontology in OWL (2006),
http://www.w3.org/TR/owl-time

http://www.w3.org/TR/owl-time

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 46–60, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Formal Semantics-Preserving Translation from Fuzzy
Relational Database Schema to Fuzzy OWL DL Ontology

Fu Zhang, Z. M. Ma, Hailong Wang, and Xiangfu Meng

College of Information Science & Engineering, Northeastern University,
Shenyang, 110004, China

mazongmin@ise.neu.edu.cn

Abstract. How to construct Web ontologies has become a key technology to
enable the Semantic Web, especially how to construct ontologies by extracting
domain knowledge from database models such as the relational database model.
But in real-world applications, information is often imprecise and uncertain,
thus the formal approach to translation from Fuzzy Relational Database Schema
(FRDBS) to fuzzy ontology is helpful for extracting domain knowledge from
database, which can profitably support fuzzy ontology development and devel-
oping data-intensive Semantic Web applications. In this paper, we first give the
formal definition of FRDBS. Then, the formal definition and Model-Theoretic
semantics of a kind of new fuzzy OWL DL ontology are given in more detail.
What’s more, we realize the formal translation from FRDBS to fuzzy OWL DL
ontology by means of reverse engineering technique. Of course, the correctness
of translation is also proved. With an example, it shows that the translation
method is semantics-preserving and effective. Finally, the reasoning problem of
satisfiability, subsumption, and redundancy of FRDBS may reason automati-
cally through reasoning mechanism of the corresponding fuzzy description
logic f-SHOIN(D) of fuzzy OWL DL ontology is also investigated, which can
further contribute to constructing fuzzy OWL DL ontologies exactly that meet
application’s needs well.

Keywords: fuzzy database, Fuzzy Relational Database Schema (FRDBS),
fuzzy ontology, fuzzy OWL DL ontology, semantics-preserving translation.

1 Introduction

How to construct Web ontologies that meet applications’ needs has become a key
technology to enable the Semantic Web [2]. To this end, many kinds of formal meth-
ods and ontology tools have been built to constructing Web ontologies. In particu-
larly, the methods by extracting domain knowledge from database models (such as
relational database model) have been extensively investigated. Stojanovic [21] pre-
sented the mapping rules from relational model to ontology. In [1], the mapping be-
tween relational database and ontology was also established. In [24], an approach to
creating mappings between relational database schema and OWL ontology is pre-
sented. Kasgyap [11] also proposed how to obtain the elementary ontology according
to relational database schema. In [23], a formal approach for translating ER schema

 A Formal Semantics-Preserving Translation 47

into OWL DL ontology is presented. Additionally, Ontology tools such as Protégé-
2000 and OntoEdit [9] that can be used for building or reusing ontologies.

However, the above researches were not sufficient for handling vague or ambigu-
ous information. In real-world application, information is often vague or ambiguous.
Such as in relational database, the Inheritance (ISA) relation between two tables
(Young-Employee and Employee) may be fuzzy with membership degree of [0,1].
Thus, the problems that emerge are how to represent these non-crisp data within the
database model and ontology definition. For this purpose, Medina [14] proposed a
generalized model of fuzzy relational databases. In [12], Ma presented a conceptual
design methodology for fuzzy relational databases.

Also, in order to introduce fuzziness in ontologies, Thomas [22] introduced the
need for fuzzy probabilistic formalisms on the Semantic Web. In [17], Parry used
fuzzy ontologies, and presented a broad survey of relevant techniques, leading up to
the notions of fuzzy search and fuzzy ontologies. Ceravolo [5] presented an approach
to build fuzzy ontologies in a bottom-up fashion. In [6], Calegari defined a framework
consisting of a fuzzy ontology based on fuzzy Description Logic and fuzzy OWL. In
[19], Sanchez introduced a fuzzy ontology structure, Lexicon and Knowledge Base.

Although there have been several kinds of fuzzy extension of relational database
model and ontologies, no research on how to translate Fuzzy Relational Database
Schema (FRDBS) into fuzzy ontology has been done. If the translation is realized,
which will be contribute to constructing Web ontologies by extracting domain knowl-
edge from fuzzy database, it can profitably support fuzzy ontology development and
developing data-intensive Semantic Web applications. This is also the motivation of
our research.

In this paper, we try to answer the following questions about the relationship be-
tween FRDBS and fuzzy OWL DL ontology:

 How to formalize the Fuzzy Relational Database Schema? We solve this prob-
lem in section II.

 How to give the formal definition and Model-Theoretic semantics of fuzzy OWL
DL ontology? Aiming at the characteristics and requirement of fuzzy ontology,
and based on the fuzzy OWL DL, we solve this problem in section III.

 How to establish relationship between FRDBS and fuzzy OWL DL ontology?
The answers are (i) In order to realize the translation from FRDBS to fuzzy
OWL DL ontology well, firstly, we extract the fuzzy Entity-Relationship model
(fuzzy ER model) from FRDBS by reverse engineering technique, and why we
take this method is also introduced in section 2.3 in more detail. Then, we realize
the translation from FRDBS to fuzzy OWL DL ontology by translating the ex-
tracted fuzzy ER model into fuzzy OWL DL ontology with a semantics-
preserving translation algorithm. Additionally, to our knowledge, no researches
on how to extract fuzzy ER model from FRDBS and how to translate fuzzy ER
model into fuzzy ontology have been done respectively. (ii) Proving that the
translations are “semantics preserving”. (iii) As a fuzzy OWL DL ontology is be-
ing equivalent to a description logic f-SHOIN(D) knowledge base [18], the rea-
soning problem of satisfiability, subsumption, and redundancy of FRDBS may
be reasoned automatically through reasoning mechanism of fuzzy description
logic f-SHOIN(D) is also investigated, which can further contribute to construct-
ing fuzzy OWL DL ontologies exactly that meet application’s needs.

48 F. Zhang et al.

Summarizing, the existence of semantics-preserving translation from FRDBS to
fuzzy OWL DL ontology is helpful for constructing Web ontologies by extracting
domain knowledge from fuzzy database model, which can profitably support fuzzy
ontology development and developing data-intensive Semantic Web applications.

The remainder of this paper is organized as follows. Section II introduces the
FRDBS and fuzzy ER model, presents the method that how to extract fuzzy ER model
from FRDBS, and why we take this method is also illustrated. Section III introduces
the fuzzy OWL DL ontology. In section IV, we realize the formal translation from
FRDBS to fuzzy OWL DL ontology. The reasoning problems of FRDBS are also
studied. Section V shows the general conclusions and further work.

2 The Fuzzy Relational Database Schema

In this section, we give the formal definition of Fuzzy Relational Database Schema
(FRDBS), which is the fuzzy extension of the traditional relational database schema
[26]. The fuzzy ER model is introduced, and a kind of new method that how to extract
fuzzy ER model from FRDBS is presented. Additionally, why we take the method of
extracting fuzzy ER model from FRDBS is also illustrated in detail.

2.1 The Formal Definition of FRDBS

In brief, a Fuzzy Relational Database Schema consists of a set of fuzzy relations FR,
each fuzzy relations FR is corresponding to a table, and the columns of a fuzzy rela-
tion are called fuzzy attributes denoted as FA. The tuples in fuzzy relations reflect the
fuzzy values of fuzzy schema, and they are content of fuzzy database. Here, we as-
sume that all fuzzy relations are in the third normal form.

Definition 1. A Fuzzy Relational Database Schema is a tuple FRDBS = (LTFRDBS,
unique, pkey, fkey, ≤FRDBS), where:

 LTFRDBS = ETFS ∪ RTFS ∪ DFS is a finite alphabet, where ETFS is a set of fuzzy
entity table symbols describing entities in the real word; RTFS is a set of fuzzy
relationship table symbols describing the fuzzy relationships between fuzzy enti-
ties; DFS is a set of fuzzy domain symbols, each fuzzy domain symbol FD has an
associated predefined basic domain, and we assume various basic domains to be
pairwise disjoint.

 unique : each fuzzy attribute FA ∈ attr(FT) has an associated predefined basic
domain, where FT ∈ ETFS ∪ RTFS, if FA has the unique value, then we have the
Boolean function unique(FA)=1, otherwise, unique(FA)=0, where the function
attr(FT) acquires the fuzzy attributes contained in a specific FT.

 pkey : for each FT ∈ ETFS ∪ RTFS, there is exactly one primary key pkey(FT), if
pkey(FT) ∈ attr(FT), then pkey(FT) is a single-attribute key, if pkey(FT) ⊆
attr(FT), then pkey(FT) is a composite-attribute key.

 fkey : for each FT ∈ ETFS ∪ RTFS, there may be 1or n (n > 1) foreign keys
fkey(FT, FG), where FG ∈ ETFS, fkey(FT, FG) ⊆ attr(FT), and (fkey(FT,FG))
⊆ value(pkey(FG) ∪ Null). The function fkey(FT, FG) acquires the foreign
keys (which point to the FG) in a given fuzzy relation FT, and value(*) denotes
the value range of *.

 A Formal Semantics-Preserving Translation 49

 ≤FRDBS is a fuzzy binary relation over ETFS that models a fuzzy inheritance (ISA)
relation between two fuzzy entity tables ET1, ET2 ∈ ETFS. If pkey(ET1) ⊆
pkey(ET2) , the pkey(ET1) is also the foreign key of ET1, and fkey(ET1,FG) =
fkey(ET1,ET2), i.e., all the foreign keys of ET1 point to ET2, then we have that
ET1 ≤FRDBS ET2, denotes ET1 is subentity of ET2, where FG ∈ ETFS,
fkey(ET1,FG) denotes the foreign keys of fuzzy entity table ET1.

2.2 The Fuzzy ER Model

In order to establish the correspondence between FRDBS and fuzzy OWL DL ontol-
ogy, in this paper, firstly, we extract the fuzzy Entity-Relationship model (fuzzy ER
model) from FRDBS. So, we first give the formal definition and semantics of fuzzy
ER model.

The fuzzy ER model [25] is fuzzy extension of traditional ER model [3], which is a
graphic tool for concept modeling. The fuzzy ER schema is usually defined using a
graphical notation which is particularly useful for an easy visualization of the data
dependencies. In the following, for sets X and Y we call a function from a subset of X
to Y an X-labeled tuple over Y. The labeled tuple T that maps xi ∈ X to yi ∈ Y, for i ∈
{1,…,k}, is denoted [x1: y1,…,xk: yk]. We also write T[xi] to denote yi [4].

Definition 2. A fuzzy ER schema is a tuple FS = (LFS, ≤FS, attFS, relFS, cardFS), where:

 LFS = EFS ∪ AFS ∪ UFS ∪ RFS ∪ DFS is a finite alphabet, where EFS is a set of
fuzzy entity symbols, AFS is a set of fuzzy attribute symbols, UFS is a set of fuzzy
role symbols, RFS is a set of fuzzy relationship symbols, and DFS is a set of fuzzy
domain symbols, each fuzzy domain symbol FD has an associated predefined
basic domain DFB, and we assume various basic domains to be pairwise disjoint.

 ≤FS ⊆ EFS×EFS is a fuzzy binary relation over EFS. ≤FS denotes the ISA relation-
ships between two fuzzy entities.

 attFS: EFS → T(AFS, DFS) is a function that maps each fuzzy entity symbol in EFS
to an AFS-labeled tuple over DFS. For simplicity we assume attributes to be sin-
gle-valued and mandatory.

 relFS is a function that maps each fuzzy relationship symbol in RFS to an UFS-
labeled tuple over EFS. For each fuzzy role FU ∈ UFS, there is a fuzzy relation-
ship FR and a fuzzy entity FE such that relFS(FR) = […,FU:FE,…].

 cardFS is a function from EFS ×RFS×UFS to N0×(N0 ∪ {∞}) that satisfies the fol-
lowing condition: for a fuzzy relationship FR ∈ RFS such that relFS(FR) =
[…,FU:FE,…], define the cardFS(FE,FR,FU) = (cminFS(FE,FR,FU),
cmaxFS(FE,FR,FU)). The function cardFS specifies cardinality constraints.

Similarly for the semantics of classical ER model [4], the semantics of fuzzy ER
model can be given by the fuzzy database state. A fuzzy database state is considered
acceptable if it is legal.

Definition 3. Formally, a fuzzy database state FB is constituted by a nonempty finite
set ∆FB, assumed to be disjoint from all basic domains, and a function •FB that maps:

 Every domain symbol FD ∈ DFS to the basic domain DFB, that is FDFB∈ DFB;
 Every fuzzy entity FE ∈ EFS to a subset FEFB of ∆FB, that is FEFB ⊆ ∆FB;

50 F. Zhang et al.

 Every fuzzy attribute FA ∈ AFS to a set FAFB ⊆ ∆FB × ∪ FDFB, where FD ∈ DFS;
 Every fuzzy relationship FR ∈ RFS to a set FRFB of UFS-labeled tuples over ∆FB.

The elements of FEFB, FAFB and FRFB are called instances of FE, FA, and FR
respectively.

Definition 4. A fuzzy database state FB is said to be legal for a fuzzy ER schema FS
= (LFS, ≤FS, attFS, relFS, cardFS), if it satisfies the following conditions:

 For each pair of fuzzy entities FE1, FE2 ∈ EFS such that FE1 ≤FS FE2, it holds that
FE1

FB ⊆ FE2
FB;

 For each fuzzy entity FE ∈ EFS, if attFS (FE) = [FA1:FD1,…, FAk:FDk], then for
each instance Fe ∈ FEFB and for each i ∈ {1, …, k} the following holds: There is
exactly one element Fai = <Fe, Fdi> ∈ FAi

FB, Fdi ∈ Di
FB, where first component

is Fe, and second component of Fai is an element of Di
FB;

 For each fuzzy relationship FR ∈ RFS such that relFS(FR) = [FU1:FE1,…,
FUn:FEn], all instances of FR are of the form [FU1:Fe1, …, FUn:Fen], where Fei ∈
FEi

FB, i ∈ {1, …, n};
 For each fuzzy relationship FR ∈ RFS such that relFS(FR) = [...,FU:FE,…], for

each instance Fe ∈ FEFB, it holds that: cminFS(FE, FR, FU) ≤ #{ Fr∈FRFB |
Fr[FU] = Fe } ≤ cmaxFS(FE, FR, FU), where #{…} denotes base of the set {…}.

2.3 Extracting Fuzzy ER Model from FRDBS

To our knowledge, no research on how to create mappings between FRDBS and
fuzzy OWL DL ontology has been done. In this paper, firstly, we will take the method
of extracting fuzzy ER model from FRDBS for the following reasons.

In [7], it showed that the ER model is richer in semantics than relational database
schema. Also, lots of researches focus on the reverse engineering technique, which
aims to recover the data model of an existing database in order to apply the data
model to a new application setting, thus the database reverse engineering is necessary
to semantically enrich and document a database, and to avoid throwing away the huge
amounts of data stored in existing legacy databases if the owner of an existing data-
base wants to re-engineer, or maintain and adjust the database design [10]. Addition-
ally, an ER model is the commonly used target of the reverse engineering process
[26]. Furthermore, ER model is considered as a graphic tool for database design and
the most widespread semantic data model, and the ontology also models the domain
by class, attributes, and constraint condition, so the relationship between ER model
and ontology is strong [23].

Based on the above analysis, in our method, we first extract the fuzzy ER model
from FRDBS by the following Definition 5. Then we realize the formal translation
from FRDBS into fuzzy OWL DL ontology by translating the fuzzy ER model into
the fuzzy OWL DL ontology with a semantics-preserving translation algorithm in
Section IV. The following Definition 5 will show that how to translate the FRDBS
into the fuzzy ER model well.

 A Formal Semantics-Preserving Translation 51

Definition 5. Give a fuzzy relational database schema FRDBS, we can obtain the
corresponding fuzzy ER model FS according to the following extracting rules:

Rule 1: Extracting Entity
 for each FT ∈ ETFS ∪ RTFS, if pkey(FT) only contain one attribute, then FT ∈

ETFS, that is to say, FT is mapped to a fuzzy entity in fuzzy ER model.
 for each FT ∈ ETFS ∪ RTFS, if pkey(FT) contain n attributes (n > 1), and there is

at least one attribute which is not foreign key of FT, then FT ∈ ETFS, that is to
say, FT is mapped to a fuzzy entity in fuzzy ER model.

Rule 2: Extracting Associations
 for each FT ∈ ETFS ∪ RTFS, if pkey(FT) contain n attributes (n > 1), and all the n

attributes are also the foreign keys of FT, then FT ∈ RTFS, that is to say, FT is
mapped to a fuzzy relationship in fuzzy ER model, we notice here that the fuzzy
attributes on fuzzy relationships are omitted.

 for each FT ∈ ETFS, there are fuzzy relationships in fuzzy ER model between FT
and fuzzy entities which FT point to them by foreign keys of FT, except for the
case of Rule 3.

Rule 3: Extracting Inheritance relation
 for each ET1, ET2 ∈ ETFS, if pkey(ET1) ⊆ pkey(ET2), pkey(ET1) is also the for-

eign key of ET1, and all the foreign keys of ET1 point to the ET2, then ET1 ≤FRDBS
ET2 is mapped to the ET1 ISA ET2 in fuzzy ER model.

Rule 4: Extracting cardinality constraints
 for each ET1, ET2 ∈ ETFS with the associations exists between them, and

pkey(ET1) is the foreign key of ET2. If foreign key of ET2 can be empty, that is
to say, each fuzzy instance of ET2 at most corresponding to a fuzzy instance of
ET1, so ET1 and ET2 is 1: n; If foreign key of ET2 can not be empty, that is to
say, each fuzzy instance of ET2 just corresponding to a fuzzy instance of ET1, so
ET1 and ET2 is 1:1.

 for each ET1, ET2 ∈ ETFS with the associations exists between them, if there are
the foreign keys of ET2 which point to the ET1, on the contrary, the foreign keys
of ET2 which point to the ET1 do not exist, that is to say, each fuzzy instance of
ET2 can correspond to n (n≥1) fuzzy instance of ET1, so ET1 and ET2 is 1:n.

 for the cardinality constraints of fuzzy relationships extracted according to Rule
2, which are m : n.

3 Fuzzy OWL DL Ontology

In this section, we first investigate the fuzzy extension of OWL DL, i.e., fuzzy OWL
DL. Then, based on fuzzy OWL DL, a kind of fuzzy OWL DL ontology is presented.

3.1 Fuzzy OWL DL

As a suitable ontology language OWL, which consists of three sub-languages of in-
creasing expressive power, namely OWL Lite, OWL DL, and OWL Full, the OWL
DL is the language chosen by the major ontology editors because it supports those
users who want the maximum expressiveness without losing computational complete-
ness and decidability of reasoning systems [15].

52 F. Zhang et al.

In this paper, our aim is to define a new fuzzy ontology language suitable to im-
plement the fuzzy ontology. So, similarly for [20], we investigate the fuzzy extension
of OWL DL, named fuzzy OWL DL in more detail.

As with OWL DL, fuzzy OWL DL has also two types of syntactic form, i.e., the
frame-like style abstract syntax [16] and exchange syntax (RDF/XML syntax) [8].
Here, we use abstract syntax which facilitates access to and evaluation of the ontolo-
gies [23]. In addition, the fuzzy OWL DL can be approximately viewed as the expres-
sive DL f-SHOIN(D) [18]. So, in Table 1, we give the fuzzy OWL DL abstract
syntax, the corresponding Description Logic syntax and Model-Theoretic semantics.

Based on the characteristics of FRDBS and fuzzy ER model, we only take into ac-
count of the partial constructors of fuzzy OWL DL abstract syntax, which makes it
enough to establish a precise correspondence with FRDBS.

Table 1. Fuzzy OWL DL Abstract Syntax, Description Logics Syntax, and Semantics

fuzzy OWL DL
Abstract Syntax

Description
Logics Syntax

Model-Theoretic Semantics

fuzzy class
description (C)

A, which is a
URIref of a fuzzy class

owl:Thing
owl:Nothing

restriction (R

allValuesFrom(C))
restriction (R

minCardinality(n))
restriction (R

maxCardinality(n))
restriction (U

allValuesFrom(D))

A

T
⊥

∀R.C

≥nR

≤nR

∀U.D

AFI:
FI∆ → [0,1]

TFI(d)=1
⊥FI(d)=0

)'(),',(1{max{inf)().(
'

dCddRdCR FIFI

d

FI
FI −=∀

∆∈

),(sup)()(1,...,1
i

FIn
icc

FI cdRdnR FI
n

=∆∈
∧=≥

)),(1(inf)()(1

1,..., 11
i

FIn
icc

FI cdRdnR FI
n

−∨=≤ +
=∆∈+

)}}(),,(1{max{inf)().(vDvdUdDU FIFI

v

FI
FI
D

−=∀
∆∈

fuzzy class axioms

Class(A partial C1…Cn)
SubClassOf(C1 C2)
DisjointClasses(C1…Cn)

A⊆C1∩...∩Cn
C1 ⊆ C2
Ci≠Cj

AFI(d) ≤ min(C1
FI(d),…, Cn

FI(d))
C1

FI(d) ≤ C2
FI(d)

min(Ci
FI(d), Cj

FI(d)) =0 1≤ i < j ≤ n

fuzzy property axioms

ObjectProperty (R
domain(C1)…domain(Cm)
range(C1)… range(Ck)
[inverseOf(R0)])

DatatypeProperty (U

domain(C1)…domain(Cm)
range(D1)…range(Dk)
[Functional])

≥1R⊆Ci,
T⊆∀R.Ci
R=(R0)

⎯

≥1U⊆Ci,
T⊆∀U.Di
T⊆≤1U

RFI(d1, d2) ≤ Ci

FI(d1) i=1,…,m
RFI(d1, d2) ≤ Ci

FI(d2) i=1,…,k
RFI(d1, d2)= R0

FI(d2, d1)

UFI(d, v) ≤ Ci

FI(d) i=1,…,m
UFI(d, v) ≤ Di

FI(v) i=1,…,k

∀d∈ FI∆ #{v∈ D∆ : UFI(d, v) ≥0} ≤ 1

 A Formal Semantics-Preserving Translation 53

The interpretation is given by a pair < ∆FI, •FI > where ∆FI is a set of objects with
empty intersection with the concrete domain D∆ : ∆FI∩ D∆ =∅. A concrete fuzzy do-
main is a pair < DD φ,∆ >, where D∆ is an interpretation domain and Dφ is the set of
concrete fuzzy domain predicates D with a predefined arity n and a fuzzy interpreta-
tion DFI: n

D∆ →[0, 1], which is a n-ary fuzzy relation over D∆ . Individuals d are
mapped to objects in ∆FI : dFI∈∆FI, whereas concrete individuals v are mapped to
objects in the concrete domain: vFI∈ D∆ . A concept C is interpreted as a fuzzy set on
the domain CFI : ∆FI → [0, 1]. Abstract roles R and concrete roles U are interpreted as
fuzzy binary relations, respectively: R : ∆FI×∆FI→ [0, 1] and U : ∆FI × D∆ → [0, 1]. In
Table 1, where ∀ dFI, cFI∈∆FI, vFI∈ D∆ , •FI is a fuzzy interpretation function, C de-
notes fuzzy class description, D denotes fuzzy data range, fuzzy ObjectProperty iden-
tifiers and fuzzy DatatypeProperty identifiers are denoted by R and U, respectively, n
is a nonnegative integer, #S denotes the cardinality of a set S.

3.2 Fuzzy OWL DL Ontology

The fuzzy OWL DL ontology is fuzzy ontology with ontology language fuzzy OWL
DL, which is fuzzy extension of OWL DL ontology [23]. Here, we do not consider
the aspects that contain annotation, individual identifiers, individual axioms, RDF
Literal, and partial fuzzy OWL constructors, which have no effect on our work. The
Model-Theoretic semantics of fuzzy OWL DL ontology can be obtained in Table 1.

Definition 6. A fuzzy OWL DL ontology is a tuple FOO = (FID0, FAxiom0), where:

 FID0 = FCID0 ∪ FDRID0 ∪ FOPID0 ∪ FDPID0 is a finite fuzzy OWL DL identi-
fier set (see Table 1) partitioned into:
(1) a subset FCID0 of fuzzy class identifiers including user-defined identifiers
plus two predefined fuzzy classes owl:Thing and owl:Nothing; fuzzy classes are
either fuzzy entity classes describing fuzzy entities or fuzzy relationship classes
describing the fuzzy relationships between fuzzy entities.
(2) a subset FDRID0 of fuzzy data range identifiers; each fuzzy data range iden-
tifier is predefined XML Schema fuzzy datatypes, which was discussed simply
in [13].
(3) a subset FOPID0 of fuzzy object property identifiers; fuzzy object properties
link individuals (i.e., fuzzy entities) to individuals.
(4) a subset FDPID0 of fuzzy datatype property identifiers; fuzzy datatype prop-
erties link individuals (i.e., fuzzy entities) to fuzzy data values.

 FAxiom0 is a finite fuzzy OWL DL axiom set partitioned into a subset of fuzzy
class axioms and a subset of fuzzy property axioms; each fuzzy axiom (see Table
1) is formed by applying fuzzy OWL DL constructs to the identifiers or descrip-
tions that are the basic building blocks of a fuzzy class axiom and describe the
fuzzy class either by a fuzzy class identifier or by specifying the extension of an
unnamed anonymous fuzzy class via the construct restriction.

From a semantics point of view, a fuzzy OWL DL ontology FOO is a set of fuzzy
OWL DL axioms in Table 1. We say that a fuzzy interpretation FI is a model of FOO
iff it satisfies all axioms in FOO.

54 F. Zhang et al.

4 Mapping between FRDBS and Fuzzy OWL DL Ontology

This section establishes the relationships between FRDBS and fuzzy OWL DL ontol-
ogy. Firstly, we realize the translation from FRDBS to fuzzy OWL DL ontology by
translating the extracted fuzzy ER model into fuzzy OWL DL ontology with a seman-
tics-preserving translation algorithm. Then, the reasoning problems of FRDBS are
also investigated, which can contribute to constructing fuzzy OWL DL ontology.

4.1 Translating FRDBS into Fuzzy OWL DL Ontology

It showed that the semantics was preserved when translating the ER model into De-
scription Logic (such as ALNUI) knowledge bases [4]. Similarly, with a fuzzy OWL
DL ontology being equivalent to a fuzzy description logic f-SHOIN(D) knowledge
base [18], therefore, there exists a formal and semantics-preserving approach for
translating a fuzzy ER schema into a fuzzy OWL DL Ontology.

The following Algorithm 1 gives the formal approach for translating a fuzzy ER
schema which is exacted from FRDBS into a fuzzy OWL DL ontology.

Algorithm 1. A semantics-preserving translating algorithm from fuzzy ER Schema
which is exacted from FRDBS to fuzzy OWL DL Ontology:

Input: a fuzzy ER schema FS, which is exacted from a FRDBS by Definition 5.
Output: a fuzzy OWL DL Ontology FOO = ϕ (FS) = (FID0, FAxiom0).
Steps: applying the following transformation rules to fuzzy ER schema FS:
(1) The set FID0 of fuzzy OWL DL identifier of ϕ(FS) contains following

elements:
 For each fuzzy entity FE ∈ EFS, a fuzzy class identifier ϕ(FE) ∈ FCID0.
 For each fuzzy relationship FR ∈ RFS, a fuzzy class identifier ϕ(FR) ∈ FCID0.
 For each fuzzy attribute symbol FA in FS, a fuzzy datatype property identifier

ϕ(FA) ∈ FDPID0.
 For each fuzzy domain symbol FD ∈ DFS is mapped into a fuzzy data range

identifier ϕ(FD) ∈ FDRID0, where each fuzzy data range identifier is predefined
XML Schema fuzzy datatype, which was discussed simply in [13].

 For each fuzzy ER-role FU of fuzzy relationship FR associated with fuzzy entity
FE is mapping into a pair of inverse fuzzy object property identifiers ϕ(FU) ∈
FOPID0 and FV = invof_ϕ(FU) ∈ FOPID0.

(2) The set FAxiom0 of fuzzy OWL DL axiom of ϕ(FS) as follows:
 For each pair of fuzzy entities FE1, FE2 ∈ EFS such that FE1 ≤FS FE2, a fuzzy class

axiom: Class (ϕ(FE1) partial ϕ(FE2)). (i)
 For each fuzzy entity FE ∈ EFS with attFS(FE) = [FA1:FD1,…,FAk:FDk], the fol-

lowing fuzzy axioms:
A fuzzy class axiom: Class (ϕ(FE) partial restriction (ϕ(FA1) allValuesFrom

(ϕ(FD1)) cardinality (1)) … restriction (ϕ(FAk) allValuesFrom (ϕ(FDk)
) cardinality (1))); (ii)

FOR i=1,2,…,k DO, A fuzzy property axiom: DatatypeProperty (ϕ(FAi) do-
main (ϕ(FE)) range(ϕ(FDi)) [Functional]). (iii)

 A Formal Semantics-Preserving Translation 55

 For each fuzzy relationship FR ∈ RFS with relFS(FR) = [FU1:FE1,…,FUn:FEn],
the following fuzzy axioms:
A fuzzy class axiom: Class (ϕ(FR) partial restriction (ϕ(FU1) allValuesFrom

(ϕ(FE1)) cardinality (1)) … restriction (ϕ(FUn) allValuesFrom (ϕ(FEn)
) cardinality(1))); (iv)

FOR i=1,2,…,n DO
A fuzzy property axiom: ObjectProperty (FVi domain (ϕ(FEi)) range
(ϕ(FR)) inverseOf ϕ(FUi)); (v)
A fuzzy class axiom: Class (ϕ(FEi) partial restriction (FVi allValues-
From (ϕ(FR)))). (vi)

 For each fuzzy ER-role FU of fuzzy relationship FR associated with fuzzy entity
FE, relFS(FR) = [...,FU:FE,…], the following fuzzy axioms:
A fuzzy property axiom: ObjectProperty (ϕ(FU) domain (ϕ(FR)) range (ϕ(FE))

); (vii)
If m = cminFS(FE, FR, FU)≠0, a fuzzy class axiom: Class (ϕ(FE) partial restric-

tion (FV minCardinality (m))); (viii)
If n = cmaxFS(FE, FR, FU)≠0, a fuzzy class axiom: Class (ϕ(FE) partial restric-

tion (FV maxCardinality(n))). (ix)
 For each pair of symbols X, Y∈ EFS ∪ RFS ∪ DFS, such that X≠Y and X ∈ RFS ∪

DFS, a fuzzy class axiom: DisjointClasses (ϕ(X) ϕ(Y)). (x)

The time complexity of Algorithm 1 depends on the data structure of fuzzy ER
model, basically, depends on the original fuzzy relational database schema FRDBS.
Since all the fuzzy OWL DL identifiers of ϕ(FS) in first step can be obtained by creat-
ing the fuzzy axioms in second step, the time complexity of Algorithm 1 can be ana-
lyzed as follows: Suppose the scale of fuzzy ER model FS is N= NFE+NFA+NFR+NFU,
where NFE, NFA, NFR, NFU denotes the cardinality of sets of fuzzy entity symbols,
fuzzy attribute symbols, fuzzy role symbols, and fuzzy relationship symbols, respec-
tively. For simplicity we assume attributes to be single-valued and mandatory. The
creating times of axiom (i) are NFE-1 at most, similarly, axiom (ii) are NFE, axiom (iii)
are NFA, axiom (iv) are NFR, axioms (v), (vi), and (vii) are NFU, axioms (viii) and (ix)
are NFU at most, and axiom (x) are NFR×(NFE＋NFR/2－1/2), so, in worst case, the
total running times T= 2NFE+NFA+NFR+5NFU-1+ NFR×(NFE＋NFR/2－1/2) < N2+5N,
that is, the time complexity of Algorithm 1 only needs O(N2) at most.

The following give the correctness of Algorithm 1. Here, based on the idea in [4],
the correctness of Algorithm 1 can be proved by the Definition 7 and the Theorem 1.

Definition 7. Let FS = (LFS, ≤FS, attFS, relFS, cardFS) be a fuzzy ER schema, ϕ(FS) be a
fuzzy OWL DL ontology obtained from FS by Algorithm 1, FI is a relation-fuzzy
descriptive model of FOO, if for every fuzzy relationship FR ∈ RFS with relFS(FR) =
[FU1:FE1,…,FUn:FEn], for every r1, r2 ∈(ϕ(FR))FI, we have that:

(∧1≤i≤k ∀ d∈ FI∆ .(< r1, d > ∈ (ϕ(FUi))
FI ↔ < r2, d > ∈ (ϕ(FUi))

FI)) → (r1= r2)

The above Definition 7 is implicit in the semantics of fuzzy ER model (that is, the
corresponding FRDBS) that there cannot be two labeled tuples connected through all
fuzzy roles of the fuzzy relationship to exactly the same elements of the domain.

56 F. Zhang et al.

Theorem 1. For every fuzzy ER schema FS exacted from FRDBS, ϕ(FS) be the fuzzy
OWL DL ontology according to the Algorithm 1, there exist two mappings αFS, from
fuzzy database state FB with respect to FS to relation-fuzzy descriptive model of
ϕ(FS), and βFS, from relation-fuzzy descriptive model of ϕ(FS) to FB, such that:

 For each legal fuzzy database state FB for FS, there is αFS(FB) is a relation-fuzzy
descriptive model of ϕ(FS).

 For each relation-fuzzy descriptive model FI of ϕ(FS), there is βFS(FI) is a legal
fuzzy database state for FS.

Proof. Note that for each legal database state FB, we only consider the finite set of
fuzzy values FB∆ . Then a fuzzy interpretation αFS(FB) of ϕ(FS) is defined as follows.

 αFS is a mapping from the fuzzy database state corresponding to FS to the rela-
tion-fuzzy descriptive interpretation of ϕ(FS). So we know that the mapping of
their corresponding elements also exists. That is, the domain elements)(FBFSα∆ of
fuzzy interpretation of ϕ(FS) is constituted by fuzzy values of the fuzzy database
state FB, i.e.,)(FBFSα∆ = FB∆ ∪ FB

RFR FR
FS∈U . According to Definition 3, we

know that each fuzzy relation FR of FS is assigned with a possibly UFS-labeled
tuples over ∆FB. Then we have FB

RFR FR
FS∈U to explicitly represent the type

structure of fuzzy relations in fuzzy OWL DL ontology.
 The fuzzy OWL DL identifier set FID0 of ϕ(FS) in Algorithm 1 are defined:

)())((FBFSX αϕ = {XFB | X ∈ DFS∪EFS∪AFS∪RFS},
and for each fuzzy relationship FR with relFS(FR) = [FU1:FE1,…, FUn:FEn], we
have)())((FB

i
FSFU αϕ = {<Fr, Fei> ∈)(FBFSα∆ ×)(FBFSα∆ | Fr ∈FRFB ∧ Fei ∈ FEi

FB

∧ Fr [FUi] = Fei }, where i =1,…, n.

Based on the above definition of αFS(FB), we prove the first part of Theorem 1 by
considering each case of the fuzzy OWL DL axiom set FAxiom0 of ϕ(FS) in Algo-
rithm 1. Here, we only consider the Case 2.

Case 2: Firstly, for a fuzzy instance Fe ∈)())((FBFSFE αϕ , by definition of of αFS(FB)
above, we have Fe ∈ FEFB. Then, according to Definition 4, there is exactly one ele-
ment Fa = <Fe, Fdi> ∈ FAi

FB =)())((FB
i

FSFA αϕ , Fdi ∈ Di
FB =)())((FB

i
FSFD αϕ , where first

component is Fe, and second component of Fa is an element of Di
FB. Furthermore, by

Definition 2, all fuzzy relations ϕ (FAi) corresponding to fuzzy attribute names FAi is
functional. That is, αFS(FB) satisfies the fuzzy class axiom (ii). For the fuzzy class
axiom (iii), according to Definition 3, we have FAi

FB ⊆ ∆FB × ∪FDFB, according to
Definition 4, there is exactly one element <Fe, Fdi> ∈ FAi

FB, Fdi ∈ FDFB, so we have
FAi

FB ⊆ FEFB ×∪FDFB, then by definition of αFS(FB) above, we have)())((FB
i

FSFA αϕ ⊆
)())((FBFSFE αϕ ×)())((FB

i
FSFD αϕ , since FAi is functional by Definition 2, then

)())((FB
i

FSFA αϕ is also functional. That is, αFS(FB) satisfies the fuzzy class axiom (iii).

The proof of second part of Theorem 1 is omitted, which can be treated analo-
gously according to the proof of first part, they are mutually inverse process.

Example 1. Firstly, we can obtain the fuzzy ER schema FS1 in Fig. 1 by applying
Definition 5 to the Fuzzy Relational Database Schema FRDBS1 in Table 2. Then we

 A Formal Semantics-Preserving Translation 57

translate the fuzzy ER schema FS1 into the fuzzy OWL DL ontology ϕ(FS1) in Fig. 2
by applying Algorithm 1.

Note that: In Table 2, Number-YE ⊆ Number-E denotes pkey(Young-Employee) ⊆
pkey(Employee), Number-CL ⊆ Number-L denotes pkey(Chief-Leader) ⊆
pkey(Leader). In Fig. 1, the attributes of Employee and Leader are omitted. For brev-
ity, the disjoint class axioms in Fig. 2 are omitted, and Fig. 2 is in the next page.

Table 2. The Fuzzy Relational Database Schema FRDBS1

Table name Attribute Primary key Foreign key & Reference
Employee Number-E Number-E No

Leader Number-L Number-L No

Young-
Employee

Number-YE,
Age

Number-YE

Number-YE (Number-E)

Chief-
Leader

Number-CL

Number-CL

Number-CL (Number-L)

Mainly-
Manage

No

Number-YE,
Number-CL

Number-YE (Number-E),
Number-CL (Number-L)

Fig. 1. The fuzzy ER schema FS1 with respect to FRDBS1

4.2 Reasoning Problems on FRDBS

In general, the reasoning problems of FRDBS include satisfiability, subsumption, and
redundancy. At present, in the fuzzy database modeling, the designers usually need to
check the above reasoning problems by hand. In [4] D. Calvanese has pointed out that
reasoning problems of ER model may reason automatically through reasoning
mechanism of Description Logics.

As the aforementioned analyses, a fuzzy OWL DL ontology being equivalent to a
DL f-SHOIN(D) knowledge base [18], so a fuzzy OWL DL ontology ϕ(FS) such as in
Fig. 2 is corresponding to a DL f-SHOIN(D) knowledge base ϕ′(FS), i.e., fuzzy class
identifier ϕ(FE) in ϕ(FS) corresponding to concept ϕ′(FE) in ϕ′(FS), and so on. Here,
we omitted the detailed correspondence between ϕ(FS) and ϕ′(FS). Therefore, it is
convenient and worth it checking the reasoning problems of FRDBS through reason-
ing mechanism of f-SHOIN(D), which will be further contribute to constructing fuzzy
OWL DL ontologies exactly that meet application’s needs.

Number-YE/string

Age/string

Mby Mof

Employee

(m,n) (m,n)

Leader

Mainly-
Manage

Young-
Employee

Chief-
Leader

Number-CL/string

58 F. Zhang et al.

Fig. 2. The fuzzy OWL DL ontology ϕ(FS1) derived from fuzzy ER schema FS1 in Fig. 1

Based on the Theorem 4.9 [4], the correctness of Theorem 2 and Theorem 3 can be
proved similarly.

Theorem 2 (satisfiability). Let FRDBS = (LTFRDBS, unique, pkey, fkey, ≤FRDBS) be a
Fuzzy Relational Database Schema, ϕ′(FS) be the corresponding fuzzy description
logic f-SHOIN(D) knowledge base of fuzzy OWL DL ontology ϕ(FS), and FE (FR)

be a fuzzy entity (relation) of FRDBS, then FE (FR) is satisfiable, iff: ϕ′(FS) ⊭

ϕ′(FE) ⊑ ⊥ (ϕ′(FS) ⊭ ϕ′(FR) ⊑ ⊥) .

Theorem 3 (subsumption). Let FRDBS = (LTFRDBS, unique, pkey, fkey, ≤FRDBS) be a
Fuzzy Relational Database Schema, ϕ′(FS) be the corresponding fuzzy description
logic f-SHOIN(D) knowledge base of fuzzy OWL DL ontology ϕ(FS), FE1, FE2 be

two fuzzy entities of FRDBS, then FE1 ≤FRDBS FE2, iff: ϕ′(FS) ⊨ ϕ′(FE1) ⊑ ϕ′(FE2) .

According to the Algorithm 1, we can translate the fuzzy ER schema FS1 which is ex-
tracted from FRDBS1 into fuzzy OWL DL ontology ϕ(FS1).
ϕ(FS1) = (FID0, FAxiom0), where:
FID0 = { FCID0 ∪ FDRID0 ∪ FOPID0 ∪ FDPID0 }.
FCID0 = { Employee,Young-Employee, Leader, Chief-Leader, Mainly-Manage }.
FDRID0 = { xsd:string }. FDPID0 = { Number-YE, Age , Number-CL }.
FOPID0 = { Mof, Mby, invof_Mof, invof_ Mby }.
FAxiom0 = { Class (Young-Employee partial Employee) ;
Class (Chief - Leader partial Leader) ;
Class (Young-Employee partial restriction (Number-YE allValuesFrom (xsd:string)

cardinality(1)) restriction (Age allValuesFrom (xsd:string) cardinality(1))) ;
DatatypeProperty (Number-YE domain(Young-Employee) range(xsd:string)

[Functional]) ;
DatatypeProperty (Age domain(Young-Employee) range(xsd:string) [Functional]) ;
Class (Chief-Leader partial restriction (Number-CL allValuesFrom (xsd:string)

cardinality(1))) ;
DatatypeProperty (Number-CL domain(Chief-Leader) range(xsd:string) [Functional]) ;
Class (Mainly-Manage partial restriction (Mof allValuesFrom (Young-Employee)

cardinality(1)) restriction (Mby allValuesFrom (Chief-Leader) cardinality(1))) ;
ObjectProperty (invof_Mof domain(Young-Employee) range(Mainly-Manage)
 inverseOf Mof) ;
ObjectProperty (invof_Mby domain(Chief-Leader) range(Mainly-Manage)

 inverseOf Mby) ;
Class (Young-Employee partial restriction (invof_Mof allValuesFrom

(Mainly-Manage))) ;
Class (Chief-Leader partial restriction (invof_Mby allValuesFrom (Mainly-Manage))) ;
ObjectProperty (Mof domain(Mainly-Manage) range(Young-Employee)) ;
ObjectProperty (Mby domain(Mainly-Manage) range(Chief-Leader)) ;
Class (Young-Employee partial restriction (invof_Mof minCardinality (m))) ;
Class (Young-Employee partial restriction (invof_ Mof maxCardinality (n))) ;
Class (Chief-Leader partial restriction (invof_Mby minCardinality (m))) ;
Class (Chief-Leader partial restriction (invof_Mby maxCardinality (n))) ; }.

 A Formal Semantics-Preserving Translation 59

Definition 8. Let FRDBS = (LTFRDBS, unique, pkey, fkey, ≤FRDBS) be a Fuzzy Rela-
tional Database Schema, for two fuzzy entities FE1 and FE2 of FRDBS, if FE1 ≤FRDBS

FE2 and FE2 ≤FRDBS FE1 satisfy, then we say that FRDBS is redundant.

Theorem 4 (redundancy). Let FRDBS = (LTFRDBS, unique, pkey, fkey, ≤FRDBS) be a
Fuzzy Relational Database Schema, ϕ′(FS) be the corresponding fuzzy description
logic f-SHOIN(D) knowledge base of fuzzy OWL DL ontology ϕ(FS), FE1 and FE2
be two fuzzy entities of FRDBS, then FRDBS is redundant, iff: the following condi-

tions satisfy: ϕ′(FS) ⊨ ϕ′(FE1) ⊑ ϕ′(FE2) and ϕ′(FS) ⊨ ϕ′(FE2) ⊑ ϕ′(FE1) .

The correctness of Theorem 4 can be proved according to Theorem 3 easily.

5 Conclusion

We have presented the formal definition of Fuzzy Relational Database Schema. Addi-
tionally, the formal definition and Model-Theoretic semantics of a kind of new fuzzy
OWL DL ontology were given. The more significant contributions of the work are as
follows: (i) extracting the fuzzy Entity-Relationship model (fuzzy ER model) from
FRDBS, based on this, we realized the formal translation from FRDBS to fuzzy OWL
DL ontology by translating the extracted fuzzy ER model into fuzzy OWL DL ontol-
ogy with a semantics-preserving translation algorithm, which will be beneficial to the
development of constructing Web ontologies; (ii) investigating the reasoning problems of
FRDBS automatically through reasoning mechanism of the corresponding fuzzy descrip-
tion logic f-SHOIN(D) of fuzzy OWL DL ontology, which can contribute to constructing
fuzzy OWL DL ontology exactly that meet application’s needs well.

In the future, we aim at developing the other methods of constructing ontologies.

Acknowledgements. This work was supported by the Program for New Century
Excellent Talents in University (NCET-05-0288) and in part by the National Natural
Science Foundation of China (60873010) and MOE Funds for Doctoral Programs
(20050145024).

References

1. An, Y., Borgida, A., Mylopoulos, J.: Refining Semantic Mappings from Relational Tables
to Ontologies. In: Bussler, C.J., Tannen, V., Fundulaki, I. (eds.) SWDB 2004. LNCS,
vol. 3372, pp. 84–90. Springer, Heidelberg (2005)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5),
34–43 (2001)

3. Chen, P.P.: The entity-relationship model—toward a unified view of data. ACM Trans.
Database Systems 1(1), 9–36 (1976)

4. Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation formalisms. J.
Artificial Intelligence Research 11(2), 199–240 (1999)

5. Ceravolo, P., Corallo, A., Damiani, E., Elia, G., Viviani, M., Zilli, A.: Bottom-up Extrac-
tion and Maintenance of Ontology-based Metadata. In: Sanchez, E. (ed.) Fuzzy Logic and
the Semantic Web, pp. 265–282. Elsevier, Amsterdam (2006)

6. Calegari, S., Ciucci, D.: Fuzzy ontology, fuzzy description logics and fuzzy-OWL. In: Ma-
sulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS, vol. 4578, pp. 118–126. Springer,
Heidelberg (2007)

60 F. Zhang et al.

7. Juric, D., Skočir, Z.: Building OWL ontologies by analyzing relational database schema
concepts and WordNet semantic relations. In: Juric, D., Skočir, Z. (eds.) Proceedings of the
9th Int. Conference on Telecommunications, ConTEL, Zagreb, Croatia, pp. 235–242 (2007)

8. Dean, M., Schreiber, G. (eds.): OWL Web Ontology Language Reference. W3C Recom-
mendation, 10 Feb (2004),

 http://www.w3.org/TR/2004/REC-owl-ref-20040210/
9. Fensel, D., Pérez, A. (eds.): A Survey on Ontology Tools. IST Project OntoWeb Deliver-

able 1.3 (May 2002),
 http://ontoweb.aifb.uni-karlsruhe.de/About/
 Deliverables/D13_v1-0.zip

10. Jesus, L., P-de., S.P.: Selection of Reverse Engineering Methods for Relational Databases.
In: Proceedings of the Third European Conference on Software Maintenance and Reengi-
neering, pp. 194–197 (2003)

11. Kashyap, V.: Design and creation of ontologies for environmental information retrieval.
In: Proc. of the Workshop on Knowledge Acquisition, Modeling and Management (1999)

12. Ma, Z.M.: A conceptual design methodology for fuzzy relational databases. Journal of Da-
tabase Management 16(2), 66–83 (2005)

13. Ma, Z.M., Zhang, W.J., Ma, W.Y.: Extending object-oriented databases for fuzzy informa-
tion modeling. Information Systems 29(5), 421–435 (2004)

14. Medina, J.M., Pons, O., Vila, M.A.: GEFRED: a generalized model of fuzzy relational da-
tabases. Information Sciences 76, 87–109 (1994)

15. OWL: Ontology Web Language, http://www.w3.org/2004/OWL/
16. Patel-Schneider, P.F., Hayes, P., Horrocks, I. (eds.): OWL Web Ontology Language Se-

mantics and Abstract Syntax. W3C Recommendation (Feburary 10, 2004),
 http://www.w3.org/TR/2004/REC-owl-semantics-20040210/

17. Parry, D.: Fuzzy ontologies for information retrieval on the WWW. In: Sanchez, E. (ed.)
Fuzzy Logic and the Semantic Web (2004)

18. Straccia, U.: Towards a fuzzy description logic for the semantic Web. In: Proc. of the 2nd
European Semantic Web Conf. (2005)

19. Sanchez, E., Yamanoi, T.: Fuzzy ontologies for the semantic web. In: Larsen, H.L., Pasi,
G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds.) FQAS 2006. LNCS, vol. 4027,
pp. 691–699. Springer, Heidelberg (2006)

20. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J.Z., Horrocks, I.: Fuzzy OWL: Uncertainty
and the Semantic Web. In: International Workshop of OWL: Experiences and Directions
(OWL-ED2005), Galway, Ireland (2005)

21. Stojanovic, L., Stojanovic, N., Volz, R.: Migrating data-intensive web sites into the seman-
tic Web. In: Proc. of the 17th ACM Symp. on Applied Computing, pp. 1100–1107. ACM
Press, New York (2002)

22. Thomas, C., Sheth, A.: On the Expressiveness of the Languages for the Semantic Web-
Making a Case for ’A Little More’. In: Sanchez, E. (ed.) Fuzzy Logic and the Semantic
Web. Elsevier, Amsterdam (March 2006)

23. Xu, Z., Cao, X., Dong, Y.: Formal approach and automated tool for translating ER sche-
mata into OWL ontologies. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS,
vol. 3056, pp. 464–475. Springer, Heidelberg (2004)

24. Xu, Z., Zhang, S., Dong, Y.: Mapping between Relational Database Schema and OWL
Ontology for Deep Annotation. In: Proceedings of the 2006 IEEE/WIC/ACM International
Conference on Web Intelligence, December 18-22, pp. 548–552 (2006)

25. Zvieli, A., Chen, P.P.: Entity-relationship modeling and fuzzy databases. In: Proc. 1986
IEEE Int. Conf. Data Engineering, Los Angeles, California, USA, pp. 320–327 (1986)

26. Zhao, S., Chang, E.: From database to semantic web ontology: An overview. In: Meersman,
R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 1205–1214.
Springer, Heidelberg (2007)

A Tableau Algorithm for Possibilistic Description Logic
ALC

Guilin Qi1 and Jeff Z. Pan2

1 Institute AIFB, University of Karlsruhe, Germany
gqi@aifb.uni-karlsruhe.de

2 Department of Computing Science, The University of Aberdeen
jpan@csd.abdn.ac.uk

Abstract. Uncertainty reasoning and inconsistency handling are two important
problems that often occur in the applications of the Semantic Web. Possibilistic
description logics provide a flexible framework for representing and reasoning
with ontologies where uncertain and/or inconsistent information is available. Al-
though possibilistic logic has become a popular logical framework for uncertainty
reasoning and inconsistency handling, its role in the Semantic Web is underesti-
mated. One of the challenging problems is to provide a practical algorithm for
reasoning in possibilistic description logics. In this paper, we propose a tableau
algorithm for possibilistic description logic ALC. We show how inference ser-
vices in possibilistic ALC can be reduced to the problem of computing the in-
consistency degree of the knowledge base. We then give tableau expansion rules
for computing the inconsistency degree of a possibilistic ALC knowledge. We
show that our algorithm is sound and complete. The computational complexity of
our algorithm is analyzed. Since our tableau algorithm is an extension of a tab-
leau algorithm for ALC, we can reuse many optimization techniques for tableau
algorithms ofALC to improve the performance of our algorithm so that it can be
applied in practice.

1 Introduction

Uncertainty reasoning and inconsistency handling are two important problems that of-
ten occur in the applications of the Semantic Web, such as the areas like medicine
and biology [21,16]. Recently, there is an increasing interest to extend Web Ontology
Language OWL to represent uncertain knowledge. Most of the work is based on De-
scription Logics (DL) that provide important formalisms for representing and reasoning
with ontologies. A DL knowledge base is then extended by attaching each axiom in it
with a degree of belief. The degree of belief can have several meanings depending on
the semantics of the logic. For example, in probabilistic description logics, the degree
of belief can be explained as degree of overlap between two concepts (see [21]) or
probability of a concept given another one (see [9,16]), and in possibilistic descrip-
tion logics, the degree of belief is explained as the necessity degree or certainty degree
(see [11,18]). Inconsistency handling in DL is another problem that has attracted a lot
of attention. Inconsistency can occur due to several reasons, such as modeling errors,

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 61–75, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

62 G. Qi and J.Z. Pan

migration or merging ontologies, and ontology evolution. When an ontology is incon-
sistent, an ontology language which has first-order features, such as a description logic,
cannot be applied to infer non-trivial conclusions.

Let us consider an uncertain medical ontology which is modified from the medical
example given in [16].

Example 1. Given an ontology consisting of the following terminological axioms at-
tached with weights:

ax1 : (Heartpatient
 HighBloodPressure, 1)
ax2 : (PacemakerPatient
 ¬HighBloodPressure, 1)
ax3 : (HeartPatient
 MalePacemakerPatient, 0.4)
ax4 : (HeartPatient
 ∃HasHealthInsurance.PrivateHealth, 0.9)
ax5 : (PacemakerPatient(Tom), 0.8).

Suppose we use possibilistic logic, then ax1 means that ”it is absolute certain that heart
patients suffers from high blood pressure”, ax2 means that ”it is absolute certain that
pacemaker patients do not suffer from high blood pressure”, ax3 says that ”it is a little
certain that heart patient are male pacemaker patient”, ax4 says ”it is highly certain that
heart patients have a private insurance”, and finally ax5 states that ”it is quite certain
that Tom is a pacemaker patient”. Suppose we learn that Tom is a heart patient with
degree 0.5 (ax6: (HeartPatient(Tom),0.5)), i.e., it is somewhat certain that Tom is
a heart patient, and we add this axiom to the ontology, then the ontology will become
inconsistent. From this updated ontology, we may want to query if Tom suffers from
high blood pressure and to ask to what degree we can infer this conclusion?

Possibilistic description logics, first proposed by Hollunder in [11], are extension of
description logics with possibilistic semantics. It is well-known that possibilistic logic is
a powerful logical framework for dealing with uncertainty and handling inconsistency.
Possibilistic description logics inherit these two nice properties and have very promising
applications in the Semantic Web. A possibilistic DL knowledge base consists of a set
of weighted axioms of the form (φ, α), where φ is a DL axiom such as an assertional
axiom of the form C(a) and α is an element of the semi-open real interval (0,1] or of a
finite total ordered scale. A weighted axiom (φ, α) encodes the constraint N(φ) ≥ α,
where N is a necessity measure [7], with the intended meaning that the necessity degree
of φ is at least α. One critical difference between possibilistic description logics and
probabilistic description logics is that the weight attached to an axiom is not absolute
and can be be replaced by another number as long as the ordering between two weights
is not changed. Therefore, possibilistic description logics provide a more flexible way
to represent uncertain information than probabilistic description logics. In Example 1,
if the weight of ax4 is changed to 0.85, the changed possibilistic DL knowledge base
is query-equivalent to the original one. That is, the answer to an arbitrary query over
the original knowledge bases is the same that over the changed knowledge base. In
contrast, if we apply the probabilistic DLs in [16], axioms in Example 1 are considered
as conditional constraints which are interpreted as conditional probabilities of a concept
w.r.t. another concept. So the weights of axioms should be precisely given.

A Tableau Algorithm for Possibilistic Description Logic ALC 63

Although possibilistic logic has become a popular logic framework for uncertainty
reasoning, its role in the Semantic Web is underestimated. Until now, there has been
very few work on extending ontology languages with possibilistic semantics. One of
the challenging problems is to provide an algorithm for reasoning in possibilistic de-
scription logics that can be applied in practice. In [18], an algorithm is provided for
the inference services in possibilistic description logics. We show the complexity of the
algorithm for checking the inconsistency degree of a possibilistic DL knowledge base,
i.e., it needs to call polynomial times of a satisfiability check of a DL reasoner w.r.t.
the number of distinct confidence values. Therefore, the algorithm may become very
inefficient if there is a large number of distinct confidence values (some preliminary
results have been shown in Table 2 of [18]). This will severely restrict the applicability
of the system based on the algorithm.

In this paper, to alleviate the above problem, we propose a tableau algorithm for
possibilistic DL ALC. First, we show how inference services in possibilistic ALC can
be reduced to the problem of computing the inconsistency degree of a possibilistic DL
knowledge base. We then give tableau expansion rules for computing the inconsistency
degree of a possibilistic ALC-ABox. The idea is that we attach a weight to each con-
cept in the completion forest and propagate the weight in the tableau expansion rule.
A weighted concept with higher necessity degree should be expanded first by a tableau
rule if applicable. We show that our algorithm is sound and complete. We also show
that checking the inconsistency degree of a possibilisticALC-ABox has the same com-
plexity as that of a tableau algorithm in ALC. After that, we propose tableau expansion
rules for a possibilistic ALC knowledge base with acyclic terminologies and general
TBox and show that the tableau algorithm is still sound and complete. Although ALC
has a high worst-case complexity, there exist optimization techniques for the tableau
algorithm so that the system based on it performs well with problems that occur in real-
istic applications. Since our tableau algorithm is an extension of tableau algorithm for
ALC, we can reuse many optimization techniques to improve the performance of our
algorithm so that it can be applied in practice.

2 Possibilistic Description Logic ALC

The syntax and semantics of possibilistic Description Logics have been given in [18].
However, in this work, we restrict the underlying Description Logic (DL) language to
DL ALC because tableau algorithms for ALC are the basis of tableau algorithms for
many important and more expressive DLs. We first briefly introduce DL ALC, then
extend it to possibilistic DL ALC and define inference tasks in it.

2.1 DL ALC

A DL knowledge base Σ = (T ,A) consists of a set T (TBox) of concepts axioms and
a set A (ABox) of individual axioms. Concept axioms have the form C
 D where
C and D are (possibly complex) concept descriptions. The ABox contains concept
assertions of the form a : C where C is a concept and a is an individual name, and role
assertions of the form 〈a, b〉 : R, where R is a role, and a and b are individual names.
A concept description (or simply concept) of the smallest propositionally closed DL

64 G. Qi and J.Z. Pan

ALC is defined by the following syntactic rules, where C is a concept name, R is a
role, C, C1 and C2 are concept descriptions:

� |⊥ | C |¬C1 |C1 � C2 |C1 � C2 |∃R.C |∀R.C.

An interpretation I = (∆I , ·I) consists of the domain of the interpretation ∆I (a
non-empty set) and the interpretation function ·I , which maps each concept name C
to a set CI ⊆ ∆I , each role name R to a binary relation RI ⊆ ∆I × ∆I and each
individual a to an object in the domain aI . The interpretation function can be extended
to give semantics to concept descriptions. An interpretation I satisfies a concept axiom
C
 D (a concept assertion a : C and a role assertion 〈a, b〉 : R, resp.) if CI ⊆ DI

(aI ∈ CI and 〈aI , bI〉 ∈ RI resp.). An interpretation I satisfies a knowledge base
Σ if it satisfies all axioms in Σ; in this case, we say I is an interpretation of Σ. A
knowledge base is consistent if it has an interpretation. A concept is unsatisfiable in Σ
iff it is interpreted as an empty set by all the interpretation of Σ.

2.2 Syntax and Semantics of Possibilistic DL ALC

Syntax. A possibilistic axiom is a pair (φ, α) consisting of a DL axiom φ and a weight
α∈(0, 1]. A possibilistic TBox (resp., ABox) is a finite set of possibilistic axioms (φ, α),
where φ is a DL ALC concept (resp., assertional) axiom. A possibilistic DL knowledge
base B = (T ,A) consists of a possibilistic TBox T and a possibilistic ABoxA. We use
T ∗ to denote the classical DL axioms associated with T , i.e., T ∗ = {φi : (φi, αi)∈T }
(A∗ can be defined similarly). The classical base B∗ of a possibilistic DL knowledge
base is B∗ = (T ∗,A∗). A possibilistic DL knowledge base B is inconsistent if and only
if B∗ is inconsistent.

Given a possibilistic DL knowledge base B = (T ,A) and α∈(0, 1], the α-cut of T is
T≥α = {φ∈B∗|(φ, β)∈T and β≥α} (the α-cut of A, denoted as A≥α, can be defined
similarly). The strict α-cut of T (resp., A) can be defined similarly as the strict cut in
possibilistic logic. The α-cut (resp., strict α-cut) of B is B≥α = (T≥α,A≥α) (resp.,
B>α = (T>α,A>α)). The inconsistency degree of B, denoted Inc(B), is defined as
Inc(B) = max{αi : B≥αi is inconsistent} with Inc(B) = 0 if B is consistent.

Semantics. The semantics of possibilistic DL is defined by a possibility distribution
π over the set I of all interpretations of a DL language, i.e., π : I → [0, 1]. π(I)
represents the degree of compatibility of interpretation I with available information.
For two interpretations I1 and I2, π(I1) > π(I2) means that I1 is preferred to I2
according to the available information. Given a possibility distribution π, we can define
the possibility measure Π and necessity measure N as follows: Π(φ) = sup{π(I) :
I ∈ I, I |= φ} and N(φ) = 1−max{π(I) : I�|=φ}. Given two possibility distributions
π and π′, we say that π is more specific (or more informative) than π′ iff π(I) ≤ π′(I)
for all I ∈ I. A possibility distribution π satisfies a possibilistic axiom (φ, α), denoted
π |= (φ, α), iff N(φ)≥α. It satisfies a possibilistic DL knowledge base B, denoted
π |= B, iff it satisfies all the possibilistic axioms in B. According to [18], a least specific
possibility distribution πB an be defined from B such that B is consistent iff there exists
an interpretation I such that πB(I) = 1.

A Tableau Algorithm for Possibilistic Description Logic ALC 65

2.3 Possibilistic Inference in Possibilistic DLs

The following inference services have been proposed in possibilistic DLs (see [18] and
[11]). To save space, we do not provide semantical definition of these inference services
but define them by using standard DL inference services.

– Instance checking: an individual a (resp. a pair of individuals (a, b)) is a plausible
instance of a concept C (resp. a role R) with respect to a possibilistic DL knowledge
base B, written B |=P C(a) (resp. B |=P R(a, b)), if B>Inc(B) |= C(a) (resp.
B>Inc(B) |= R(a, b)).

– Subsumption: a concept C is subsumed by a concept D with respect to a possi-
bilistic DL knowledge base B, written B |=P C
 D, if B>Inc(B) |= C
 D.

– Instance checking with necessity degree: an individual a (resp. a pair of individ-
uals (a, b)) is an instance of a concept C (resp. a role R) to degree α with respect to
B, written B |=π (C(a), α) (resp. B |=π (R(a, b), α)), if the following conditions
hold: (1) B≥α is consistent, (2) B≥α |= C(a) (resp. B≥α |= R(a, b)), (3) for all
β>α, B≥β �|=C(a) (resp. B≥β �|=R(a, b)).

– Subsumption with necessity degree: a concept C is subsumed by a concept D
to a degree α with respect to a possibilistic DL knowledge base B, written B |=π

(C
D, α), if the following conditions hold: (1) B≥α is consistent, (2) B≥α |=
C
D, (3) for all β>α, B≥β �|=C
D.

– Possibilistic instance checking: given a possibilistic assertion (C(a), α) (resp.
(R(a, b), α)), it can be inferred fromB, writtenB |= (C(a), α) (resp.B |= (R(a, b),
α)), if α > Inc(B) and B≥α |= C(a) (resp. B≥α |= R(a, b)).

– Possibilistic subsumption: given a possibilistic concept axiom (C
 D, α), it can
be inferred from B, written B |= (C
 D, α), if α > Inc(B) and B≥α |= C
 D.

Note that the task of instance checking with necessity is different from that of possibilistic
instance checking because the former is to check to what degree an assertion holds whilst
the latter is to check if a possibilistic assertion holds. The first and the second inference
services are similar to standard DL inference services, but they are inconsistency-tolerant.
The other inference services are more powerful than the first and the second ones as they
allow us to deal with uncertainty. For example, instance checking with necessity degree
allows us to infer to what degree an individual can be non-trivially inferred from a possi-
bilistic DL knowledge base. We define every inference service by reducing it to classical
inference. For Example 1 in Introduction, to query if Tom suffers from high blood pres-
sure is an instance checking problem, i.e., check if B |= HighBloodPressure(Tom)
holds or not, where B is the updated ontology, whilst to ask to what degree we can infer
HighBloodPressure(Tom) is a problem of instance checking with necessity degree,
i.e., check if B |=π (HighBloodPressure(Tom), α) holds.

3 Related Work

Hollunder in [11] proposes a possibilistic extension of DL ALCN . A proof method
for first-order possibilistic logic is given and is then applied to check possibilistic sub-
sumption or possibilistic assertion. However, they have not provide a proof method for
othermore interesting inference services, such as instance checking. In [8], a discussion

66 G. Qi and J.Z. Pan

between possibilistic description logics and fuzzy description logics is given. In [18],
we provide two algorithms for the inference services in possibilistic description logics
and also report preliminary evaluation results on the algorithms. These algorithms take
a DL reasoner as a black box, so they are independent of DL reasoners. The advantage
of the black-box algorithms is that they can be easily implemented based on any DL
reasoner. However, according to [18], the algorithm for checking inconsistency degree
of a possibilistic DL knowledge base needs to call polynomial times of satisfiability
check of a DL reasoner w.r.t. the number of distinct confidence values. In contrast,
our tableau algorithm is a generalization of the tableau algorithm for ALC therefore
checking the inconsistency degree of a possibilistic DL knowledge base has the same
complexity as one for ALC. In parallel to our work, Couchariere et.al. in [5] proposed
some tableau expansion rules for possibilistic DL ALC. Their tableau expansion rules
are in essence the same as ours. However, their work is preliminary and does not discuss
the following important issues: (1) the reduction from inference services in a possibilis-
tic DL knowledge base to computing its inconsistency degree; (2) a tableau algorithm
that computes the inconsistency degree of a possibilistic ALC-ABox in PSpace; (3) the
proof of soundness and completeness of the algorithm; (4) tableau expansion rules for
general TBoxes. All these missed issues are discussed in our paper.

Another family of important approaches that extend description logics with uncer-
tainty reasoning are probabilistic description logics, such as those given in [12,10,13,9,16].
We list some major differences between possibilistic extension and probabilistic exten-
sion. First, possibilistic logic is based on possibility measures, whilst probabilistic exten-
sions are based on probabilistic measures. Second, unlike probabilistic logic, the weight
attached to an axiom in possibilistic logic is not absolute and can be be replaced by an-
other number as long as the ordering between two weights is not changed. Probabilistic
DLs given in [12] and [10] are based on probabilistic reasoning in probabilistic logic and
are much less popular than the probabilistic DLs presented in [16]. In [16], Lukasiewicz
proposes expressive probabilistic DLs P-SHIF(D) and P-SHOIN (D) which are se-
mantically based on the notion of probabilistic lexicographicentailment from probabilis-
tic default reasoning given in [15]. Possibilistic DL considered in this paper is based on
necessity measure. So each axiom in the knowledge base is attached with a confidence
value interpreted as certainty degree of the axiom. However, in expressive probabilistic
DLs, each conditional constraint in the probabilistic knowledge base is attached with
an interval. A nice feature of possibilistic description logics is that when the weights of
all axioms in the knowledge base are 1, then the possibilistic DL knowledge base is re-
duced to a standard DL knowledge base. This feature is not captured by probabilistic
DLs given in [15]. Another important difference between possibilistic DLs and expres-
sive probabilistic DLs is that all the inference services in expressive possibilistic DLs can
be reduced to the problem of computing the inconsistency degree of the knowledge base,
whilst inference services in expressive probabilistic DLs are dependent on the reasoning
tasks in probabilistic default theory. It has been shown in [15] that complexity of deci-
sion problems in some probabilistic DLs, such as probabilistic DL-Lite, is harder than
that in corresponding DLs. In contrast, complexity of decision problems in possibilistic
DLs remain the same as that in the corresponding DLs. The work on combining DLs
with Bayesian Network (such as [13]) is less relevant to our work.

A Tableau Algorithm for Possibilistic Description Logic ALC 67

Arguably, fuzzy description logics can be used to deal with uncertainty (e.g., [20,19]).
In possibilistic DLs, the truth value of an axiom is still two-valued, whilst in fuzzy DLs,
the truth value of an axiom is multi-valued. So the semantics of possibilistic DLs is dif-
ferent from that of fuzzy DLs. Apart from this major difference, the tableau expansion
rules proposed in this paper has some similarity with the tableau expansion rules for
fuzzy DL ALC given in [20].

4 Tableau Algorithms for Inference in Possibilistic DL ALC

In this section, we extend tableau expansion rules for DLALC to possibilistic DLALC.
The introduction of the tableau rules for DL ALC can be found in [4,3]. Our tableau
rules are inspired from the resolution rules in possibilistic logic [7]. However, our tab-
leau algorithm is a trivial extension of tableau algorithm in ALC because we need to
take into account of the weights of the axioms in the possibilistic DL knowledge base
when we define our tableau rules and when we choose a concept to expand. Although
our tableau rules have some similarity with resolution rules in possibilistic logic [7],
our algorithm is specific to DL ALC and introduces novel techniques to ensure its
soundness and completeness. Due to the space limitation, we do not give proofs of all
theorems in this paper but refer the reader to our technical report that can be found at
http://www.aifb.uni-karlsruhe.de/WBS/gqi/papers/poss-DL.pdf.

4.1 The Reduction

We consider only the reduction of instance checking and instance checking with
necessity degree to compute the inconsistency degree of a knowledge base. The reduc-
tion of other inference tasks can be done similarly. Given a possibilistic ALC knowl-
edge base B, to check if an assertion C(a) can be inferred from B, we first need
to compute the inconsistency degree of B, then compute the inconsistency degree of
B′ = {(φi, 1) : (φi, αi) ∈ B, αi > Inc(B)} ∪ {(¬C(a), 1)}. It is easy to see that
Inc(B′) = 1 if and only if B′ is inconsistent if and only if B |=P C(a).

To infer to what degree an individual a is an instance of a concept C with respect
to B, we first need to compute the inconsistency degree of B. We then compute the
inconsistency degree of possibilistic ALC knowledge base B′ = B ∪ {(¬C(a), 1)}.
Next, we show that if Inc(B′) > Inc(B), then we can infer C(a) with degree Inc(B′)
with respect to B.

Proposition 1. Let B be a possibilistic ALC knowledge base and C(a) an ABox as-
sertion. Let B′ = B ∪ {(¬C(a), 1)}. Then B |=π (C(a), α) if and only if Inc(B′) >
Inc(B) and Inc(B′) = α.

4.2 Tableau Expansion Rules for Computing the Inconsistency Degree of a
Possibilistic ALC-ABox

Let A be a possibilistic ALC-ABox. Without loss of generality, we assume that all the
concepts appearing in A are in negation normal form (NNF), i.e., that negation occurs
only directly in front of concept names. For an arbitrary concept, we can transform

68 G. Qi and J.Z. Pan

it to an equivalent one in NNF by pushing negation inwards using a combination of
de Morgan’s laws and the duality between existential and universal restrictions, i.e.,
¬∃R.C ≡ ∀R.¬C and ¬∀R.C ≡ ∃R.¬C.

To compute the inconsistency degree of A, we construct a completion forest FA
fromA. Each node x in the completion forest is labelled with a set of weighted concepts
L(x) and each edge 〈x, y〉 is labelled with a set of weighted role names L(〈x, y〉). If a
weighted concept Cα is in L(x), it means that x belongs to concept C with necessity
degree α. Similar comment is applied to weighted role names. We say that a weighted
concept Cα is subsumed by another one Cβ if β ≥ α. The completion forest FA is
initialized such that it contains a root node xa, with L(xa) = {Cα|((C(a), α) ∈ A},
for each individual a occurring in A, and an edge 〈xa, xb〉, with L(〈xa, xb〉) = {rα :
(r(a, b), α)∈A}, for each pair (a, b) of individual names for which L(〈xa, xb〉) is non-
empty. We then apply the following expansion rules:

– �-rule: if
– [1] (C1 � C2)α ∈ L(x), x is not blocked, and
– [2] there are no β ≥ α and γ ≥ α such that {(C1)β , (C2)γ} ⊆ L(x)
– then set L(x) = L(x) ∪ {(C1)α, (C2)α}

– �-rule: if
– [1] (C1 � C2)α ∈ L(x), x is not blocked, and
– [2] there are no β ≥ α and γ ≥ α such that {(C1)β , (C2)γ} ⊆ L(x)
– then set L(x) = L(x) ∪ {Cα} for some C ∈ {C1, C2}

– ∃-rule: if
– [1] (∃r.C)α ∈ L(x), x is not blocked, and
– [2] there is no y such that rβ ∈ L(〈x, y〉) where β ≥ α and Cγ ∈ L(y) where
γ ≥ α,
– then create a new node y with L(〈x, y〉) = {rα} and L(y) = {Cα}

– ∀-rule: if
– [1] (∀r.C)α ∈ L(x), x is not blocked, and
– [2] there is a y such that rβ ∈ L(〈x, y〉) with Cγ �∈ L(y) for γ ≥ min(α, β),
– then set L(y) = L(y) ∪ {Cmin(α,β)}

The meaning of “blocked” in our tableau expansion rules is similar to that in tableau
expansion rules for ALC. A node x is directly blocked if there is an ancestor y of x
such that for each Cα ∈ L(x), there is a Cβ ∈ L(y) such that α ≤ β. x is blocked if
x is directly blocked or there is an ancestor z of x such that z is directly blocked. Note
that blocking is not required if the possibilisticALC-TBox is empty because there is no
cycle in any completion forest.

We briefly explain the �-rule and the ∀-rule. Other rules can be explained similarly.
The �-rule says that if a weighted concept (C1 �C2)α is in L(x) and x is not blocked,
and (C1)α (resp. (C2)α) is not subsumed by any weighted concept (C1)β (resp. (C2)γ)
in L(x), then we add both (C1)α and (C2)α to L(x). The ∀-rule says that if (∀r.C)α

is in L(x) and x is not blocked, and there is another individual y which is related to x
with weighted role rβ and Cmin(α,β) is not subsumed by any weighted concept inL(y),
then we add Cmin(α,β) to L(y). The idea of using min to aggregate α and β is taken
from automated reasoning in possibilistic logic in [6]. Note that the �-rule leads to non-
determinism of the algorithm as it adds either (C1)α or (C2)α to L(x). If the choice

A Tableau Algorithm for Possibilistic Description Logic ALC 69

of one disjunct, such as (C1)α, leads to a clash, then the second one must be explored.
This is equivalent to say that after application of the �-rule, we get two completion
forests from the original one. In our tableau algorithm, after we add a new weighted
concept Cα to L(x) by applying a tableau rule, we then delete every weighted concept
Cβ which is subsumed by Cα because it is redundant. After a tableau rule is applied to
expand a node in a completion forest, this node or another node related to it is updated,
or a new node is created.

The tableau algorithm stops when it encounters a clash: a completion forest F in
which {Aα, (¬A)β} ⊆ L(x) for some node x and some concept name A, where α, β >
0. In this case, the completion forest contains an inconsistency and the inconsistency
degree, denoted dInc(F), is min(α, β). If the algorithm stops and all of the forest1 i
(i = 1, ..., n) contain an inconsistency with inconsistency degree αi (in this case αi >
0), then the inconsistency degree of A is min(α1, ..., αn). Otherwise, if the algorithm
stops and there is a forest that does not contain an inconsistency, then the possibilistic
ALC-ABox is consistent.

In tableau algorithm for ALC, the choice of which concept in a given completion
forest to expand is “don’t care” non-deterministic. However, in our algorithm, it is very
critical to expand the weighted concept in a right order. That is, we apply tableau rules to
expand those concepts with the highest weight first, then those concepts with the second
highest weight, and so on. For example, if (C1 � C2)0.7 and (C3 � C4)0.6 belong to
L(x) for a node x, then the weighted concept (C1 � C2)0.7 must be expanded first by
the �-rule. For each individual name in A, the forest contains a root node, which will
be called as old nodes. The nodes that are created by the ∃-rule are called new nodes.
To ensure that our algorithm only requires space polynomial in |A|, we apply tableau
expansion rules in the following order:

– apply the �-rule and the �-rule to old nodes as long as possible and check for clash;
– treat each old node in turn, generate all the necessary direct successors of it in a

depth first manner by applying the ∃-rule and the ∀-rule, and check for clash;
– successively handle the successors in the same way.

4.3 Soundness and Completeness

We show the termination of the algorithm.

Proposition 2. Let A be a finite possibilistic ALC-ABox and FA the completion forest
constructed from A without application of any tableau rule. Then there is no infinite
sequence of rule applications

FA → S1 → S2 → · · · .

According to Proposition 2, each branch of the completion forest has finite nodes.
Therefore, the tableau algorithm must terminate.

Soundness. To show the soundness and completeness of the algorithm, we need to
define the notion of inconsistency degree of a set of completion forests. Given a com-
plete forest FA, we can transform it to a possibilisticALC-ABoxAF as followsAF =

1 For each application of the �-rule, if we explore both disjuncts, then we get two different
completion forests. So there may have more than one completion forest.

70 G. Qi and J.Z. Pan

∪L(xa)∈FA{(C(a), α) : Cα ∈ L(xa)}∪L(〈xa,xb〉)∈FA{(r(a, b), α) : rα ∈ L(〈xa, xb〉)}.
The inconsistency degree of FA, denoted as Inc(FA), is defined as Inc(AF).

Definition 1. Let M = {F1
A, ...,Fn

A} be a set of complete forests constructed from A
by application of tableau expansion rules. Then the inconsistency degree ofM, denoted
as Inc(M), is defined as minFi

A
Inc(F i

A).

Theorem 1. (Soundness) Let M = {F1
A, ...,Fn

A} be a set of complete forests con-
structed from A by application of tableau expansion rules. SupposeM′ is a set of com-
plete forests obtained fromM by application of a tableau expansion rule. If Inc(M) =
α then Inc(M′) = α.

Proof. The following lemma shows that application of any tableau rule to a complete
forest will not change its inconsistency degree.

Lemma 1. Let FA be a complete forest constructed from A and by application of
tableau expansion rules. The following conclusions hold. (1) Assume that F ′

A is ob-
tained from FA by applying the �-rule, the ∃-rule or the ∀-rule. If Inc(FA) = α, then
Inc(F ′

A) = α. (2) Assume that the �-rule is applied to FA, then it can be applied
in such a way that it yields a completion forest F ′

A such that if Inc(FA) = α, then
Inc(F ′

A) = α.

Proof. (sketch) Due to page limit, we consider only the �-rule. Other rules can be
discussed similarly.

Assume that the �-rule is applied to FA. Let F ′
A and F ′′

A be two complete forests
obtained from FA by applying the �-rule. Suppose on the contrary that Inc(F ′

A) >

α and Inc(F ′′
A) > α. Similar to the analysis in (1), we have that AF ′ = AF ∪

{(C1(a), β)} and AF ′′ = AF ∪ {(C2(a), β)}. Suppose β ≤ α, then Inc(AF ′) = α
(resp. Inc(AF ′′) = α), which is a contradiction. Assume that β > α. Since Inc(F ′

A) >

α and Inc(F ′′
A) > α, both (AF ′)>α and (AF ′′)>α are inconsistent. Since Inc(FA) =

α, (AF)>α is consistent. Therefore, (AF)>α is in conflict with both C1(a) and C2(a)
and also with (C1 �C2)(a). However, (C1 �C2)(a) ∈ (AF)>α, this is a contradiction.

The proof of Theorem 1 follows from Lemma 1 and definition of the inconsistency
degree of a set of complete forests.

According to Theorem 1, after we apply the tableau expansion rules, the inconsis-
tency degree of the newly constructed set of complete forests does not change.

Completeness. Assume that M = {F1
A, ...,Fn

A} be a set of complete forests con-
structed from A by application of tableau expansion rules until no more rules ap-
ply. Let dInc(F i

A) = αi and dInc(M) = min{α1, ..., αn}. We need to show that
dInc(M) = Inc(M). We first need a lemma.

Lemma 2. dInc(F i
A) = Inc(F i

A) for i = 1, n.

Proof. (sketch) SupposeAFi is the corresponding ABox ofF i
A. It is clear that Inc(AFi)

≥ αi because (C(a), αi), (¬C(a), αi) ∈ AFi for some C(a). So we only need to show

A Tableau Algorithm for Possibilistic Description Logic ALC 71

that (AFi)>αi is consistent. The proof is similar to the proof of completeness of tableau
algorithm for DL ALC by considering the following facts: (1) (AFi)>αi contains all
the ABox assertions that cannot be expanded by the tableau rules, (2) there is no clash
{Aβ, Aγ} in F i

A such that min(β, γ) > α and (3) a weighted concept with higher
necessity degree should always be expanded by an expansion rule first if applicable.
Condition (3) is very critical to ensure the completeness of the algorithm as it ensures
that we find the maximum weight α such that α-cut of the ABox is inconsistent. Sup-
pose we do not have this requirement and we want to apply the tableau algorithm to a
possibilistic ALC-ABox A = {(A(a), 0.7), ((C � ¬A)(a), 0.6), ((B � ¬A)(a), 0.5)}.
We first construct the completion forest FA = {Lxa} where Lxa = {A0.7, (C �
¬A)0.6, (B �¬A)0.5}. Now suppose we apply the �-rule to expand (B �¬A)0.5, then
we have Lxa = {A0.7, C � ¬A0.6, (B � ¬A)0.5, B0.5, (¬A)0.5}. There is a conflict in
FA = {Lxa} and the algorithm will terminate and return the inconsistency degree 0.5.
Since there is only one completion forest for A, the inconsistency degree of A is 0.5,
which is wrong.

Theorem 2. (Completeness) dInc(M) = Inc(M)

Theorem 1 and Theorem 2 together show that our tableau algorithm output the correct
inconsistency degree of A.

4.4 Complexity

We consider computational issues of our tableau algorithm. The following theorem gives
the complexity of checking the inconsistency degree of a possibilistic ALC-ABox .

Theorem 3. Checking if γ is the inconsistency degree of possibilistic ALC-ABox A is
a PSpace-complete problem.

By Theorem 3, we have that instance checking for a consistent possibilisticALC-ABox
is a PSpace-complete problem.

Corollary 1. Let A be a consistent possibilistic ALC-ABox. Then checking if A |=P

C(a) or if A |=π (C(a), α) is a PSpace-complete problem.

4.5 Terminological Axioms

In this subsection, we extend the tableau algorithm for computing the inconsistency de-
gree of a possibilistic ALC-ABox by considering a non-empty TBox. We first consider
acyclic terminologies and then general terminologies.

Acyclic Terminologies. A possibilistic TBox T is an acyclic terminology iff T ∗ is
an acyclic terminology, i.e., T ∗ is a set of concept definitions that neither contains
multiple definitions nor cyclic definitions. Therefore, we do not allow an atomic concept
appearing on the left side twice. We call a concept axiom of the form (A ≡ C, α) in T
a weighted definition.

Given a possibilistic DL ALC knowledge base B = 〈T ,A〉, when T is acyclic, then
the problem of computing the inconsistency degree of B can be reduced to the problem
of computing the inconsistency degree of a possibilistic ALC-ABox by unfolding the

72 G. Qi and J.Z. Pan

weighted definitions. For any concept C, we use ¬C to denote the NNF of ¬C. We
extend the lazy unfolding rules given in [2] by proposing the following two rules:

– ≡1-rule: if
– [1] (A ≡ C, α) ∈ T , Aβ ∈ L(x), and
– [2] there does not exist Cγ ∈ L(x) such that γ ≥ min(α, β)
– then set L(x) = L(x) ∪ {Cmin(α,β)};

– ≡2-rule: if
– [1] (A ≡ C, α) ∈ T , ¬Aβ ∈ L(x), and
– [2] there does not exist ¬Cγ ∈ L(x) such that γ ≥ min(α, β)
– then set L(x) = L(x) ∪ {¬Cmin(α,β)}.

The ≡1-rule (resp. ≡2-rule) says that if the tableau algorithm encounters a weighted
concept Aβ (resp. ¬Aβ) and there exists a weighted definition (A ≡ C, α) ∈ T , and
Cmin(α,β) (resp.¬Cmin(α,β)) is not subsumed by any Cγ (resp. ¬Cγ ∈ L(x)) in L(x),
then it adds the weighted concept Cmin(α,β) (resp. ¬Cmin(α,β)) to L(x). The order of
application of the lazy unfolding rules is very important to ensure correctness of our
algorithm. Like the expansion of weighed concepts, a weighted definition with higher
weight should be unfolded first. Furthermore, if the weight of a weighed definition is
greater than that of a weighted concept, it should be unfolded before the expansion of
the weighted concept, vice versa.

Similar to the proof of Theorem 1 in [17], we can show that the extended lazy un-
folding yields in a PSpace-algorithm for computing the inconsistency degree of a a
possibilistic ALC knowledge base with possibilistic acyclic terminology.

Theorem 4. Given a possibilistic DL ALC knowledge base B = 〈T ,A〉, when T is
acyclic, checking if γ is the inconsistency degree of B is a PSpace-complete problem.

General TBoxes. When general possibilistic TBoxs are considered, we cannot apply
the technique of unfolding any more. We extend the
-rule given in [3].

–
-rule: if
– [1] (C1
 C2, α) ∈ T , x is not blocked, and
– [2] there is no β ≥ α such that (C2 � ¬C1)β∈L(x)
– then set L(x) = L(x) ∪ {(C2 � ¬C1)α}

The
-rule says that if (C1
 C2, α) is in T and x is not blocked, and (C2 � ¬C1)α

is not subsumed by a weighted concept in L(x), then we add (C2 � ¬C1)α to L(x).
Blocking is required to ensure termination of the tableau algorithm. A possibilistic con-
cept axiom with higher weight should be expanded first. If the weight of a possibilistic
concept axiom is greater than that of a weighted concept, it should be expanded before
the expansion of the weighted concept, vice versa.

Let us consider Example 1 given in Introduction again. We construct a completion
forest FA = {L(xTom)}, where
L(xTom) = {PacemakerPatient0.8, HeartPatient0.5}.
We first expand ax1 and ax2 using the
-rule and we get

L(xTom) = {(HighBloodPressure � ¬Heartpatient)1,
(¬HighBloodPressure � ¬PacemakerPatient)1,
PacemakerPatient0.8, HeartPatient0.5}.

A Tableau Algorithm for Possibilistic Description Logic ALC 73

We then apply the �-rule to expand (HighBloodPressure � ¬Heartpatient)1

and (¬HighBloodPressure�¬PacemakerPatient)1. Assume that we getL(xTom)
= {HighBloodPressure1,¬HighBloodPressure1, PacemakerPatient0.8,
HeartPatient0.5}, which contains a clash. So the algorithm stop expanding this forest
and the inconsistency degree is 1. The algorithm continues another alternativeL(xTom)
= {HighBloodPressure1,¬PacemakerPatient1, PacemakerPatient0.8,
HeartPatient0.5}, which contains a clash and the inconsistency degree is 0.5. Sim-
ilarly we can get another completion forest with inconsistency degree 0.8. Therefore,
the inconsistency degree of the possibilistic DL knowledge base is 0.5.

We show the termination of our tableau algorithm with a general possibilistic TBox.

Proposition 3. Let B = 〈T ,A〉 be a finite possibilistic ALC knowledge base and FA
the completion forest constructed from A without application of any tableau rule. Then
there is no infinite sequence of rule applications

FA → S1 → S2 → · · · .

We show that the tableau algorithm is sound and complete by incorporating the
-rule
when a general TBox is available.

Given a completion forest FA and a general possibilistic TBox T , the inconsistency
degree of the pair 〈FA, T 〉, denoted Inc(〈FA, T 〉), is Inc(AF ∪ T). Similar to Defi-
nition 1, we have the following definition.

Definition 2. Let M = {F1
A, ...,Fn

A} be a set of completion forests constructed from
A and T by application of tableau expansion rules (including the
-rule). Then the in-
consistency degree of the pair 〈M, T 〉, denoted as Inc(〈M, T 〉), is defined as minFi

A
Inc(〈F i

A, T 〉).

We have the following theorem that shows the soundness of our algorithm.

Theorem 5. (Soundness) Let M = {F1
A, ...,Fn

A} be a set of completion forests con-
structed from A and T by application of tableau expansion rules. Suppose M′ is a set
of completion forests obtained from M by application of a tableau expansion rule. If
Inc(〈M, T 〉) = α then Inc(〈M′, T 〉) = α.

Assume that M = {F1
A, ...,Fn

A} is a set of completion forests constructed from A and
T by application of tableau expansion rules until no more rules apply. Let dInc(〈F i

A, T 〉)
= αi (i = 1, ..., n) and dInc(〈M, T 〉) = min{α1, ..., αn}. Similar to Theorem 2, we
can show the following theorem.

Theorem 6. (Completeness) dInc(〈M, T 〉) = Inc(〈M, T 〉).

4.6 Optimization Techniques

We discuss how some important optimization techniques applied to the tableau algo-
rithm for ALC given in Chapter 9 of [1] can be reused for our tableau algorithm.

Normalisatoin and Absorption in the preprocessing step can be easily reused as they
are applied to concepts. For example, a possibilistic axiom of the form (A�D
 D′, α)
can be rewritten as (A
 D′ � ¬D, α). The semantic branching technique can be

74 G. Qi and J.Z. Pan

also reused. That is, instead of choosing an unexpanded weighted disjunction such as
(A � B, α) in L(x), a single disjunct is chosen from one of the unexpanded weighted
disjunction in L(x). Suppose A from (A�B, α) is chosen, then two possible sub-trees
obtained by adding either (A, α) or (¬A, α) to L(x) are searched. Local simplification
is to simplify disjunctions if possible before any non-deterministic expansion of a node.
An important simplification is called Boolean constraint propagation (BCP) which is
based on inference rules such as ¬C1,...,¬Cn,C1�...�Cn�D

D . The BCD simplification can
be adapted by extending the inference rules based on the idea of possibilistic resolu-
tion given in [14], for example, (¬C1,α1),...,(¬Cn,αn),(C1�...�Cn�D,α)

(D,min(α1,...,αn,α)) . The backjump-
ing technique can be also adapted. Similar to backjumping, we can label each weighted
concept in a node and each weighted role in an edge with a dependence set that indicates
the non-deterministic expansion choices on which they depend. Using this dependence
set, our algorithm can avoid fruitless exploration.

5 Conclusion and Future Work

In this paper, we presented a tableau algorithm for possibilisticALC. The contributions
of this paper can be summarized as follows:

– First, we showed how inference services, such as instance checking with neces-
sity degree, in possibilistic ALC can be reduced to the problem of computing the
inconsistency degree of a posssibilistic DL knowledge base.

– We gave tableau expansion rules for computing the inconsistency degree of a pos-
sibilistic ALC-ABox by extending the tableau rules for ALC. We showed that the
tableau algorithm terminates in finite steps and it is complete and sound.

– We showed that checking the inconsistency degree of a possibilistic ALC-ABox is
a PSpace-complete problem. As a corollary, we can infer that instance checking for
a consistent possibilistic ALC-ABox is PSpace-complete.

– We proposed tableau rules for a possibilistic ALC knowledge base with acyclic
terminologies and general TBox and showed that the tableau algorithm is still sound
and complete, and it is decidable to check the inconsistency degree of a possibilistic
ALC knowledge base.

Several interesting problems are left for future work: (1) We will implement the pro-
posed tableau algorithm and provide evaluation results. Our theoretical analysis shows
that our tableau algorithm is more promising than the black-box algorithm given in
[18]. This needs to be further justified by the empirical evaluation. (2) We will consider
conjunctive query answering for expressive possibilistic DLs by extending the results
of query answering on expressive DLs.

Acknowledgement

Guilin Qi is partially supported by the EU under the IST project NeOn and the X-Media
project, and Jeff Z. Pan is partially supported by the EU MOST project.

A Tableau Algorithm for Possibilistic Description Logic ALC 75

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
description logic handbook: theory, implementation, and applications. Cambridge University
Press, New York (2003)

2. Baader, F., Hollunder, B., Nebel, B., Profitlich, H.-J., Franconi, E.: An empirical analysis
of optimization techniques for terminological representation systems, or making kris get a
move on. In: Proc. of KR 1992, pp. 270–281 (1992)

3. Baader, F., Horrocks, I., Sattler, U.: Description Logics. In: van Harmelen, F., Lifschitz, V.,
Porter, B. (eds.) Handbook of Knowledge Representation. Elsevier, Amsterdam (to appear,
2007)

4. Baaderand, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia
Logica 69(1), 5–40 (2001)

5. Couchariere, O., Lesot, M.-J., Bouchon-Meunier, B.: Consistency checking for extended de-
scription logics. In: Description Logics (2008)

6. Dubois, D., Lang, J., Prade, H.: Automated reasoning using possibilistic logic: Semantics,
belief revision, and variable certainty weights. IEEE Trans. Knowl. Data Eng. 6(1), 64–71
(1994)

7. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Handbook of logic in Aritificial In-
telligence and Logic Programming, 3rd edn., pp. 439–513. Oxford University Press, Oxford
(1994)

8. Dubois, D., Mengin, J., Prade, H.: Possibilistic uncertainty and fuzzy features in description
logic: A preliminary discussion. In: Capturing Intelligence: Fuzzy Logic and the Semantic
WEb, pp. 101–113. Elsevier, Amsterdam (2006)

9. Giugno, R., Lukasiewicz, T.: P-SHOQ(d): A probabilistic extension of SHOQ(d) for
probabilistic ontologies in the semantic web. In: Flesca, S., Greco, S., Leone, N., Ianni, G.
(eds.) JELIA 2002. LNCS, vol. 2424, pp. 86–97. Springer, Heidelberg (2002)

10. Heinsohn, J.: Probabilistic description logics. In: Proc. of UAI 1994, pp. 311–318 (1994)
11. Hollunder, B.: An alternative proof method for possibilistic logic and its application to ter-

minological logics. In: Proc. of UAI 1994, pp. 327–335 (1994)
12. Jaeger, M.: Probabilistic reasoning in terminological logics. In: Proc. of KR 1994, pp. 305–

316 (1994)
13. Koller, D., Levy, A.Y., Pfeffer, A.: P-classic: A tractable probablistic description logic. In:

Proc. of AAAI/IAAI 1997, pp. 390–397 (1997)
14. Lang, J.: Possibilistic logic: complexity and algorithms. In: Handbook of Defeasible Reason-

ing and Uncertainty Management Systems, pp. 179–220. Kluwer, Dordrecht (1998)
15. Lukasiewicz, T.: Probabilistic default reasoning with conditional constraints. Ann. Math.

Artif. Intell. 34(1-3), 35–88 (2002)
16. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6-7), 852–883

(2008)
17. Lutz, C.: Complexity of terminological reasoning revisited. In: LPAR 1999, pp. 181–200

(1999)
18. Qi, G., Pan, J.Z., Ji, Q.: Extending description logics with uncertainty reasoning in possibilis-

tic logic. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS, vol. 4724, pp. 828–839. Springer,
Heidelberg (2007)

19. Stoilos, G., Stamou, G., Pan, J.Z., Tzouvaras, V., Horrocks, I.: Reasoning with very expres-
sive fuzzy description logics. J. Artif. Intell. Res. 30, 273–320 (2007)

20. Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res. 14, 137–166
(2001)

21. Udrea, O., Deng, Y., Hung, E., Subrahmanian, V.S.: Probabilistic ontologies and relational
databases. In: Proc. of CoopIS/DOA/ODBASE 2005, pp. 1–17 (2005)

SAOR: Authoritative Reasoning for the Web�

Aidan Hogan, Andreas Harth, and Axel Polleres

Digital Enterprise Research Institute, National University of Ireland, Galway

Abstract. In this paper we discuss the challenges of performing reason-
ing on large scale RDF datasets from the Web. We discuss issues and
practical solutions relating to reasoning over web data using a rule-based
approach to forward-chaining; in particular, we identify the problem of
ontology hijacking: new ontologies published on the Web re-defining the
semantics of existing concepts resident in other ontologies. Our solution
introduces consideration of authoritative sources. Our system is designed
to scale, comprising of file-scans and selected lightweight on-disk indices.
We evaluate our methods on a dataset in the order of a hundred million
statements collected from real-world Web sources.

1 Introduction

Data attainable through the Web is unique in terms of scale and diversity. Mil-
lions of data sources contribute billions of statements to a giant data graph. The
Semantic Web technology stack includes means to supplement instance data
being published using the Resource Description Framework (RDF) with ontolo-
gies described in RDF Schema (RDFS) [1] and the Web Ontology Language
(OWL) [16], allowing people to formally specify a domain of discourse, and pro-
viding machines a more sapient understanding of the data. While there exists a
large body of work in the area of reasoning algorithms and systems that work
and scale well in confined environments, the distributed and loosely coordinated
creation of a world-wide knowledge base creates new challenges.

Reasoning over aggregated Web data is useful, for example: to infer new as-
sertions using terminological knowledge from ontologies and therefore provide a
more complete dataset; to unite fractured knowledge about individuals collected
from disparate sources; and to execute mappings between domain descriptions
and therefore provide translations from one conceptual model to another. Our
work on reasoning is motivated by the requirements of the Semantic Web Search
Engine (SWSE) project1, within which we strive to offer search, querying and
browsing over the Semantic Web.

Reasoning on Web data poses a number of requirements:

– the system has to perform on web-scale, with implications on the complete-
ness of the reasoning procedure, algorithms and optimisations

� This work has been supported by Science Foundation Ireland (SFI/02/CE1/I131),
European FP6 project inContext (IST-034718) and COST Action “Agreement Tech-
nologies” (IC0801).

1 http://swse.deri.org/

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 76–90, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

SAOR: Authoritative Reasoning for the Web 77

– the method has to perform on collaboratively created knowledge bases, which
has implications on trust and the privileges of data publishers

– the web search scenario requires sub-second response times, which has im-
plications on the reasoning and query processing strategy

We present SAOR – Scalable Authoritative OWL Reasoner – which focuses
on performing best-effort RDFS and OWL reasoning on Web data. SAOR is
designed to accept as input a web knowledge-base in the form of a body of
statements as produced by a web-crawl and to output by forward-chaining a
knowledge-base enhanced by a given fragment of OWL reasoning. Discussion of
the end consumption of such a reasoned knowledge-base is outside of the scope
of this paper.

Specifically, we make the following contributions in this paper:

– We apply only a selected subset of OWL reasoning, to i) avoid an explosion
of inferred statements and ii) to protect existing specifications from undesir-
able contributions made in independent locations. Our system implements a
positive fragment of OWL Full which has roots in ter Horst’s pD* [17] en-
tailment. We describe an analysis of the authority of sources to counter-act
the highlighted problem of ontology hijacking in web data (Section 2).

– We describe a scalable, optimised method for performing rule-based forward
chaining reasoning through means of file-scan and lightweight dynamic data
structures. In particular, our algorithm capitalises on the low volume of
structural T-Box data relative to A-Box instance data (Section 3).

– We show experimentally that a forward-chaining materialisation approach
is feasible on Web data from 315k sources and in the order of 100m triples:
with our confined reasoning strategy we found that the knowledge base only
roughly doubles in size (Section 4) by cautious materialisation.

We discuss related work in Section 5 and conclude with Section 6.

2 Pragmatic Inferencing for the Web

We begin by stating a couple of observations regarding the feasibility of rea-
soning on the Web. Firstly, most OWL data crawlable on the Web is OWL
Full. Idealised assumptions made in OWL DL, such as disallowing subclassing
or defining subproperties of the OWL and RDF(S) vocabularies, are violated by
even very commonly used ontologies2. Secondly, consistency cannot be expected
on the Web. For instance, a past web-crawl of ours revealed the following:3

<timbl> a foaf:Person; foaf:homepage <http://w3.org/> .

<w3c> a foaf:Organization; foaf:homepage <http://w3.org/> .

foaf:homepage a :InverseFunctionalProperty.

foaf:Organization :disjointWith foaf:Person .

2 E.g., one of the reasons why the commonly used FOAF vocabulary falls into OWL
Full is that foaf:name is defined as a subproperty of rdfs:label [19].

3 Throughout this paper, we assume that http://www.w3.org/2002/07/owl# is the
default namespace and use well understood prefixes for other namespaces.

78 A. Hogan, A. Harth, and A. Polleres

These triples together infer that Tim Berners-Lee is the same as the W3C and
cause an inconsistency. However, despite such examples which arise from mis-
understanding of the FOAF vocabulary, there might be cases where different
parties deliberately make contradictive statements.

These two points already suggest that complete inference at the instance level
is neither feasible nor desirable: firstly, for the computational infeasibility of
complete OWL Full reasoning, and secondly, since we do not deem the explosive
nature of contradiction in classical logics desirable in a Web reasoning scenario.

Thus, rather than striving for complete inference, we adopt a “best effort”
reasoning strategy, optimising inference based on the following principles:

1. We assume a separation of T-Box from A-Box.
2. We trade completeness for implementational feasibility following a rule-

based, finite, forward-chaining approach to OWL inference.
3. We trade completeness for producing a much smaller subset of inferred

statements; i.e, we deliberately ignore (i) the explosive behaviour of clas-
sical inconsistency, (ii) arguably “void” statements in terms of non-standard
use of the RDF(S) and OWL vocabularies, (iii) non-authoritative T-Box
statements.

2.1 Separating A-Box from T-Box

In SAOR, we separate terminological knowledge from assertional data according
to their use of the RDF(S) and OWL vocabulary; we call these the “A-Box” and
the “T-Box” respectively (loosely borrowing Description Logics terminology).

Table 1 provides a list of graph patterns in RDF graphs we consider to be
part of the T-Box. Note that when retrieving graphs from the Web, the instances
of these patterns are all of the T-Box statements we consider in our reasoning
process: triples that do not match one of these patterns are not considered being
part of the T-Box, but are treated purely as assertional “data” triples.

The materialisation of axiomatic statements and completing the entire T-
Box may create a bulk of statements with little practical utility. In fact, we
deliberately accept the omission of T-Box inference rather as an optimisation:
we focus on answering queries over A-Box data rather than, e.g., inferring all
members of :Class.

SAOR does not support metamodelling, except by conceptually separating the
instance- class- or property-meanings of a resource: by separating the T-Box and
A-Box segment of the knowledge base, we do not support all possible entailments
from the simultaneous description of both a class and an instance. Particularly,
we treat URIs in the context they appear, in the spirit of “punning”4. We do
subject the T-Box data to reasoning analogously to the A-Box, but only store
results in the A-Box. For example, we do not carry over :sameAs inferences to
the T-Box – this is in-line with first-order-logic point of view, where equalities
do not affect predicates.

We filter out further triples when extracting the T-Box; namely, we ignore
nonstandard use of RDF in our reasoning efforts. Non-standard use of RDF
4 http://www.w3.org/2007/OWL/wiki/Punning

http://www.w3.org/2007/OWL/wiki/Punning

SAOR: Authoritative Reasoning for the Web 79

Table 1. Allowed T-Box constructs for each rule. Bold type indicates that the element
must be authoritatively spoken for. Where they appear, at least one of the italic type
elements must be authoritatively spoken for (see 2.3).

No DL Syntax Corresponding RDF graph pattern
01 C � D ?C rdfs:subClassOf ?D .
02a C ≡ D ?C :equivalentClass ?D .
02b ?C :equivalentClass ?D .
03 P � Q ?P rdfs:subPropertyOf ?Q .
04a P ≡ Q ?P :equivalentProperty ?Q .
04b ?P :equivalentProperty ?Q .
05a P ≡ Q− ?P :inverseOf ?Q .
05b ?P :inverseOf ?Q .
06 � � ∀P−.C ?P rdfs:domain ?C .
07 � � ∀P.C ?P rdfs:range ?C .
08 P ≡ P− ?P a :SymmetricProperty .
09a ∃P.x ?C :hasValue ?x; :onProperty ?P .
09b ?C :hasValue ?x; :onProperty ?P .
10 C1 � ... � Cn ?C :unionOf (?C1 ... ?Ci ... ?Cn) .
11a C1 � ... � Cn ?C :intersectionOf (?C1 ... ?Cn) .
11b ?C :intersectionOf (?C1 ... ?Cn) .
12 � � ∀ ≤ 1P ?P a :FunctionalProperty .
13 � � ∀ ≤ 1P− ?P a :InverseFunctionalProperty .
14 P+ � P ?P a :TransitiveProperty .
15 ∃P.D ?C :someValuesFrom ?D; :onProperty ?P .
16 ∀P.D ?C :allValuesFrom ?D; :onProperty ?P .
17a (≤ 1P) ?C :maxCardinality 1; :onProperty ?P .
17b (= 1P) ?C :cardinality 1; :onProperty ?P .
18 {xi....xn} ?C :oneOf (?x1 ... ?xN) .

briefly equates to the use of properties and classes which make up the RDF(S)
vocabulary in locations where they have not been intended, cf. [2,13]. We
adapt the definition of non-standard use for our purposes and only restrict
the usage of the vocabulary for the T-Box: let P = { rdf:type, rdf:domain,

rdf:range, rdfs:subClassOf, rdfs:subPropertyOf, :equivalentClass, :equi-

valentProperty, :inverseOf, :onProperty, :hasValue, :someValuesFrom,

:allValuesFrom, :intersectionOf, :unionOf, :maxCardinality, :cardinality,

:oneOf }, and C = { :FunctionalProperty, :InverseFunctionalProperty,

:TransitiveProperty, :SymmetricProperty }. We omit from the T-Box any
triples with non-standard use of the properties and classes in P ∪ C, that is,
triples where properties in P appear in a position other than the predicate
position or where classes in C appear in a position other than the object of an
rdf:type triple.

In summary, our view of a web knowledge base KB consists of the RDF merge
of a set of source graphs. KB is separated into a T-Box T mentioning classes
and properties CKB and PKB and an A-Box A consisting of class and property
membership assertions possibly using identifiers in CKB ∪ PKB.

2.2 Rule-Based OWL Reasoning

Reasoning in SAOR is inspired by previous approaches, particularly the pD*
fragment defined by ter Horst [17], to cover large parts of OWL by positive
inference rules which can be implemented in a forward-chaining engine.

Table 2 lists all of the currently supported rules. Although certain triples
matched in the antecedents come from the T-Box and others come from the

80 A. Hogan, A. Harth, and A. Polleres

Table 2. Supported rules with N3-style syntax used for triple patterns with T-Box
statements italicised and A-Box in plain font

DL Syntax Rule
01 C � D ?C rdfs:subClassOf ?D . ?s a ?C . ⇒ ?s a ?D .
02a C ≡ D ?C :equivalentClass ?D . ?s a ?C .⇒ ?s a ?D .
02b ?C :equivalentClass ?D . ?s a ?D .⇒ ?s a ?C .
03 P � Q ?P rdfs:subPropertyOf ?Q . ?s ?P ?o . ⇒ ?s ?Q ?o .
04a P ≡ Q ?P :equivalentProperty ?Q . ?s ?P ?o . ⇒ ?s ?Q ?o .
04b ?P :equivalentProperty ?Q . ?s ?Q ?o . ⇒ ?s ?P ?o .
05a P ≡ Q− ?P :inverseOf ?Q . ?s ?P ?o . ⇒ ?o ?Q ?s .
05b ?P :inverseOf ?Q . ?s ?Q ?o . ⇒ ?o ?P ?s .
06 � � ∀P−.C ?P rdfs:domain ?C . ?s ?P ?o . ⇒ ?s a ?C .
07 � � ∀P.C ?P rdfs:range ?C . ?s ?P ?o . ⇒ ?o a ?C .
08 P ≡ P− ?P a :SymmetricProperty . ?s ?P ?o . ⇒ ?o ?P ?s .
09a ∃P.x ?C :hasValue ?x; :onProperty ?P . ?y ?P ?x . ⇒ ?y a ?C .
09b ?C :hasValue ?x; :onProperty ?P . ?y a ?C . ⇒ ?y ?P ?x .
10 C1 � ... � Cn ?C :unionOf (?C1 ... ?Ci ... ?Cn) . ?x a ?Ci

5 . ⇒ ?x a ?C .
11a C1 � ... � Cn ?C :intersectionOf (?C1 ... ?Cn) . ?y a ?C . ⇒ ?y a ?C1, ..., ?Cn .
11b ?C :intersectionOf (?C1 ... ?Cn) . ?y a ?C1, ..., ?Cn . ⇒ ?y a ?C .
12 � � ∀ ≤ 1P ?P a :FunctionalProperty . ?s ?P ?x , ?y . ⇒ ?x :sameAs ?y .
13 � � ∀ ≤ 1P− ?P a :InverseFunctionalProperty . ?x ?P ?o . ?y ?P ?o . ⇒ ?x :sameAs ?y .
14 P+ � P ?P a :TransitiveProperty . ?x ?P ?y . ?y ?P ?z . ⇒ ?x ?P ?z .
15 ∃P.D ?C :someValuesFrom ?D; :onProperty ?P . ?x ?P ?y . ?y a ?D . ⇒ ?x a ?C .
16 ∀P.D ?C :allValuesFrom ?D; :onProperty ?P . ?x ?P ?y; a ?C . ⇒ ?y a ?D .
17a (≤ 1P) ?C :maxCardinality 1; :onProperty ?P . ?x a ?C; ?P ?y, ?z . ⇒ ?y :sameAs ?z .
17b (= 1P) ?C :cardinality 1; :onProperty ?P . ?x a ?C; ?P ?y, ?z . ⇒ ?y :sameAs ?z .
18 {oi....on} ?C :oneOf (?o1 ... ?on) . ⇒ ?o1 ... ?on a ?C .
19a x = y ?x :sameAs ?y . ?x ?p ?o .⇒ ?y ?p ?o .
19b ?x :sameAs ?y . ?s ?p ?x .⇒ ?s ?p ?y .
19c ?x :sameAs ?y . ⇒ ?y :sameAs ?x .
19d ?x :sameAs ?y . ?y :sameAs ?z . ⇒ ?x :sameAs ?z .

A-Box, in contrast to ter Horst’s original rules, inferences are stored in the
A-Box only. Thus, on exhaustive application of the rules, the T-Box remains
unchanged.

Next, we only support inferences in one direction for :someValuesFrom and
:allValuesFrom, as we do not apply any inference rules that involve invention of
new blank nodes. Like ter Horst, we do not support inequalities or disjointness;
i.e., SAOR operates monotonically without “explosive” reaction in inconsistency.
In addition to pD* we support functional cardinality constraints, as well as
limited support for enumerated classes (:oneOf).

Some of the rules in SAOR differ from their versions in pD*, e.g. (05a,b),
(19a,b). The alert reader may also miss rules to infer transitivity of rdfs:sub-
ClassOf, rdfs:subPropertyOf, :equivalentClass, :equivalentProperty as
well as symmetry of the equivalence and inverse-of properties. Whereas sym-
metry is covered by symmetric rules (02a,b), (04a,b), (05a,b), transitivity is han-
dled by SAOR via path traversals over internal data structures representing
the subclass and subproperty hierarchies, following the RDF ground entailment
algorithm outlined in [13].

Note that SAOR does not materialise any axiomatic triples [8]. Axiomatic
A-Box statements are not produced by SAOR so as to avoid a bulk of syntac-
tic statements (for example, rdf:type rdf:Resource statements and reflexive
:sameAs statements). Axiomatic T-Box statements are not considered as we

5 ?Ci ∈ {?C1, ..., ?Cn}

SAOR: Authoritative Reasoning for the Web 81

have a concretely defined T-Box which is extracted by means of a single scan
and does not support updates.

Finally, let us point out that there is good reason for excluding non-standard
usage of the ontology vocabulary: non-standard RDF could have unpredictable
results even under our simple rule-based entailment. One may consider a finite
combination of only four non-standard triples that, upon naive reasoning, would
explode all web resources R by inferring |R|3 triples, namely:

rdfs:subClassOf rdfs:subPropertyOf rdfs:Resource.

rdfs:subClassOf rdfs:subPropertyOf rdfs:subPropertyOf.

rdf:type rdfs:subPropertyOf rdfs:subClassOf.

rdfs:subClassOf rdf:type :SymmetricProperty.

The exhaustive application of standard RDFS inference rules plus standard in-
ference rule for property symmetry together with the typical inference for class
membership in rdfs:Resource for all collected resources in typical rulesets lead
to inference of any possible triple (r1 r2 r3) for arbitrary r1, r2, r3 ∈ R.

Having introduced our rule set, we are able to define our notion of closure.

Definition 1 (Closure). We denote by ClT (A) the closure of A, i.e., the union
of A with the set of statements inferred by exhaustive application of rules (01)-
(19) from Table 2 with respect to T-Box T .

2.3 Authoritative Reasoning against Ontology Hijacking

SAOR is designed to counter-act a behaviour we discovered from initial evalua-
tion which we term ontology hijacking. We counter such non-authoritative exten-
sions of ontologies by ignoring problematic statements during T-Box generation.
Before defining ontology hijacking, let us give some preliminary definitions:

Definition 2 (Authoritative Source)
A graph s ∈ KB speaks authoritatively about a concept c ∈ CKB ∪ PKB if c

appears in a triple of s and one of the following holds true:

1. c is not identified by a URI (i.e., identified by a blank node)
2. s is retrievable from a URI which coincides with (or redirects to) the names-

pace6 of the URI identifying c.

Firstly, all sources are authoritative for anonymous classes or properties defined
in that source. The second condition is designed to support best practices as
currently adopted by web ontology publishers7.

Let s ∈ KB = (T ,A) and KB′ = (T ′,A′) = KB \ {s} be the knowledge base
constructed from all graphs in KB except s. By Ontology Hijacking we now mean
that a source s speaks non-authoritatively about a concept c ∈ CKB ∪ PKB (i.e.,
where c appears in T ′), in such a way that ClT (A′) �= ClT ′(A′).

Ontology hijacking is the re-definition or extension of a definition of a legacy
concept (class or property) in a non-authoritative source such that performing
6 Here, slightly abusing XML terminology by “namespace” of a URI we mean the

prefix of the URI obtained from stripping off the final NCname.
7 See Appendix A&B of http://www.w3.org/TR/swbp-vocab-pub/

82 A. Hogan, A. Harth, and A. Polleres

reasoning on legacy A-Box data results in a change in inferencing. One particular
method of ontology hijacking is defining new super-concepts of legacy concepts.
As a concrete example, if one were to publish today a property in an ontology
(in a non-authoritative location for FOAF), my:name, within which the following
was stated: foaf:name rdfs:subClassOf my:name ., that person would be hi-
jacking the foaf:name property and effecting the translation of all foaf:name
statements in the web knowledge base into my:name statements as well.

Ontology hijacking is problematic in that it vastly increases the amount of
statements that are materialised and can potentially harm inferencing on data
contributed by other parties. With respect to materialisation, the former issue
becomes prominent: instance data published using concepts from popular/core
ontologies get translated into a plethora of conceptual models described in ob-
scure ontologies; we quantify the problem in Section 4. However, taking precau-
tions against harmful ontology hijacking is growing more and more important as
the Semantic Web features more and more attention; motivation for spamming
and other malicious activity propagates amongst certain parties with ontology
hijacking being a prospective avenue. With this in mind, we assign sole respon-
sibility for the concepts and thus the semantics of their instances of the concepts
to those who maintain the authoritative specification.

Related to the idea of ontology highjacking is the idea of “non-conservative
extension” described in the Description Logics literature: cf. [11]. However, the
notion of a conservative extension was defined with a slightly different objective
in mind: according to the notion of deductively conservative extensions, an ontol-
ogy OB is only considered malicious towards OA if it causes additional inferences
with respect to the intersection of the signature of the original OA with the newly
inferred statements. Returning to the ex:myName example from above, the super-
classing of foaf:Name alone would still constitute a conservative extension. How-
ever, further stating that ex:myName a :InversefunctionalProperty. would
indeed violate the conservative extension property, since instances of ex:myName
might then cause equalities in other remote ontologies as side-effects, indepen-
dent from the newly defined signature. Summarising, we can state that every
non-conservative extension (with respect to our notion of deductive closure)
constitutes a case of ontology highjacking, but not vice versa.

In SAOR, we avoid the effects of ontology hijacking and non-conservative
extensions by disregarding possibly harmful nonauthoritative use of concepts
directly during T-Box construction. Table 1 shows how non-authoritative state-
ments are disregarded upon T-Box construction. The source containing the con-
cept description must be authoritative for the elements highlighted in boldface.
Where multiple elements are italicised, at least one such element must be au-
thoritatively spoken for. One can verify from Table 1 and Table 2 that, in the
antecedent of each rule, the T-Box axioms must be authoritative for at least one
of the class/property names appearing in the A-Box. Thereby, we protect A-
Box reasoning from the influence of non-authoritative T-Box axioms. For Rules
02, 04, 05, 09 & 11 if the given source of data is only authoritative for one
element, inferencing will only be executed in the direction “away” from that el-
ement. For example, for the statements foaf:Person :equivalentClass ex:New-

Class . ex:NewClass :equivalentClass foaf:Person . described in a source only

SAOR: Authoritative Reasoning for the Web 83

authoritative for the ex: namespace, inferencing will only translate ex:NewClass
instances into foaf:Person and not in the other direction.

When publishing OWL or RDFS descriptions on the Web, we recommend
that people avoid ontology-hijacking as defined in this section. We encourage
extension of existing concepts where possible so that instance data in the newly
published domain get translated into existing domains. Indeed, from brief anal-
ysis of some prominent specifications (specifically FOAF, DC, SIOC, SKOS), we
found that they were entirely compliant with our restrictive reasoning.

3 Reasoning Algorithm

In the following we firstly present observations on web data that influenced the
design of the algorithm, then give an overview of the algorithm, and next discuss
details of how we handle T-Box information, perform statement-wise reasoning,
and deal with ground equality.

3.1 Characteristics of Web Data

The design of our algorithm is motivated by observations on our Web dataset:

1. Reasoning accesses a large slice of data in the index: around 41% of state-
ments produced uniquely inferred statements.

2. Relative to A-Box data, the volume of T-Box data on the Web is small: only
around 2.5% of statements were classifiable as T-Box statements8.

3. The T-Box is the most frequently accessed segment of data for reasoning:
all but Rules 19a−d (:sameAs) require access to T-Box information.

Following from the first observation, we employ a file-scan approach which
is more efficient in this scenario than query processing lookups. Thus, we avoid
the overhead of indexing the data and running full query processing; also we
avoid probing the same statements repeatedly for different rules at the low cost
of scanning a given percentage of statements not useful for reasoning.

Following from the second and third observations, we optimise by placing
T-Box data in a separate data structure accessible by the reasoning engine. Cur-
rently, we hold the T-Box data in-memory, but the algorithm can be generalised
to provide for an on-disk structure or a distributed in-memory structure as needs
require.

3.2 Algorithm Overview

The algorithm involves three scans over the data as illustrated in Figure 1:

1. SCAN 1: separate T-Box information and build in-memory representation
2. PRE SCAN 2: execute rules with only T-Box patterns in the antecedent

(Rule 18)
3. SCAN 2: perform reasoning in a statement-wise manner:
8 Includes RDF collection fragments which may not be part of a class description.

84 A. Hogan, A. Harth, and A. Polleres

Separate
TBox

TBox

Source
Statements

Statement-
wise

Reasoning

Equality
Index

Join
Hashtables

Inferred
Statements

Consolidate

SCAN 1

SCAN 2
SCAN 3

SCAN 3

Final
Output

Fig. 1. High-level architecture

– Execute rules with only a single A-Box pattern in the antecedent (Rules
1-11a); join A-Box statement with in-memory T-Box; write inferred
statements immediately.

– Execute rules with two or more A-Box patterns in the antecedent (Rules
11b-17); join indices are maintained for such A-Box patterns. When a
statement matches one of the A-Box patterns for these rules and the
necessary T-Box join exists, the statement is written to the join index
and the join index is checked to see if all other A-Box patterns have been
previously satisfied; if they have, the rule is fired.

– Execute rules which involve equality reasoning (Rules 19a−d); lists of
equivalent individuals are maintained in a hashtable structure (equality
index). Newly identified equivalences are immediately reflected in the
join indices for Rules 11b-17 whereby new A-Box joins may form and fire
rules.

4. SCAN 3: consolidate source data along with inferred statements according
to the equality index and write to final output.

3.3 Handling Structural Data

In the following, we describe how to separate the T-Box data and how to create
the data structures for representing the T-Box.

T-Box data from RDFS and OWL specifications can be acquired either from
conventional crawling techniques, or by accessing the locations indicated by the
dereferenced URIs of classes and properties in the instance data. We assume
for brevity that all T-Box data are already present in the input data. If T-Box
data are sourced via different means we can build an in-memory representation
directly, without requiring the first scan of the input data.

During the scan, all statements relating to the supported T-Box constructs are
identified and stored in an in-memory representation of classes and properties.
The data structure holds the necessary information to infer new statements
given a class or role membership assertion from the A-Box. We employ separate
hashtables with URIs as keys and values containing a Java representation of the
classes or properties, as follows:

SAOR: Authoritative Reasoning for the Web 85

– Property objects contain the property URI and references to objects repre-
senting equivalent properties, super properties, inverse properties, domain
classes and range classes. Pointers are also kept to restrictions where the
property in question is the object of an :onProperty statement.

– Class objects contain the class URI and references to objects representing
equivalent classes, super classes and classes for which this class is a compo-
nent of a union or intersection. On top of these core elements, different types
of objects are created for different types of class description:
• union and intersection classes store references to their constituent class

objects
• enumerated classes store references to constituent individuals
• restriction classes store a reference to the property the restriction applies

to and also, as applicable to the type of restriction:
∗ the :cardinality or :maxCardinality value
∗ the class identified by :allValuesFrom or :someValuesFrom

∗ the value of a :hasValue restriction

Some class descriptions rely on the rdf:Collection construct, namely:
unions, intersections and enumerations. To construct in-memory represen-
tations of these descriptions, the algorithm performs in-memory joining of
rdf:Collection segments as the data are scanned according to rdf:first and
rdf:rest properties. Any collections not relevant to the T-Box segment of the
knowledge base are discarded at the end of loading the input data.

For each statement, the authority of the source for the given subject and
object are inspected. If the statement is allowed as enumerated in Table 1, the
statement is added to the T-Box.

3.4 Reasoning by Statement-Wise Scan

Having loaded the structural data, the SAOR engine is now prepared for rea-
soning by statement-wise scan of the data.

We firstly analyse rules which do not require A-Box joins to compute. There
are two distinct types of statements which require different handling, namely
rdf:type statements and general non-rdf:type statements. The rdf:type
statements are subject to class-based entailment reasoning (Rules 1-2 & 9b-11a :
rules with a single rdf:typeA-Box pattern), and require joins with class descrip-
tions in the T-Box. The non-rdf:type statements are subject to property-based
entailments (Rules 3-9a : rules with a single non-rdf:type A-Box pattern) and
thus require joins with T-Box property descriptions.

We assume disjointness between the statement categories: we know that the
defined semantics of rdf:type do not require any property-based entailment and
we further do not allow any external extension of the core rdf:type semantics
(non-standard use). Thus, we do not subject rdf:type statements to entailment
of Rules 3-9a.

The reasoning scan process can be described as recursive depth-first reasoning
whereby each unique statement produced is input immediately for reasoning.
Statements produced thus far for the original input statement are kept in a set
to provide uniqueness testing and avoid cycles; a uniquing function is maintained

86 A. Hogan, A. Harth, and A. Polleres

on a resource level ensuring that statements are only produced once for a given
common subject group. Once all of the statements produced by a rule have
been themselves recursively analysed, the reasoner moves on to analysing the
proceeding rule.

Rules 11b-17 cannot be computed solely on a statement-wise basis. Instead, for
each rule, we assign an on-disk persistent data structure with an in-memory MRU
cache. Each index stores a representation of statements which may contribute
to satisfying the antecedent of its pertinent rule. During the scan, if a statement
satisfies the necessary T-Box join for a rule, it is written to the index for that
rule. When a statement is added which completes the pattern of an antecedent
for that rule, the rule is fired.

3.5 Equality Reasoning

In the following we discussed :sameAs entailment as encoded in Rules 19a−d of
Table 2. For Rules 19a,b, we employ an in-memory index for storing equivalence
of individuals. We store the identifiers for equivalent individuals in lists and also
store the lists which individuals are in using a hashtable. Thus, we can perform
a lookup for an individual in the hashtable to get a reference to a list of equiv-
alent individuals. The list structure maintains the transitivity and symmetric
properties of equivalence. Usually, :sameAs entailment on individuals results in
multiple individuals with the same data attached; however, we select a “pivot
element” to reduce the number of inferred statements. The pivot element of each
list is used to keep a consistent identifier for the set of equivalent individuals:
the first one encountered is chosen. For alternative choices of pivot identifiers on
web data see [9]. We use the pivot identifier to consolidate data by rewriting all
occurrences of equivalent identifiers to the pivot identifier (effectively merging
the equivalent set into one individual).

The in-memory equivalence index is filled from raw input :sameAs statements
and also from inferencing performed on Rules 12, 13 and 17. For the purposes of
the A-Box scan, we need not be immediately concerned about equality reasoning
for closure: no joins are present on the individual level. However, for the join in-
dex reasoning, equality reasoning is paramount for closure. The join indices are
immediately updated to reflect new equality knowledge; identifiers for equivalent
individuals are rewritten to their pivot identifiers are soon as equivalence is de-
termined. Rewriting of indices can lead to new inferences whereby the rewritten
identifiers align under the pivot identifier to form a new join, thus firing a rule.

Based on the equivalence knowledge attained during the second scan, the in-
ferred output and input data are finally scanned once more to ensure proper
consolidation. All statements are rewritten so that they only contain pivot iden-
tifiers, producing the final output.

4 Evaluation and Discussion

We now provide evaluation of the SAOR methodology, firstly with quantitative
analysis of the importance of authoritative reasoning, and secondly we provide
some performance measurements, discussion and some insights into the fecundity

SAOR: Authoritative Reasoning for the Web 87

of each rule wrt. reasoning over web data. Throughout, we use a 106M statement
web-crawl dataset from mid-April 2008, taken from 315k sources.

To show the effects of ontology hijacking we constructed two T-Boxes with and
without authoritative analysis. We then ran reasoning on single membership as-
sertions for the top five classes and properties found natively in our dataset. Table
3 summarises the results. Taking foaf:Person as an example, with an authori-
tative T-Box, six statements are output for every input rdf:type foaf:Person
statement. With the non-authoritative T-Box, 362 statements are output for ev-
ery such input statement. Considering that there are 2.4M such statements in
the input dataset, overall output for rdf:type foaf:Person input statements
alone approach 1 billion statements for non-authoritative reasoning. With au-
thoritative reasoning, we only produce 14M output statements: a 64.8x savings
on materialised statements.

Table 3. Comparison of authoritative and non-authoritative reasoning for the number
of inferred statements produced w.r.t. the five most frequently occurring classes and
properties in the input data

Class URI A NA n n ∗ A n ∗ NA
http://purl.org/rss/1.0/item 0 356 2,550,664 0 908,036,384
http://xmlns.com/foaf/0.1/Person 6 389 2,410,331 14,461,986 937,618,759
http://xmlns.com/foaf/0.1/Document 1 355 1,497,132 1,497,132 531,481,860
http://xmlns.com/wordnet/1.6/Person 0 236 1,097,415 0 258,989,940
http://xmlns.com/foaf/0.1/chatEvent 0 0 1,097,265 0 0
TOTAL 7 1,336 8,652,807 15,959,118 2,636,126,943
Property URI A NA n n ∗ A n ∗ NA
http://purl.org/dc/elements/1.1/title 0 250 4,222,957 0 1,055,739,250
http://xmlns.com/foaf/0.1/name 5 664 3,753,791 18,768,955 2,492,517,224
http://purl.org/dc/elements/1.1/date 0 625 3,677,251 0 2,298,281,875
http://xmlns.com/foaf/0.1/nick 0 637 3,100,733 0 1,975,166,921
http://purl.org/dc/elements/1.1/description 0 631 30,138,087 0 19,017,132,897
TOTAL 5 2,807 44,892,819 18,768,955 26,838,838,167

We measured the performance of applying only the rules which do not require
A-Box joins (1-11a) and for applying all rules. The results of the evaluation on a
2.2 GhZ AMD Opteron machine with 3G of Java heap-space is shown in Figure
2. Please note that the trend with respect to statements read/input statements
processed is very similar to that presented for written statements/statements
output. Also, please observe that applying rules without A-Box joins exhibits
perfectly linear scaling behaviour, while using all rules slows down the algorithm
after inferring about 120m output statements. For implementing the on-disk
A-Box join indices we employ BerkeleyDB9, which slows down considerably if
the index size exceeds a certain limit (depending on caching policy and main
memory available to the JVM). We are currently investigating alternatives to
dynamic data structures for Rules 11b-17.

Table 4 lists the number of times the rules for a given primitive were fired
during reasoning over all rules. Interestingly, from Figure 2 and Table 4 we can
deduce that the bulk of current web reasoning is covered by those rules (1-12a)
which exhibit linear scale.
9 http://www.oracle.com/database/berkeley-db/je/

88 A. Hogan, A. Harth, and A. Polleres

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160

m
in

ut
es

 e
la

ps
ed

million statements written

all rules
single A-Box pattern rules

Fig. 2. Performance of the inferencing algorithm

Table 4. Count of number of statements inferred for each primitive

No Primitive Inferred Count
01 rdfs:subClassOf 66,283,568
02 :equivalentClass 7,325,048
03 rdfs:subPropertyOf 7,314,815
04 :equivalentProperty 6,943,803
05 :inverseOf 8,485,414
06 rdfs:domain 29,850,430
07 rdfs:range 19,466,468
08 :SymmetricProperty 458,467
09 :hasValue 9,938
10 :unionOf 5,676,861
11 :intersectionOf 13,239
12 :FunctionalProperty 15,218
13 :InverseFunctionalProperty 1,379,003
14 :TransitiveProperty 2,862,631
15 :someValuesFrom 51,403
16 :allValuesFrom 460,031
17 :cardinality 265
18 :oneOf 5,898

5 Related Work

OWL reasoning, specifically Query Answering over OWL Full, is not tackled by
typical DL Reasoners; such as FaCT++ [18], RACER [7] or Pellet [15]; which
focus on complex reasoning tasks such as subsumption checking and provable
completeness of reasoning. Likewise, KAON2 [12], which reports better results
on query answering, is limited to OWL-DL expressivity due to completeness
requirements. Despite being able to deal with complex ontologies in a complete
manner, these systems are not tailored for the particular challenges of processing
large amounts of RDF data.

Conversely, incomplete (wrt. OWL Full) rule-based inference, as we advocate
it in this paper, may be considered to have greater potential for scale. Several
rule expressible non-standard OWL fragments; namely OWL-DLP [6], OWL− [5]
(which is a slight extension of OWL DLP), OWLPrime [20], pD* [17], or
intentional OWL [4, Section 9.3]; have been defined in the literature and enable

SAOR: Authoritative Reasoning for the Web 89

incomplete but sound RDFS and OWL inferences. Amongst those fragments,
the fragment we support here is most closest to [17].

Systems such as Triple [14], JESS10, or Jena11 support rule representable
RDFS or OWL fragments as we do, but only work in-memory whereas our
framework is focused on conducting scalable reasoning using persistent storage.

Analogous to our approach, [3] introduce certain restrictions for axioms ac-
cepted by a reasoning engine, however, lacking a rigorous treatment of acceptable
axioms.

The OWLIM [10] family of systems allows reasoning over a number of rule-
representable OWL fragments using the TRREE: Triple Reasoning and Rule
Entailment Engine. Besides the in-memory version SwiftOWLIM, which uses
TRREE, there is also a version offering query-processing over a persistent image
of the repository, BigOWLIM, which comes closest technically to our approach
despite focusing on different fragments of OWL, including those inferring in-
consistencies. Whereas similarly to BigOWLIM, we employ persistent materi-
alisation of inferred triples, our reasoning approach strictly focuses on sensible
reasoning for web data; we only consider a positive fragment of OWL-Horst and
analyse the authority of T-Box statements. We deliberately sacrifice logical com-
pleteness for what we believe to be a more cautious, but still sound approach
for the web data use-case.

6 Conclusion and Future Work

We have presented SAOR: a reasoning methodology for performing reasoning
over Web data based on primitives known to scale. To keep the resulting knowl-
edge base manageable, both in size and quality, we made the following modifi-
cations to traditional reasoning procedures:

– allow only standard use of RDF and disallow metamodelling
– allow extension of classes and properties only from authoritative sources (no

ontology hijacking)
– use pivot identifiers instead of full materialisation of equality

We envision extensions to our system along two lines: scalability enhancements
by replacing the dynamic on-disk data structure with a more scalable scans/sort
approach and distributing the system using a hash-based placement or T-Box
replication strategy.

References

1. Brickley, D., Guha, R.: Rdf vocabulary description language 1.0: Rdf schema. W3C
Recommendation (February 2004), http://www.w3.org/TR/rdf-schema/

2. de Bruijn, J., Heymans, S.: Logical foundations of (e)RDF(S): Complexity and
reasoning. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux,
P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 86–99. Springer,
Heidelberg (2007)

10 http://herzberg.ca.sandia.gov/
11 http://jena.sourceforge.net/

http://www.w3.org/TR/rdf-schema/
http://herzberg.ca.sandia.gov/

90 A. Hogan, A. Harth, and A. Polleres

3. Cheng, G., Ge, W., Wu, H., Qu, Y.: Searching semantic web objects based on class
hierarchies. In: Proceedings of Linked Data on the Web Workshop (2008)

4. de Bruijn, J.: Semantic Web Language Layering with Ontologies, Rules, and Meta-
Modeling. PhD thesis, University of Innsbruck (2008)

5. de Bruijn, J., Polleres, A., Lara, R., Fensel, D.: OWL−. Final draft d20.1v0.2,
WSML (2005)

6. Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: 13th International Conference on
World Wide Web (2004)

7. Haarslev, V., Möller, R.: Racer: A core inference engine for the semantic web. In:
International Workshop on Evaluation of Ontology-based Tools (2003)

8. Hayes, P.: RDF Semantics. W3C Recommendation (February 2004),
http://www.w3.org/TR/rdf-mt/

9. Hogan, A., Harth, A., Decker, S.: Performing object consolidation on the semantic
web data graph. In: 1st I3 Workshop: Identity, Identifiers, Identification Workshop
(2007)

10. Kiryakov, A., Ognyanov, D., Manov, D.: Owlim - a pragmatic semantic repository
for owl. In: Web Information Systems Engineering Workshops, New York, USA,
November 2005. LNCS, pp. 182–192 (2005)

11. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description
logics. In: Proc. of IJCAI-2007, pp. 453–459 (2007)

12. Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Forschungszentrum Informatik, Karlsruhe, Germany (2006)

13. Muñoz, S., Pérez, J., Gutiérrez, C.: Minimal deductive systems for rdf. In: Franconi,
E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53–67. Springer,
Heidelberg (2007)

14. Sintek, M., Decker, S.: Triple - a query, inference, and transformation language
for the semantic web. In: 1st International Semantic Web Conference, pp. 364–378
(2002)

15. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl
reasoner. Journal of Web Semantics 5(2), 51–53 (2007)

16. Smith, M.K., Welty, C., McGuinness, D.L.: Owl web ontology language guide. In:
W3C Recommendation (February 2004),
http://www.w3.org/TR/owl-guide/

17. ter Horst, H.J.: Combining RDF and part of owl with rules: Semantics, decidability,
complexity. In: 4th International Semantic Web Conference, pp. 668–684 (2005)

18. Tsarkov, D., Horrocks, I.: Fact++ description logic reasoner: System description.
In: International Joint Conf. on Automated Reasoning, pp. 292–297 (2006)

19. Wang, T.D., Parsia, B., Hendler, J.: A survey of the web ontology landscape. In:
Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M.,
Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 682–694. Springer, Heidelberg
(2006)

20. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srini-
vasan, J.: Implementing an Inference Engine for RDFS/OWL Constructs and User-
Defined Rules in Oracle. In: 24th International Conference on Data Engineering.
IEEE, Los Alamitos (to appear, 2008)

http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/owl-guide/

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 91–105, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Scalable Distributed Ontology Reasoning
Using DHT-Based Partitioning

Qiming Fang, Ying Zhao∗, Guangwen Yang, and Weimin Zheng

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology,

Tsinghua University, Beijing 100084, China
fangqiming@gmail.com, {yingz,ygw,zwm-dcs}@tsinghua.edu.cn

Abstract. Ontology reasoning is an indispensable step to fully exploit the im-
plicit semantics of Semantic Web data. The inherent distribution characteristic of
the Semantic Web and huge amount of ontology instance data necessitates effi-
cient and scalable distributed ontology reasoning. Current researches on distrib-
uted ontology reasoning mainly focus on dealing with the heterogeneity of
different ontologies but pay little attention to the performance of distributed rea-
soning and have not presented practical approaches and systems. Our goal is to
propose an efficient and scalable distributed ontology reasoning approach,
making it practical in real semantic applications. We propose an approach in this
paper, in which Description Logic reasoners for TBox reasoning are combined
with rule engines for ABox reasoning to support both expressive ontologies and
large amount of instance data. The published data from each node is distributed
using a DHT-based partitioning and stored in well-designed relational databases
to support convenient and efficient reasoning through cooperation of the dis-
tributed nodes. A practical distributed ontology reasoning and querying system
called DORS is developed based on our proposed approach. Our experiments
both in LANs and on PlanetLab using University Ontology Benchmark show
high efficiency of DORS compared with the centralized OWL ontology rea-
soning system Minerva as well as good scalability with respect to the number of
nodes and volume of data in the system.

1 Introduction

The Semantic Web [1] carries out the vision of a Web of data usable for both humans
and machines. This web consists of inter-connected instance data annotated with pos-
sibly expressive ontologies. Ontologies provide formal and precise conceptualization
of specific domains that can be used to describe resources on the Web and thus enable
the reuse, sharing and portability of information and knowledge, coupled with a better
conceptual understanding and analysis of a certain knowledge domain. Ontologies can
enhance the current Web with the possibility of automated reasoning about knowledge,
which makes it possible to derive new and only implicitly available knowledge. So
ontologies are fundamental to the realization of the Semantic Web and play a central

∗ Corresponding author.

92 Q. Fang et al.

role for the success of the Semantic Web. W3C has recommended two standards for
publishing and sharing ontologies on the Web: RDF/RDFS [2] and OWL [3], whose
logical foundation is Description Logic (DL) [4].

Ontology reasoning is an indispensable step to fully exploit the implicit semantics of
Semantic Web data. The DL-based ontology reasoning is comprised of TBox reasoning
(i.e., reasoning with concepts) and ABox reasoning (i.e., reasoning with instances).
Many ontology reasoners have been developed, e.g., Pellet [5], Racer [6], FaCT++ [7],
KAON2 [8], OWLIM [9], Minerva [10] and Instance Store [12]. Unfortunately, all
these reasoners cannot well perform distributed ontology reasoning which we believe is
needed to promote knowledge discovering and sharing, data integration and interop-
eration on the Semantic Web, because the Semantic Web is inherently distributed like
the current Web and the ontologies and data are distributed among many nodes which
makes centralized reasoning difficult or even impossible in many situations. For ex-
ample, we are currently developing a semantic retrieval system, which crawls semantic
data of a certain domain, e.g., travel information, from the Web and provide semantic
retrieval service on the crawled data. An important observation is that resources on the
Web are likely to be annotated with relatively lightweight ontologies (low number of
concepts), but the number of resources annotated with these ontologies is likely to be
very large (large instance sets) [13]. Limited by the capability of single machines, we
use many crawlers located on various machines to crawl the large amount of semantic
data and store them on many machines. In this case, to discover and make use of the
semantic relationships between the data located on different machines, an efficient
distributed ontology reasoning algorithm is needed.

Some research efforts have been taken to solve the problem of distributed ontology
reasoning [15,16,17]. These researches focus on distributed reasoning on different
ontologies and their main idea is to overcome the heterogeneity of ontologies through
ontology mapping. Their researches provide a mechanism to do reasoning on different
ontologies but have not paid much attention to the performance of reasoning, e.g., time
efficiency, communication overhead and system scalability. Performance is a key
factor for a reasoning system to be practical in real world semantic applications, espe-
cially when the applications need to process huge amount of semantic data, which is
very normal in the Semantic Web. To the best of our knowledge, there is no practical
distributed ontology reasoning system currently available. These contexts motivate us
to propose an efficient and scalable distributed ontology reasoning algorithm and
develop a practical reasoning system. We believe that the exhaustive solution of dis-
tributed ontology reasoning will enable more distributed semantic applications and
facilitate the success of the Semantic Web.

Unlike previous works that was putting emphasis on applying ontology mapping to
deal with the ontology heterogeneity to provide a mechanism for distributed reasoning
on different ontologies, we focus on the distributed ontology reasoning algorithm itself,
expecting to present an efficient and scalable distributed reasoning algorithm to deal
with huge amount of distributed semantic data. Therefore, we do not pay much atten-
tion to the ontology heterogeneity which can be addressed by ontology mapping, in-
stead, we assume the distributed nodes follow the same ontology, i.e., the nodes have
the same TBox while the ABoxes can be different.

In this paper, we propose a practical distributed ontology reasoning approach. We
combine DL reasoners for TBox reasoning with rule engines for ABox reasoning. The

 Scalable Distributed Ontology Reasoning Using DHT-Based Partitioning 93

DL reasoners infer complete subsumption relationships between classes and properties
of the ontology and based on these relationships the rule engines conduct ABox rea-
soning following the predefined logic rules. This combination exploits the particular
advantage of DL reasoners, i.e., supporting of expressive ontologies in terms of logic, as
well as the advantage of rule engines, i.e., capability of handling huge amount of in-
stance data with the help of mature relational database storage. To provide convenient
and efficient support for distributed reasoning, we employ the efficient data organizing
method DHT (Distributed Hash Table) to well organize the instance data. On top of the
DHT-based partitioning and organizing of the data, the ABox reasoning on the huge
amount of instance data can be carried out through the cooperation of all nodes in a
well-organized manner. We implement a distributed ontology reasoning and querying
system called DORS based on FreePastry, an open source implementation of the
well-known DHT-based peer-to-peer network Pastry [24]. DORS implements the De-
scription Logic Programs (DLP) [23] rules and thus its reasoning is sound and complete
on Description Horn Logic (DHL, a subset of OWL-DL) ontologies. To investigate the
performance of our approach, experimental evaluation is conducted on DORS deployed
both in LANs environment and on PlanetLab (http://www.planet-lab.org/) using UOBM
(University Ontology Benchmark) [25]. Experimental results show that DORS has
better time efficiency than the centralized OWL ontology reasoning system Minerva
[10] and good scalability w.r.t. the number of nodes and volume of data.

The rest of the paper is organized as follows. In next section we propose our ap-
proach for distributed ontology reasoning in details. Section 3 describes the developed
DORS system employing the proposed approach. In Section 4 a detailed experimental
evaluation is conducted. Then the related work is presented in Section 5 and finally we
conclude the paper and introduce the possible future work in the last section.

2 Distributed Ontology Reasoning

As mentioned before, we focus on the problem of distributed ontology reasoning in the
situation that all nodes follow the same ontology, i.e., all nodes have the same TBox
while the ABoxes can be different. In this environment, we propose a practical ap-
proach for distributed ontology reasoning. In this section, we will describe the approach
in details.

2.1 The Approach Overview

The main idea of our approach resides in three aspects: the combination of DL rea-
soners for TBox reasoning with rule engines for ABox reasoning, the relational data-
base storage and the DHT-based data organization.

Reasoning Method. The mainstream ontology language, OWL, is based on Description
Logic (DL). The DL-based ontology reasoning is comprised of TBox reasoning and
ABox reasoning, so our approach consists of these two parts. We use DL reasoners to
accomplish TBox reasoning and rule engines to ABox reasoning. The DL reasoners

94 Q. Fang et al.

infer complete subsumption relationships between classes and properties of the ontology
and based on these relationships the rule engines conduct ABox reasoning following the
predefined logic rules.

The reasons for this combination of DL reasoners with rule engines are twofold. On
one hand, existing DL reasoners can not provide efficient mechanisms for distributed
ontology reasoning and often provide limited support in dealing with large number of
instances. Previous work [14] has demonstrated that DL reasoners are able to cope with
TBox reasoning of real world ontologies but the extremely large number of instances of
real ontologies makes it difficult for DL reasoners to deal with ABox reasoning. We
think rule engines can possibly solve these problems: they can handle large amount of
assertion facts with the help of mature database storage and provide possible solution of
efficient distributed ontology reasoning as the experiments indicate in latter section. On
the other hand, rule engines are in principle limited in terms of the logic they are able to
support, while many mature DL reasoners can support expressive ontologies. So we
combine DL reasoners with rule engines to support expressive ontologies as well as
large number of instances, achieving an effective solution for scalable distributed on-
tology reasoning.

Data Storage. Storage and reasoning are considered as inseparable in a complete on-
tology reasoning system. We employ relational database to store the ontology data and
carefully design the database schema to effectively support convenient and efficient
ontology reasoning as well as to obtain good scalability regarding large amount of
instance data.

Data Organization. To effectively and efficiently support distributed reasoning on the
ontology data published by many nodes, it is needed to well organize the data in
the distributed system. We employ a DHT-based partitioning approach to organize the
data. The nodes form a DHT-based peer-to-peer network, and the data is distributed in
the DHT network. The reasoning is conducted with the cooperation of all nodes on the
well-organized distributed data. Finally, the reasoning results are distributed and ma-
terialized in the databases to support efficient query processing.

In next subsections, we will introduce in details the processes of TBox reasoning and
ABox reasoning in our approach respectively.

2.2 TBox Reasoning

For TBox reasoning, we employ DL reasoners to obtain all class and property sub-
sumption relationships. There are some well-known and widely used DL reasoners
such as Pellet [5], Racer [6], FaCT++ [7], KAON2 [8], etc., each has its own pros and
cons. Some benchmarking and comparison work has been done to analyze and evaluate
the characteristics, applicability and performance of different reasoners [21,22]. In our
approach, since all nodes follow the same TBox and each node can finish the entire
TBox reasoning task independently, they can choose their own DL reasoners appro-
priately. This brings more flexibility to the approach. Certainly, the TBox reasoning
can also be taken in only one node and then distribute the reasoning results to other
nodes. This approach reduces the reasoning consumption while increasing the distrib-
uting consumption, in other words, it is to trade communication for computation.

 Scalable Distributed Ontology Reasoning Using DHT-Based Partitioning 95

2.3 ABox Reasoning

In our approach, ABox reasoning is conducted by rule engines deployed in each node.
The rule engine can produce new assertions using the predefined logic rules from TBox
axioms and existing assertions, including the original ones and the previously inferred
ones.

Rule Set Definition. To use the rule engine, we must firstly define the rule set.
Currently we use the same logic rule set with Minerva [10]. Minerva uses some DLP
rules that cover all DHL axioms. DHL is an expressive fragment of Description Logic
(DL) and includes RDFS. DLP is the Logic Programs (LP)-correspondent of DHL
axioms. The definition of DHL and DLP makes it practicable to do efficient reasoning
of large-scale ontology using rule engines. The defined DLP rules are listed in Table 1.

Table 1. The DLP rules used by rule engines for ABox reasoning (Rel stands for Relationship)

In the DLP rules, TBox axioms are expressed by facts of a fixed number of predi-

cates, e.g., SubPropertyOf, SubClassOf and Domain. All class and property instances
are expressed by facts of two predicates: TypeOf and Relationship. Of all the predi-
cates, facts of Symmetric, InversePropertyOf, Transitive, Domain, Range, SomeVal-
uesFrom, AllValuesFrom and IntersectionMemberOf totally come from the original
ontology data; facts of SubPropertyOf and SubClassOf are from both original data and
inferred data produced by the DL reasoners; facts of TypeOf and Relationship are ob-
tained from original data as well as reasoning results of the rule engines.

Having defined these rules, the ABox reasoning can be accomplished by iteratively
execute the rules until no new assertions can be derived. To reduce the cost and speed
up the reasoning, the rules are categorized into three groups based on their dependency
so that rules in lower group will not be influenced by rules in higher group, and then the
rule engines can process each group of rules sequentially until no new results can be
generated for each group of rules.

96 Q. Fang et al.

Data Storage and Distribution. We employ relational databases to store the ontology
data, including TBox data and ABox data, for databases have been demonstrated to be
capable to deal with large-scale ontology data [10]. To support convenient and efficient
ABox reasoning, we carefully design our database schema, in which each predicate in
the rules has a corresponding table in the database. Therefore, the rules can be easily
translated into sequences of relational algebra operations. In our approach, all the DLP
rules can be executed via table joins in databases. For example, the first rule of group 1
in Table 1 can be executed via a simple join between tables Relationship and Symmetric.

The instance data, i.e., tables Relationship and TypeOf, is distributed using DHT-based
partitioning. For table Relationship we use the Property URI (in practical system it may
be encoding id) as the hash key, that is to say, the triples with the same property will be
stored in the same node. Similarly, the Class URI is used as the hash key for table TypeOf
and the records with the same class will be put in the same node. In this way, the tables
Relationship and TypeOf are partitioned by the hash keys using the DHT and the ABox
reasoning tasks are also partitioned by the nodes. The DHT-based distribution well or-
ganizes the instance data and guarantees efficient lookup of target data which is necessary
in ABox reasoning process. The selection of hash keys can support convenient join op-
erations on tables.

ABox Reasoning Process. Since the data is distributed using DHT-based partitioning,
the reasoning must be done in a distributed manner through collaboration of the nodes,
for the reasoning on one node many influence the reasoning on another node. The
influence is twofold. On one hand, one node may need some data stored in another node
to execute some rules. For example, to execute the rule 2 of group 3 in Table 1,
assuming that the Relationship triples with property P is stored in node A and the
TypeOf records with class D is stored in node B, it is necessary to deliver data between
the two nodes to execute the rule on these data fragments. To solve this data
dependency, we add a prefetch procedure to retrieve the needed data before the rule
engine starts a reasoning procedure. On the other hand, reasoning results of one node
may trigger the rule engine of another node to generate new assertions, which is an
obvious influence. To cover this influence, the ABox reasoning on each node must be
designed to be a multi-step iterative algorithm. After finishing reasoning on current
data it stores, the node will distribute the results to other nodes using the DHT-based
partitioning. When a node has received some amount of data, it should start a new
reasoning process to possibly produce new assertions.

In summary, the ABox reasoning in each node is a multi-step iterative process, and
each complete reasoning step is comprised of four stages: preparation, prefetch, rule
inference and distributing, here the preparation stage represents the possible procedure
of waiting and receiving reasoning results distributed by other nodes. The complete
ABox reasoning process can be depicted by Figure 1. In the figure, we use node A as a
representative node to depict the reasoning process of each node. All nodes have the
same reasoning process as node A and they collaborate to finish the reasoning tasks
together. Our experiments show that the iterative process usually finishes in 3 to 7 steps
in practice if all nodes start reasoning roughly at the same time, very few nodes may take
more than 10 steps to complete the reasoning, mainly depending on the data distribution.

 Scalable Distributed Ontology Reasoning Using DHT-Based Partitioning 97

Start

Prefetch

Inference

Distributing

Preparation

Prefetch

Inference

Distributing

Preparation

Sending
Other Nodes

Node A

Sending

Distributing

Distributing

Step 1

Step 2

Fig. 1. The ABox reasoning process

3 The DORS System

Based on the proposed approach, we developed a distributed ontology reasoning and
querying system called DORS, aiming to meet scalability requirements of real appli-
cations and provide practical reasoning capability as well as high query answering
performance. The DORS system is comprised of many ontology data providers (nodes)
that follow the same ontology and can publish different instance data. It can perform
distributed reasoning on the distributed data and answer user queries based on the
reasoning results. Figure 2 shows the architecture of DORS. The system is deployed on
top of a DHT-based P2P network, e.g., Chord, CAN or Pastry. Besides the P2P infra-
structure, the components of each node consist of five modules: Importing Module,
Distributing Module, Storage Module, Reasoning Module and Querying Module. The
design principles and implementation details of these modules are described below.

Importing Module. In DORS, the nodes publish ontology data through OWL docu-
ments and the importing module is responsible for importing the data into the reasoning
system from original OWL documents. DORS uses relational databases to store on-
tology data, including its concepts and instances, so the importing module needs to
convert the ontology data described in OWL language into relational database records
according to the database schema. The importing module consists of an OWL parser, a
TBox translator and an ABox translator. The OWL parser parses OWL documents and
extracts the ontology concepts and instances. The TBox translator populates all TBox
axioms into the TBox reasoner, obtain reasoning results and insert them into the da-
tabase after taking schema translation. The ABox translator translates all ABox asser-
tions into database records which then will be distributed to some nodes and stored into
their databases by the data distributor.

98 Q. Fang et al.

Distributing Module. This module deals with the matter of data distributing, including
sending and receiving data. The data distributed is mainly ABox data, involving not
only the original data imported from OWL documents but also the reasoning results
produced by the ABox reasoner, and TBox data also can be distributed if necessary.
The data is distributed using DHT-based partitioning which uses Property URI as the
hash key for table Relationship and Class URI for table TypeOf.

Storage Module. This module takes charge of ontology data storage in the system,
including original TBox and ABox data as well as reasoning results from TBox and
ABox reasoners. Currently, we use MySQL as the storage database.

Reasoning Module. This is the dedicated module to complete the reasoning tasks. The
module is comprised of a TBox Reasoner and an ABox Reasoner, which are a DL
reasoner and a rule engine respectively. Currently, we use Pellet as the DL reasoner and
the rule engine implements all of the DLP rules in Table 1, so DORS can provide sound
and complete reasoning w.r.t. the semantics of DHL which covers RDFS semantics and
most practical OWL semantics.

Querying Module. This module gets user queries, executes queries and presents the
query results to users. The user queries are answered by directly executing SQL
statements in a distributed manner on top of the relational databases located on many
nodes. The query response time is expected to be reduced by the materialization of
reasoning results because there is no need to do time consuming reasoning tasks during
the query processing stage. We only completed a prototype implementation in which
the queries are written in SQL statements directly but we are planning to support some
widely used ontology query languages, e.g., SPARQL [27].

Querying
Module

Storage ModuleDistributing
Module

Reasoning Module

Importing Module

OWL
Documents

OWL Parser

 Data Storage
(RDB)

DHT-based P2P Network

Query
Processor

ABox
Translator

TBox Reasoner
(DL Reasoner)

ABox Reasoner
(Rule Engine)

TBox
Translator

User

Data
Distributor

Fig. 2. The system architecture of DORS

 Scalable Distributed Ontology Reasoning Using DHT-Based Partitioning 99

4 Experimental Evaluation

4.1 Experimental Settings

We implemented a DORS system based on FreePastry using MySQL database for
storage. FreePastry is an open source implementation of Pastry [24], a well-know
DHT-based P2P infrastructure. We use FreePastry to construct a P2P substrate which
can provide automatic maintenance to the network topology and efficient routing and
location which must be utilized in distributed reasoning and query processing. The
FreePastry version used in our experiments is 2.0_03 which can be downloaded from
the FreePastry website (http://freepastry.rice.edu/FreePastry/). The DORS system is
deployed in some computers located in two LANs connected by IP tunnel as well as on
PlanetLab, a famous global research network residing in real Internet environment. We
use different numbers of nodes in different settings, e.g., DORS-4 denotes a 4-nodes
DORS. Moreover, in all experiments we employ the tableaux-based DL reasoner Pellet
to do the TBox reasoning.

The evaluation is conducted on University Ontology Benchmark (UOBM) [25], a
direct extension of the well-known Lehigh University Benchmark (LUBM) [26] in
terms of expressiveness. Ma et al [25] build the UOBM based on their conclusion that
LUBM is insufficient to evaluate the inference capability and less effective to reflect
the scalability of an ontology system. The UOBM extends the LUBM by adding extra
TBox axioms to support both OWL Lite and OWL DL ontologies covering a complete
set of OWL Lite and DL constructs respectively. It consists of university domain on-
tologies, customizable and repeatable synthetic data, a set of test queries and corre-
sponding answers. In our experiments, we use 3 datasets: OWL Lite-1, OWL Lite-5
and OWL Lite-10 (the parameter number denotes the number of universities in the
dataset), which can be downloaded from the IBM Integrated Ontology Development
Toolkit (IODT) website (http://www.alphaworks.ibm.com/tech/semanticstk). The
statistics of the 3 datasets is listed in Table 2. We can see that the 3 datasets have the
same number of classes and properties and different numbers of instances and triples;
this is because they follow the same OWL Lite TBox but different ABoxes.

Table 2. The statistics of the UOBM datasets used in our experiments

 OWL Lite-1 OWL Lite-5 OWL Lite-10
Classes 52 52 52

Properties 54 54 54
Instances 25272 114054 223947
Triples 245864 1075060 2096973

In our experiments, we firstly add n nodes to construct a DORS system. Then the

UOBM ontology dataset (in form of OWL documents) is divided into n parts of roughly
equal size, each part includes data of one or more departments of the universities in the
dataset. The divided data is put into the n nodes equally, so each node will be respon-
sible for data of one or some departments, trying to model the real situation of semantic

100 Q. Fang et al.

applications. Then the nodes import and distribute the data using the DHT-based par-
titioning. Finally the reasoning process is started which is an iterative procedure that
runs until no new results can be generated, indicating that the reasoning on the dataset
has been finished.

4.2 Experimental Results

Load Time. We use the load time to represent the time elapsed from the start of the
importation of the OWL documents until the end of the reasoning. We run experiments
on DORS of various numbers of nodes (4, 8, 16, 32) on the 3 datasets and the results are
listed in Table 3 in which the load time of the centralized reasoning system Minerva
presented in [10] is also listed as a comparison. Note that the machines used in our
experiments (PCs with Intel Xeon CPU 2.66GHz or Intel Pentium D CPU 3.00GHz,
1GB memory and 512MB Java VM memory) are comparable with the machines used
by Minerva’s experiments (a PC with Intel Pentium IV CPU 2.66GHz, 1GB memory
and 512MB Java VM memory). It can be seen that for the same OWL dataset, the load
time of DORS in each setting is less than Minerva. Another obvious observation is that
the load time of DORS decreases with the increasing of the number of nodes for the
same dataset, this is due to the task division and parallel execution of DORS.

In fact, the load time of DORS is comprised of three parts: importing time, distrib-
uting time and reasoning time. In a load process, the data is imported from the OWL
documents, distributed to the nodes using DHT-based partitioning, and then the rea-
soning on the distributed data is conducted. To further investigate the time efficiency of
DORS, we present the importing time, distributing time and reasoning time on DORS
of different numbers of nodes on OWL Lite-10 in Figure 3. We can see that the im-
porting time, distributing time and reasoning time all decrease when the number of
nodes in the system grows. This is a benefit from the parallelism of DORS. All nodes of
DORS can import and distribute their own parts of the dataset in parallel, and this can
reduce the importing and distributing time significantly. For reasoning, our distributed
reasoning algorithm essentially employs the idea of task division and the tasks on
different nodes can be executed in parallel, reducing the reasoning time when the
number of nodes increases. As a result, our distributed reasoning approach can reduce
the load time of the system and perform better than the centralized system.

Table 3. The load time of DORS compared with Minerva (the unit is second)

 OWL Lite-1 OWL Lite-5 OWL Lite-10
Minerva 868 5469 9337
DORS-4 760 2850 5064
DORS-8 559 1944 3151
DORS-16 445 1423 2291
DORS-32 358 1226 1707

We also conducted some experiments on PlanetLab and the results are presented in
Table 4 and Figure 4 in which DORS-4-P denotes a 4-nodes DORS system deployed on
PlanetLab. The load time of DORS deployed on PlanetLab is more than that in LANs,
mainly because of the smaller bandwidth of PlanetLab compared to LANs, which
increases the distributing and reasoning time illustrated in Figure 4. However, the load

 Scalable Distributed Ontology Reasoning Using DHT-Based Partitioning 101

time of DORS on PlanetLab is still more than 20% less than Minerva except for the
smallest dataset OWL Lite-1 (almost equal). This can be an indication that our ap-
proach is to some extent practical in real applications deployed over the Internet.

0

1000

2000

3000

4000

5000

6000

L
oa

d
T

im
e

(s
)

DORS-4 DORS-8 DORS-16 DORS-32

reasoning

distributing

importing

Fig. 3. The load time of DORS on OWL Lite-10

Table 4. The load time of DORS on PlanetLab (the unit is second)

 OWL Lite-1 OWL Lite-5 OWL Lite-10
DORS-4-P 898 4196 7350

0

2000

4000

6000

8000

L
oa

d
T

im
e

(s
)

DORS-4 DORS-4-P

reasoning

distributing

importing

Fig. 4. The load time of DORS on OWL Lite-10

Scalability. Scalability is a very important requirement for Semantic Web techniques
to be usable in real world applications. For a distributed system like DORS, the
scalability concerns mainly include two aspects: how does it perform when the volume
of data increases and when the number of nodes increases. We investigate these two
issues through experimental analysis.

We run DORS on the 3 datasets and various numbers of nodes. Figure 5 shows the
reasoning time and preparation time in different settings. Here we use preparation time
to denote the sum of the importing time and distributing time. Both the reasoning time
and preparation time increase linearly or sub-linearly when the volume of data in-
creases for a certain number of nodes and decreases with the increasing of the number
of nodes for a certain dataset. So the load time, the sum of the preparation time and
reasoning time, will certainly has the same features. These features indicate good
scalability of DORS w.r.t. the volume of data and number of nodes.

Communication cost is a factor that greatly influences the performance of distributed
algorithms and systems. We measure the total and average communication traffic of
DORS in different settings and the results are presented in Figure 6. We can see that
along with the increase of the number of nodes, the total communication traffic increases
slowly for each dataset, but the average communication traffic per node decreases fast.
This implies that the system can support larger datasets through adding more nodes to
apportion the total communication traffic, making the system scalable.

102 Q. Fang et al.

Fig. 5. The reasoning and preparation time of DORS

Fig. 6. The total and average communication traffic of DORS

5 Related Work

Some efforts have been made to solve the problem of distributed ontology reasoning.
Serafini et al [15,16,17] discuss the problem of reasoning with multiple ontologies
interrelated with semantic mappings. They propose a distributed reasoning approach in
which reasoning is the result of a combination, via semantic mappings, of local rea-
soning chunks performed in single ontologies. A tableau-based distributed reasoning
procedure is presented which is sound and complete w.r.t. Distributed Description
Logics (DDL) [11], the formal framework used to represent multiple semantically
connected ontologies. A distributed reasoning system called DRAGO implementing
the distributed tableaux procedure is proposed. DRAGO represents a peer-to-peer like
architecture in which every peer registers a set of ontologies and mappings, and the
reasoning is implemented using local reasoning in the registered ontologies and by

Total Communication Traffic

0

20

40

60

80

100

120

140

DORS-4 DORS-8 DORS-16 DORS-32

T
ra

ff
ic

 (M
B

)

OWL Lite-1

OWL Lite-5

OWL Lite-10

Average Communication Traffic

0

5

10

15

20

25

30

DORS-4 DORS-8 DORS-16 DORS-32

T
ra

ff
ic

 (M
B

)

OWL Lite-1

OWL Lite-5

OWL Lite-10

Reasoning Time

0

500

1000

1500

2000

2500

3000

3500

4000

OWL Lite-1 OWL Lite-5 OWL Lite-10

R
ea

so
ni

ng
 T

im
e

(s
)

DORS-4

DORS-8

DORS-16

DORS-32

Reasoning Time

0

500

1000

1500

2000

2500

3000

3500

4000

DORS-4 DORS-8 DORS-16 DORS-32

R
ea

so
ni

ng
 T

im
e

(s
)

OWL Lite-1

OWL Lite-5

OWL Lite-10

Preparation Time

0
200
400
600
800

1000
1200
1400
1600
1800

OWL Lite-1 OWL Lite-5 OWL Lite-10

Pr
ep

ar
at

io
n

T
im

e
(s

) DORS-4

DORS-8

DORS-16

DORS-32

Preparation Time

0
200
400
600
800

1000
1200
1400
1600
1800

DORS-4 DORS-8 DORS-16 DORS-32

Pr
ep

ar
at

io
n

T
im

e
(s

) OWL Lite-1

OWL Lite-5

OWL Lite-10

 Scalable Distributed Ontology Reasoning Using DHT-Based Partitioning 103

coordinating with other peers when local ontologies are semantically connected with
the ontologies registered in other peers.

Bao et al [18][19] describe a distributed reasoning algorithm for Package-based
Description Logics (P-DL), a modular ontology language that extends DL. This algo-
rithm adopts a federated approach to reasoning with modular ontologies [20] wherein
each ontology module is associated with a local reasoner. The local reasoners com-
municate with each other as needed in an asynchronous fashion.

The approach for distributed ontology reasoning proposed in this paper is basically a
distributed extension of Minerva [10], a centralized storage, inference and querying
system for large-scale OWL ontologies on top of relational databases. Minerva aims to
meet scalability requirements of real applications and provide practical reasoning ca-
pability as well as high query performance. It combines DL reasoners for the TBox
inference with logic rules for the ABox inference. It customizes the database schema
based on inference requirements and user queries are answered by directly retrieving
materialized results from the back-end database. In our approach, we borrow many
basic ideas from Minerva and extend them into a distributed network, resulting in wider
applicability, better efficiency and scalability.

6 Conclusion and Future Work

The inherently distributed Semantic Web necessitates efficient and scalable distributed
ontology reasoning to exploit the implicit semantics of the huge amount of distributed
semantic data. In this paper, we propose a practical distributed ontology reasoning
approach, assuming the distributed semantic data follows the same ontology. This
approach combines DL reasoners for TBox reasoning with rule engines for ABox
reasoning, exploiting the particular advantages of each one, to support expressive on-
tologies and large amount of instance data. The data is distributed using a DHT-based
partitioning and stored in well-designed relational databases to support convenient and
efficient reasoning through cooperation of the distributed nodes. A practical reasoning
system DORS is implemented based on the proposed approach. Our experiments both
in LANs and on PlanetLab show the high efficiency of DORS compared with the
centralized reasoning system Minerva as well as good scalability w.r.t. the number of
nodes and volume of data.

Our approach is still primary and some improvements can be made. The reasoning
process does not address efficiently the ontology update problem. The current strategy
is to rerun the reasoning process if the ontology is updated. This is the simplest method
but it brings a heavy overhead. Although ontology update is infrequent in real appli-
cations, we hope to find some methods to greatly reduce the update overhead. Cur-
rently, we implement DLP rules in DORS, so the reasoning is sound and complete on
DHL (a subset of OWL-DL) ontologies. We are investigating the feasibility of adding
more rules to enhance the reasoning capability. Load balance is a key factor to influ-
ence the performance of P2P systems. Previous work [28] has shown the
load-imbalance in P2P based RDF stores and presented some load-balancing strategies.
We are planning to examine the load balance of nodes in DORS. Furthermore, we plan
to make some optimization to our approach, e.g., compressed transfers which can
reduce the communication cost. A more detailed experimental evaluation on larger

104 Q. Fang et al.

datasets and larger number of nodes is also part of the plan, by which we expect to
further prove the practicality of the proposed approach in the real Semantic Web.

Acknowledgements

This work is supported by ChinaGrid project of Ministry of Education of China,
Natural Science Foundation of China (60573110, 60673152, 90612016), National Key
Basic Research Project of China (2004CB317007, 2003CB318000), National High
Technology Development Program of China (2006AA01A101, 2006AA01A108,
2006AA01A111, 2006AA01A117), EU IST programme and Asia Link programme.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, 28–37
(2001)

2. Brickley, D., Guha, R. (eds.): RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Recommendation (2004), http://www.w3.org/TR/rdf-schema/

3. Bechhofer, S., Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider,
P.F., Stein, L.A. (eds.): OWL Web Ontology Language Reference. W3C Recommendation
(2004), http://www.w3.org/TR/owl-ref/

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, Cambridge (2003)

5. Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A Practical OWL-DL Rea-
soner. Journal of Web Semantics 5(2), 51–53 (2007)

6. Haarslev, V., Moller, R.: Racer: A Core Inference Engine for the Semantic Web Ontology
Language (OWL). In: Proceedings of the 2nd International Workshop on Evaluation of
Ontology-based Tools (EON 2003), pp. 27–36 (2003)

7. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description. In: Fur-
bach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 292–297. Springer, Hei-
delberg (2006)

8. Motik, B., Studer, R.: KAON2 - A Scalable Reasoning Tool for the Semantic Web. In:
ESWC 2005, Heraklion, Greece (2005)

9. Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM – A pragmatic semantic repository for
OWL. In: Dean, M., Guo, Y., Jun, W., Kaschek, R., Krishnaswamy, S., Pan, Z., Sheng, Q.Z.
(eds.) WISE 2005 Workshops. LNCS, vol. 3807, pp. 182–192. Springer, Heidelberg (2005)

10. Zhou, J., Ma, L., Liu, Q., Zhang, L., Yu, Y., Pan, Y.: Minerva: A scalable OWL ontology
storage and inference system. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC
2006. LNCS, vol. 4185, pp. 429–443. Springer, Heidelberg (2006)

11. Borgida, A., Serafini, L.: Distributed Description Logics: Assimilating Information from
Peer Sources. Journal of Data Semantics, 153–184 (2003)

12. Bechhofer, S., Horrocks, I., Turi, D.: The OWL instance store: System description. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 177–181. Springer, Heidelberg
(2005)

13. Weithoner, T., Liebig, T., Luther, M., Bohm, S.: What’s Wrong with OWL Benchmarks? In:
Proceedings of the Second International Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS 2006), pp. 101–114 (2006)

 Scalable Distributed Ontology Reasoning Using DHT-Based Partitioning 105

14. Haarslev, V., Moller, R.: High Performance Reasoning with Very Large Knowledge Bases:
A Practical Case Study. In: International Joint Conference on Artificial Intelligence (IJCAI
2001), pp. 161–168. Morgan-Kaufmann, San Francisco (2001)

15. Serafini, L., Tamilin, A.: DRAGO: Distributed reasoning architecture for the semantic web.
In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 361–376.
Springer, Heidelberg (2005)

16. Serafini, L., Borgida, A., Tamilin, A.: Aspects of Distributed and Modular Ontology Rea-
soning. In: International Joint Conference on Artificial Intelligence (IJCAI 2005), pp.
570–575 (2005)

17. Serafini, L., Tamilin, A.: Local Tableaux for Reasoning in Distributed Description Logics.
In: International Workshop on Description Logics (DL 2004), pp. 100–109 (2004)

18. Bao, J., Caragea, D., Honavar, V.: A Distributed Tableau Algorithm for Package-based
Description Logics. In: Proceedings of the 2nd International Workshop on Context Repre-
sentation and Reasoning, CRR (2006)

19. Bao, J., Caragea, D., Honavar, V.: A Tableau-based Federated Reasoning Algorithm for
Modular Ontologies. In: Proceedings of the 2006 IEEE/WIC/ACM International Confer-
ence on Web Intelligence (WI 2006), pp. 404–410 (2006)

20. Bao, J., Caragea, D., Honavar, V.G.: Modular ontologies - A formal investigation of se-
mantics and expressivity. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006.
LNCS, vol. 4185, pp. 616–631. Springer, Heidelberg (2006)

21. Weithoner, T., Liebig, T., Luther, M., Bohm, S., Henke, F., Noppens, O.: Real-world rea-
soning with OWL. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS,
vol. 4519, pp. 296–310. Springer, Heidelberg (2007)

22. Rock, J., Haase, P., Ji, Q., Volz, R.: Benchmarking OWL Reasoners. In: Bechhofer, S.,
Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp.
1–15. Springer, Heidelberg (2008)

23. Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining
Logic Programs with Description Logic. In: Proceedings of the 12th International Confer-
ence on World Wide Web (WWW 2003), pp. 48–57. ACM, New York (2003)

24. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS,
vol. 2218, pp. 329–349. Springer, Heidelberg (2001)

25. Ma, L., Yang, Y., Qiu, Z., Xie, G.T., Pan, Y., Liu, S.: Towards a complete OWL ontology
benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 125–139.
Springer, Heidelberg (2006)

26. Guo, Y., Pan, Z., Heflin, J.: An evaluation of knowledge base systems for large OWL data-
sets. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, pp. 274–288. Springer, Heidelberg (2004)

27. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF. W3C
Recommendation (2008), http://www.w3.org/TR/rdf-sparql-query/

28. Battre, D., Heine, F., Hoing, A., Kao, O.: Load-balancing in P2P Based RDF Stores. In:
Proceedings of the 2nd International Workshop on Scalable Semantic Web Knowledge Base
Systems (SSWS 2006), pp. 29–42. Springer, Heidelberg (2006)

Versatile Semantic Modeling of Frame Logic
Programs under Answer Set Semantics

Mario Alviano, Giovambattista Ianni, Marco Marano, and Alessandra Martello

Dipartimento di Matematica, Università della Calabria, I-87036 Rende (CS), Italy
lastname@mat.unical.it

Abstract. This work introduces the framework of Frame Answer Set
programs (fas). fas programs are a frame logic-like language working
under answer set semantics augmented with higher order constructs.

The syntax of the language includes the possibility to manipulate
nested molecules, class hierarchies, basic method signatures and contexts
(called framespaces). Semantics is defined in terms of a corresponding
stable model semantics, paving the way to model object ontologies and
their semantics under this well known paradigm.

The language is purposely designed so that inheritance behavior and
other features of the language can be easily customized by the introduc-
tion of specialized axiomatic modules, which can be modeled on purpose
by advanced developers of ontology languages. Also, contexts allow to
model hybrid systems integrating multiple data sources working under
different entailment regimes. Properties and relationship with original
F-logic semantics of some of the presented axiomatizations are given. A
system prototype has been implemented and is available for evaluation.

1 Introduction

Frame Logic (F-logic) [17,33] is a knowledge representation and ontology mod-
eling language which combines the declarative semantics and expressiveness of
deductive database languages with the rich data modeling capabilities supported
by the object oriented data model.

As such, F-logic constitutes both an important methodology and a tool for
modeling ontologies in the context of Semantic Web. This is witnessed by pro-
jects which focussed in F-logic as representation language, such as WSMO [9,27].
Also, F-logic features play a crucial role in the ongoing activity of the RIF
Working group [3,2]1. F-logic was originally defined under first-order semantics
[17], while a well-founded semantics, satisfactorily dealing with nonmonotonic
inheritance can be found in [33].

The stable model semantics (nowadays better known as Answer Set Program-
ming – ASP), has some attractive feature which make interesting to consider
the possibility of defining a frame-based language under this setting. ASP is

1 http://www.w3.org/2005/rules/wiki/RIF Working Group

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 106–121, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.w3.org/2005/rules/wiki/RIF_Working_Group

Versatile Semantic Modeling of Frame Logic Programs 107

nowadays a mature field, offering languages and systems2, based on a strongly
assessed model-theoretic semantics [15]. ASP allows to model declaratively non-
determinism and gives the possibility to specify, in a declarative way, search
spaces, preferences, strong and soft constraints [6], and more). ASP shares with
F-logic under well-founded semantics the possibility to reason about ontologies
using nonmonotonic constructs, included nonmonotonic inheritance, as it is done
in some ASP extensions conceived for modeling ontologies [26].

This paper aims at closing the gap between F-logic based languages and An-
swer Set Programming, in both directions: on one hand, Answer Set Program-
ming misses the useful F-logic syntax, its higher order reasoning capabilities,
and the possibility to focus knowledge representation on objects, more than
on predicates. On the other hand, manipulating F-logic ontologies under sta-
ble model semantics opens a variety of modeling possibilities, given the higher
expressiveness of the latter with respect to well-founded semantics.

Our approach is set in between a pure model theoretic semantics (proper of
F-logic and many of its extensions [17,33]), and a pure “rewriting” semantics,
in which inheritance is specified by means of an ad-hoc translation to logic
programming [16].

In the former case, semantics is given in a clean and sound manner: however,
the way inheritance (and in general, the semantics of the language) is modeled
is hardwired within the logic language at hand, and cannot be easy subject of
modifications. In the latter case, semantics is enforced by describing a rewriting
algorithm from theories to appropriate logic programs. In such a setting the se-
mantics of the overall language can be better tuned by changing the rewriting
strategy. It is however necessary to have knowledge of internal details about how
the language is mapped to logic programming, making the process of designing
semantics cumbersome and virtually reserved to the authors of the language only.

In this work, we define a basic stable model semantics for fas programs which
does not purposely fix a special meaning for the traditional operators of F-
logic, such as class membership “: ” and subclass containment “: :”. Indeed, fas

programs are conceived as a test-bed on which an advanced ontology designer is
allowed to choose the behavior of available operators from a predefined library, or
to design her own semantics from scratch. The ability to customize the semantics
of the language is crucial especially in presence of inheritance constructs. In fact,
when one has to model a particular problem, a specific semantics for inheritance
may be more suitable than another, and it is often necessary to manipulate
and/or combine the predefined behaviors of the language.

The contributions of our paper are highlighted next:

1. We present the family of Frame Answer Set Programs (fas programs), al-
lowing usage of frame-like constructs, and of higher order atoms. Interestingly,
positively nested frames may appear both in the head and in the body of rules.
The language allows to reason in multiple contexts which are called framespaces.
2. We provide the model-theoretic semantics of fas programs in terms of their
answer sets.
2 Among the variety of such systems we recall here DLV [19] and smodels [29].

108 M. Alviano et al.

3. We show how semantics features can be introduced on top of the basic se-
mantics of the language by adding an appropriate axiomatization. Structural,
behavioral, and arbitrary semantic for inheritance can be easily designed and
coupled with user ontologies. In some cases, we show how these axiomatizations
relate with F-logic under first order semantics.
4. We illustrate in which terms contexts can be exploited for manipulating hy-
brid knowledge bases having many data sources working under different entail-
ment regime.
5. The language has been implemented within the dlt system, a front-end for
answer set solvers. Besides the fragment of language herein presented, dlt allows
negated nested molecules, in the spirit of [20], and re-usable template programs.
If coupled with a proper answer set solver, the same front-end allows usage of
complex terms (e.g. functions, lists, sets), and external predicates [12].

The remainder of the paper is structured as follows: Section 2 introduces the
syntax of the language fas (Frame Answer Set). Section 3 contains a formaliza-
tion of the semantics of fas programs, while Section 4 describes how to use the
language for modeling and axiomatizing knowledge, and proves some properties
of the axiomatic modules presented. The system supporting fas programs is
described in Section 6; related works are discussed in Section 7 and conclusions
are then drawn.

2 Syntax

We present here the syntax of fas programs. Informally, the language allows
disjunctive rules with negation as failure in the body; with respect to ordinary
Ans-Prolog (the basic language of Answer Set Programming), there are three
crucial differences. First, besides traditional atoms and predicates, the language
supports frame molecules in both the body and the head of rules, following the
style of F-logic [17]. When representing knowledge, frame molecules allow to
focus on objects, more than on predicates. An object can belong to classes, and
have a number of property (attribute) values. As an example, the following is a
frame molecule:

brown : employee [surname→ “Mr. Brown”,

skill→→ {java, asp},
salary→ 800,

gender→ male,

married→ pink]

The above molecule defines membership of the subject of the molecule (brown)
to the employee class and asserts some values corresponding to the properties
(which we will call also attributes) bound to this object. This frame molecule
states that brown is male (as expressed by the value of the attribute gender),
and is married to another employee identified by the subject pink. brown knows
java and asp languages, as the values of the skill property suggest, while he has
a salary equal to 800. Intuitively, one can see a class membership statement in

Versatile Semantic Modeling of Frame Logic Programs 109

form x : c as similar to a unary predicate c(x). Accordingly, x[m → v] can be
seen has a binary predicate m(x, v).

As a second important difference, higher order reasoning is a first class citizen
in the language: in other words, it is allowed quantification over predicate, class
and property names. For instance, C(brown) is meant to have the variable C
ranging over the Herbrand universe, thus having employee(brown) as possible
ground instance.

Finally, our language allows the use of framespaces to place atoms and mole-
cules in different contexts. For example, suppose there are two Mr. Brown, one
working for Sun and the other for Ibm. We can use two different assertions, related
to two different framespaces to distinguish them, e.g. brown : employee@sun and
brown : employee@ibm.

We formally define the syntax of the language next.
Let C be an infinite and countable set of distinguished constant and predi-

cate symbols. Let X be a set of variables. We conventionally denote variables
with uppercase first letter (e.g. X , Project), while constants will be denoted
with lowercase first letter (e.g. x, brown, nonWantedSkill). A term is either a
constant or a variable.

Atoms can be either standard atoms or frame atoms. A standard atom is in the
form t0(t1, . . . , tn)@f , where t0, . . . , tn, f are terms, t0 represents the predicate
name of the atom and f the context (or framespace) in which the atom is defined.

A frame atom, or molecule, can be in one of the following three forms:

– s[v1, . . . , vn]@f
– s � c@f
– s � c[v1, . . . , vn]@f

where s, c and f are terms, and v1, . . . , vn is a list of attribute expressions. Here
and in the following, the allowed values for the meta-symbol � are “:” (instance
operator), or “: :” (subclass operator). Moreover, s is called the subject of the
frame, while f represents the context (or framespace).

To simplify the notation, whenever the context term f is omitted, we will
assume f = d, for d ∈ C a special symbol denoting the default context.

An attribute expression is in the form p, p ⇀ v1 or p ⇀⇀ {v1, . . . , vn}, where p
(the property/attribute name) is a term, and v1, . . . , vn (the attribute values) are
either terms or frame molecules. Here and in the following, the meta-symbols ⇀
and ⇀⇀ are intended to range respectively over {→, •→} and {⇒,→→,⇒⇒, •→→}.
Note that, according to this definition, when used within attribute expressions,
the symbols in the set {⇒,→→,⇒⇒, •→→} allow sets of attribute values on their
right hand side, while → and •→ allow single values.

A literal is either an atom p (positive literal), or an expression of the form
¬p (strongly negated literal or, simply, negated literal), where p is an atom. A
naf-literal (negation as failure literal) is either of the form b (positive naf-literal),
or of the form not b (negative naf-literal), where b is a literal.

110 M. Alviano et al.

A formula is either a naf-literal, a conjunction of formulas or a disjunction of
formulas.

A simple atom is either a standard atom, or a frame atom in the forms s�c@f ,
s[p ⇀ v]@f or s[p ⇀⇀ {v}]@f , for s, c, p, v and f terms of the language. The
notion of simple literal and of simple naf-literal are defined accordingly on top
of the notion of simple atom.

A Frame Answer Set program (fas program) is a set of rules, of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an and b1, . . . , bk are literals, not bk+1, . . . , not bm are naf-literals,
and n ≥ 0, m ≥ k ≥ 0. The disjunction a1 ∨ · · · ∨an is the head of r, denoted by
H(r), while the conjunction b1 ∧ · · · ∧ bk ∧ not bk+1 ∧ . . . ,∧not bm is the body
of r, denoted by B(r). A rule with empty body will be called fact, while a rule
with empty head is a constraint.

A plain higher order fas program contains only standard atoms, while a plain
fas program contains only standard atoms with a constant predicate name. A
positive fas program do not contain negation as failure and strongly negated
atoms. In the following, we will assume to deal with safe fas programs, that is,
programs in which each variable appearing in a rule r appears in at least one
positive naf-literal in B(r).

Example 1. The following one rule program is a valid fas program. Intuitively,
it represents the fact that each person is male or female.

P [gender→ “male”] ∨ P [gender→ “female”] ← P : person.

3 Semantics

Semantics of fas programs is defined by adapting the traditional Gelfond-Lifschitz
reduct, originally given for a ground disjunctive logic program with strong and
default negation [15], to the case of fas programs.

Given a fas program P , its ground version grnd(P) is given by grounding rules
of P by all the possible substitutions of variables that can be obtained using
consistently elements of C3. A ground rule thus contains only ground atoms;
the set of all possible simple ground literals that can be constructed combining
predicates and terms occurring in the program is usually referred to as Herbrand
base (BP). We remark that the grounding process substitutes also nonground
predicates names with symbols from C (e.g., a valid ground instance of the
atom H(brown, X) is married(brown, pink), while a valid ground instance of
brown[H → yellow] is brown[color → yellow]).

An interpretation for P is a set of simple ground literals, that is, an inter-
pretation is a subset I ⊆ BP . I is said to be consistent if ∀a ∈ I we have that
¬a �∈ I.

We define the following entailment notion with respect to an interpretation I.
For a a ground atom:

3 As shown next, our semantics implicitly assumes that elements of C are mapped to
themselves in any interpretation, thus embracing the unique name assumption.

Versatile Semantic Modeling of Frame Logic Programs 111

(E1) If a is simple, then I |= a iff a ∈ I;
(E2) I |= not a iff I �|= a.

For l1, . . . , ln ground literals:

(E3) I |= l1 ∧ · · · ∧ ln iff I |= li, for each 1 ≤ i ≤ n;
(E4) I |= l1 ∨ · · · ∨ ln iff I |= li for some 1 ≤ i ≤ n.

For s, p, f ground terms, and m1, . . . , mn ground frame molecules:

(E5) I |= s[p ⇀⇀ {m1, . . .mn}]@f iff I |= s[p ⇀⇀ {mi}]@f , for each 1≤i≤ n.

For s, s′, c, p, f, f ′ ground terms, and v = {v1, . . . , vn} a set of ground attribute
value expressions:

(E6) I |= s[v1, . . . , vn]@f iff I |= s[v1]@f ∧ · · · ∧ s[vn]@f ;
(E7) I |= s � c[v]@f iff I |= s � c @f ∧ s[v]@f ;

(E8) I |= s[p ⇀ s′[v]]@f iff I |= s[p ⇀ s′]@f ∧ s′[v]@f ;
(E9) I |= s[p ⇀⇀ {s′[v]}]@f iff I |= s[p ⇀⇀ {s′}]@f ∧ s′[v]@f ;

(E10) I |= s[p ⇀ s′[v]@f ′]@f iff I |= s[p ⇀ s′]@f ∧ s′[v]@f ′;
(E11) I |= s[p ⇀⇀ {s′[v]@f ′}]@f iff I |= s[p ⇀⇀ {s′}]@f ∧ s′[v]@f ′.

Note that rules (E8) and (E9) force s′[v], which does not have an explicit
framespace, to belong to the context f of the molecule containing it. On
the contrary, s′[v]@f ′ in (E10) and (E11) has a proper framespace f ′, and
the entailment rules take care of this fact. Then, rules (E6) to (E11) define the
context of a frame molecule as the nearest framespace explicitly specified.

For a rule r :

(E12) I |= r iff I |= H(r) or I �|= B(r).

A model for P is an interpretation M for P such that M |= r for every rule
r ∈ grnd(P). A model M for P is minimal if no model N for P exists such that
N is a proper subset of M . The set of all minimal models for P is denoted by
MM(P).

Given a program P and an interpretation I, the Gelfond-Lifschitz (GL) trans-
formation of P w.r.t. I, denoted P I , is the set of positive rules of the form {a1∨· · ·∨
an ← b1, · · · , bk } such that {a1 ∨ · · · ∨ an ← b1, · · · , bk, not bk+1, · · · , not bm} is
in grnd(P) and I |= not bk+1 ∧· · ·∧ not bm. An interpretation I for a program P
is an answer set for P if I ∈ MM(P I) (i.e., I is a minimal model for the positive
program P I) [24,15]. The set of all answer sets for P is denoted by ans(P). We
say that P |= a for an atom a, if M |= a for all M ∈ ans(P). P is consistent if
ans(P) is non-empty.

For a positive program P allowing only the term d in context position, we
define the F-logic first-order semantics in terms of its F-models. A F-model Mf

is a model of P subject to the conditions

112 M. Alviano et al.

(F1) “ : :” encodes a partial order in Mf ;
(F2) if a : b ∈ Mf and b : :c ∈ Mf then a : c ∈ Mf ;
(F3) if a[m ⇀ v] ∈ Mf and a[m ⇀ w] ∈ Mf then v = w, for ⇀∈ {→, •→};
(F4) if a[m ≈> v] ∈ Mf and b : :a then b[m ≈> v] ∈ Mf , for ≈>∈ {⇒,⇒⇒};
(F5) if c[m ⇒ v], a : c and a[m → w] ∈ Mf then w : v ∈ Mf ;
(F6) if c[m ⇒⇒ v], a : c and a[m →→ w] ∈ Mf then w : v ∈ Mf .

We say that P |=f a for an atom a if Mf |= a for all F-models of P .

Example 2. The program in Example 1 together with the fact brown : person.
has two answer sets, M1 = { brown : person, brown[gender → “male”] }
and M2 = { brown : person, brown[gender → “female”] }. Both M1 and M2 are
F-models. Note that M3 = { brown : person, brown[gender → “female”],
brown[gender → “male”] } is neither an F-model nor an answer set for dif-

ferent reasons: it is not an F-model because of condition (F3) given above,
while it is not an answer set because it is not minimal. Note also that dis-
junctive rules trigger in general the existence of multiple answer sets, while the
presence of constraints may eliminate some or all constraints: for instance, the
same program enriched with the constraints ← brown[gender → “male”] and
← brown[gender → “female”] has no answer set4.

4 Modeling Semantics and Inheritance

Given the basic semantics for a fas program P , it is then possible to en-
force a specific behavior for operators of the language by adding to P specific
“axiomatic modules”. An axiomatic module A is in general a fas program. Given
a union of axiomatic modules S = A1 ∪ · · · ∪ An, we will say that P entails a
formula φ under the axiomatization S (P |=S φ) if P ∪S |= φ. The answer sets
of P under axiomatization S are defined as ansS(P) = ans(P ∪ S).

We illustrate next some basic axiomatic modules.

Basic class taxonomies. The axiomatic module C, shown next, associates to
“: ” and “: :” the usual meaning of monotonic class membership and subclass
operator.

c1 : A : :B ← A : :C, C : :B.

c2 : A : :A← X : A.

c3 : ← A : :C, C : :A, A = C.

c4 : X : C ← X : D, D : :C.

Rules c1 and c2 enforce transitivity and reflexivity of the subclass operator,
respectively. Rule c3 prohibits cycles in the class taxonomy, while c4 implements
the class inheritance for individuals by connecting the “: :” operator to the “ : ”
operator. The acyclicity constraint can be relaxed if desired: we define in this
case C′ as C \ {c3}5.
4 A constraint ← c can be seen as a rule f ← c, not f , for which there is no model

containing c.
5 Note that the atom A = C amounts to syntactic inequality between A and C.

Versatile Semantic Modeling of Frame Logic Programs 113

Single valued attributes. Under standard F-logic, the operators → and •→ are
associated to families of single valued functions: indeed, in a F-model M it can
not hold both a[m ⇀ v] and a[m ⇀ w], unless v = w. Under unique names
assumption, we can state the above condition by the set F of constraints:

f5 : ← A[M → V], A[M → W], V = W.

f6 : ← A[M •→ V], A[M •→ W], V = W.

Structural and behavioral inheritance. We show here how to model some peculiar
types of inheritance, such as structural and behavioral inheritance.

Structural inheritance is usually associated to the operator ⇒. Let P1 be the
following example program:

webDesigner : :javaProgrammer. javaProgrammer ::programmer.

webDesigner : :htmlProgrammer. javaProgrammer[salary⇒ medium].
htmlProgrammer[salary⇒ low].

For short, we denote in the following webDesigner as wd, javaProgrammer as jp

and htmlProgrammer as hp.
Under structural inheritance, as defined in [17], property values of superclasses

are “monotonically” added to subclasses. Thus, since c1 is subclass of c2 and
c4, one expects that P1 |=C∪S webDesigner[salary ⇒ {low, medium}] for some
axiomatic module S.

The axiomatic module S shown next, associates this behavior to the operators
⇒ and ⇒⇒.

s7 : D[A⇒ T]← D : :C, C[A⇒ T].
s8 : D[A⇒⇒ T]← D : :C, C[A⇒⇒ T].

Note that s5 (resp. s6) do not enforce any relationship between “⇒” and “→”
(resp. “⇒⇒” and “→→”) as in [17]. We will discuss this issue later in the section.

Behavioral inheritance [33], allows instead nonmonotonic overriding of prop-
erty values. Overriding is a common feature in object-oriented programming
languages like Java and C++: when a more specific definition (value, in our
case) is introduced for a method (a property, in our case), the more general
one is overridden. In case different information about an attribute value can be
derived from several inheritance paths, inheritance is blocked. Let us assume to
add to P1 the assertions jp[income •→ 1000] and hp[income •→ 1200] .

Under behavioral inheritance regime [33]6, the assertions jp[income •→ 1000]
and hp[income •→ 1200] would be considered in conflict when inherited from wd.
Indeed, both wd[income •→ 1000] and wd[income •→ 1200] under the three-valued
semantics of [33] are left undefined. Under fas semantics it is then expected to
have some axiomatic module B where neither P1 |=B∪F∪C wd[income •→ 1000]
nor P1 |=∩B∪F∪C wd[income •→ 1200] hold.

The above behavior can be enforced by defining B as follows

6 Note that in [33] the above semantics is conventionally associated to the→ operator,
while we will use •→

114 M. Alviano et al.

b9 : overridden(D, M, C) ← E[M •→ V], C : :E, E : :D, C = E, E = D.

b10 : inheritable(C, M, D) ← C : :D, D[M •→ V], not overridden(D, M, C).
b11 : C[M •→ V] ∨ C[M •→ V]@false ← inheritable(C, M, D), D[M •→ V].
b12 : exists(C, M) ← C[M •→ V].
b13 : ← inheritable(C, M, D), not exists(C, M).
b14 : existsSubclass(A, C) ← A : C, A : D, D : :C, C = D.

b15 : A[M → V]@candidate ← A : C, C[M •→ V], not existsSubclass(A, C).
b16 : A[M → V] ∨A[M → V]@false ← A[M → V]@candidate.

b17 : exists′(A, M) ← A[M → V].
b18 : ← inheritable(C, M, C), A : C, not exists′(A, M).

The above module makes usage of stable model semantics for modeling multi-
ple inheritance conflicts. By means of rule b11 and b16 it is triggered the existence
of multiple answer set in the presence of inheritance conflicts, one for each pos-
sible way to solve the conflict itself.

Note that ansB∪F∪C(P1) contains two different answer sets M1 and M2 which
respectively are such that M1 |= wd[income •→ 1200] and M2 |= wd[income •→
1000]. However, both assertions do not hold in all the possible answer sets.
Thus, similarly to “well-founded optimism” semantics, we obtain that P1 �|=C∪B
wp[income •→ X] for any X.

Constructive vs well-typed semantics. The operator ⇒ is traditionally asso-
ciated to →. For instance if both jp[keyboard ⇒ americanLayout] and jim :
jp[keyboard→ ibm1050] hold, one might expect that ibm1050 : americanLayout.

However, one might wonder whether to implement the above required behavior
under a constructive or a well-typed semantics.

The two type of semantics differ in the way incomplete information is dealt
with. In a “well-typed” flavored semantics, most axioms are seen as hard con-
straints, which, if not fulfilled, make the theory at hand inconsistent.

In the first case, it may be desirable to use the “⇒” operator for defining
strong desiderata about range and domain of properties, while the “→” could
be used to denote actual instance values such as in the following program P2:

programmer[salary⇒ integer].
g : programmer[salary→ aSalary].
← X : programmer[salary→ Y], not Y : integer.7

Note that ans(P2) is empty, unless it is not explicitly asserted (well-typed)
the fact aSalary : integer.

On the other hand one may want to interpret constructively desiderata about
domain and range of properties, as it is typical, e.g. of RDFS[31]. Consider the
program P3:

programmer[salary⇒ integer].
g : programmer[salary→ aSalary].
Y : integer← X : programmer[salary→ Y].

Here P3 has a single answer set containing the fact aSalary : integer.

7 With some liberality we use here “integer” as class name more than a concrete
datatype, without losing the sense of our example.

Versatile Semantic Modeling of Frame Logic Programs 115

The two types of semantics stem from profound philosophical differences: well-
typedness is commonly (but not necessarily) associated to modeling languages
inspired from database systems, living under a single model semantics and Closed
World Assumption. To a large extent one can instead claim that first order logics
(and descendant formalisms, such as descriptions logics and RDFS), is much
more prone to deal constructively with incomplete information.

It is however worth noting that despite their conceptual difference, construc-
tive and well-typed semantics are often needed together. As a matter of example,
modeling in Java (as well as C++ and F-logic) needs both flavors. Constructive-
ness comes into play in inheritance within class taxonomies (e.g., if A : :B and
B : :C hold, the information A : :C does not need to be well-typed and is inferred
automatically), but well-typedness is required in several other contexts, (e.g.
strong type-checking prescribes that a function having a given signature can not
be invoked using actual parameters which are not explicitly known to fulfil the
function signature).

Whenever required, fas programs can be coupled with axiomatic modules
encoding both well-typed and constructive axioms.

The following axiomatic module CO encodes constructively how the operators
⇒ and → can be related each other:

co15 : V : T ← C[A⇒ T], I : C, I [A→ V].

while W , shown next, encodes the same relation under a well-typed semantics.

w16 : ← C[A⇒ T], I : C, I [A→ V], not V : T.

5 Properties of fas Programs

fas programs have some property of interest. First, F-logic entailment can be
modeled on top of fas programs by means of the axiomatic modules C,S,F ,
and CO. Let A = C ∪ S ∪ F ∪ CO.

Theorem 1. Given a positive, non-disjunctive, fas program P with default con-
texts only, and a formula φ, then P |=A φ iff P |=f φ.

Proof. (Sketch). (⇒) Assume P ∪ A is inconsistent. Given that P is a positive
program, then inconsistency amounts to the violation of some instance of con-
straints c3, f5 or f6. We can show that, accordingly, there is no F-model for P .
On the other hand, if P ∪A is consistent, one can show that the unique answer
set of P is the least F-model of P .

(⇐) It can be shown that if P has no F-model, then P ∪ A is inconsistent.
Viceversa, if P has some F-model its least model corresponds to the unique
answer set of P ∪ A. �

One might wonder at the significance of |=A-entailment for disjunctive programs
with negation. This entailment regime diverges quickly from the behavior of
monotonic logic as soon as negation as failure and disjunction is considered, and
is thus incomparable with first order F-logic. It is matter of future research to

116 M. Alviano et al.

investigate on the relationship between fas programs and F-logic under well-
founded semantics.

As a second important property, we show that contexts can be exploited for
modeling hybrid environments in which more than one semantics has to be taken
in account. For instance one might desire a context s in which only C ∪ S hold
as axiomatic modules (this is typical e.g. of RDFS reasoning restricted to ρ-DF
[22]), while in a context b we would like to have a different entailment regime,
taking in account e.g. B and F .

We will say that an axiomatic module (resp. a program, a formula) A is
defined at context c if for each rule r ∈ A, each atom c ∈ r has context c. If
an axiomatic module (resp. a program, or a formula) A is defined at the default
context d, then the axiomatic module A@c, defined at context c, is obtained by
replacing each atom a appearing in A with a@c.

Example 3. Consider the program P4 defined as follows. P4 has two contexts, rdf
and inh. P4 contains knowledge coming from an RDF triplestore defined in term
of the facts t(gb, rdf: type, hp)@rdf , t(gb, name, “Gibbi”)@rdf , etc. Also P4 contains
the rules X : C@rdf ← t(X, rdf : type,C)@rdf , X[M → V]@rdf ← t(X, M, V)@rdf ,
C : :D@rdf ← t(C, rdfs : subClassOf, D)@rdf . Then, we add to P4 the program
P1@inh where P1 is taken from Section 4, plus the rule X : C@inh← X : C@rdf .

We want that C and S hold under the rdf context, while C and B hold under
the inh context. This can be obtained by defining A = (C∪S)@rdf∪(C ∪B)@inh
and evaluating P4 under |=A-entailment.

For instance, P4 |=A gb : [income •→ 1000]@inh .

We clarify next how contexts interact each other. First, we consider programs
in which contexts are strictly separated: that is, each rule in a program contains
only atoms either with context a or only atoms with context b. This way, a
program can be seen as composed by two separate modules, one defining a and
the other defining b. The following proposition shows that programs defined in
separated context behave separately under their axiomatic regime.

Proposition 1. It is given a program P = P ′@a∪P ′′@b, and axiomatic modules
A@a and B@b. Then, for formulas φ@a and ψ@b, we have that, if P∪A@a∪B@b
is consistent,

P |=A@a∪B@b φ@a ∧ ψ@b ⇔ P ′ |=A φ ∧ P ′′ |=B ψ

Contexts can be seen in some sense as separate knowledge sources, each of which
having its own semantics for its data. In such a setting, it is however important
to consider cases in which knowledge flows bidirectionally from a context to
another and viceversa.

This situation is typical of languages implementing hybrid semantics schemes.
For instance, DL+log [28] is a rule language where each knowledge base com-
bines a description logic base D (living under first order semantics), with a rule
program P (living under answer set semantics). D and P can mutually exchange
knowledge: in the case of DL+log , predicates of D can appear in P , allowing
flow of information from D to P .

Versatile Semantic Modeling of Frame Logic Programs 117

Similarly, we are assuming to have a program P , two contexts a and b, each
of which coupled with axiomatic modules A@a and B@b. The program P freely
combines atoms with context a with atoms with context b, possibly in the same
rule.

For simplicity, the following theorem is given for programs containing simple
naf-literals only.

Given an interpretation I we define Ia as the subset of I containing only
atoms with context a. The extended reduct P ∗Ia of a ground program P is given
by modifying each rule r ∈ P in the following way:

– if l@a ∈ H(r) and l@a �∈ Ia then delete l@a from r;
– if l@a ∈ H(r) and l@a ∈ Ia then delete r;
– if l@a ∈ B(r) and l@a ∈ Ia then delete l@a from r;
– if l@a ∈ B(r) and l@a �∈ Ia then delete r;
– if not l@a ∈ B(r) and l@a �∈ Ia then delete not l@a from r;
– if not l@a ∈ B(r) and l@a ∈ Ia then delete r.

Theorem 2. Let P be a program containing only atoms with context a and b,
and A@a and B@b be two axiomatic modules.

Then,

M ∈ ansA@a∪B@b(P) ⇔ Ma ∈ ansA@a(P ∗Mb) ∧Mb ∈ ansB@b(P ∗Ma)

Roughly speaking, the above theorem states that from the point of view of
context a one can see atoms from context b as external facts, and viceversa. An
answer set M of the overall program is found when, assuming Ma as the set of
true facts for a, we obtain that Mb is the answer set of P ∗Ma ∪ B@b, i.e. an
answer set of the program obtained by assuming facts in Ma true. Viceversa, if
one assumes Mb as the set of true facts for context b, one should obtain Ma as
the answer set of P ∗Mb ∪A@a.

Proof. (Sketch). (⇒) Assume M ∈ ans(P ∪A@a∪B@b), it is easy, yet tedious,
to construct Ma and Mb and verify that Ma ∈ ans(P ∗Mb ∪ A@a) and Mb ∈
ans(P ∗Ma ∪ B@b). Given Pa = P ∗Mb ∪ A@a and Pb = P ∗Ma ∪ B@b, the proof
is conducted by showing that Ma (resp. Mb) is a minimal model of PMa

a (resp.
PMb

b).
(⇐) Given Ma and Mb such that Ma ∈ ans(P ∗Mb ∪ A@a) and Mb ∈

ans(P ∗Ma ∪ B@b), the proof is carried out by showing that M = Ma ∪Mb is a
minimal model of P ∪A@a ∪A@bM . �

6 System Overview

fas programs have been implemented within the dlt environment [8]. The cur-
rent version of the system is freely available on the dlt Web page8, together
with examples, a tutorial, and the axiomatic modules herein presented.
8 http://dlt.gibbi.com

http://dlt.gibbi.com

118 M. Alviano et al.

dlt works as a front-end for an answer set solver of choice S. Programs are
rewritten in the syntax of S and then processed. Resulting answer sets in the
format of S are then processed back and output in dlt format. dlt is compatible
with most of the languages of the dlv family such as dlv [19], dlvhex [13] and
the recent dlv-complex9. The native features of the solver of choice are made
available to the dlt programmer: this way features such as soft constraints,
aggregates (dlv), external predicates (dlvhex), and function, list and set terms
(dlv-complex) are accessible. Limited support is given also for other ASP solvers.

dlt allows the syntax presented in this paper and implements the presented
semantics. Atoms without context specification are assumed to have the default
context d. In order to avoid typing, the default implicit context can be switched
by using a directive in the form @name., which sets the implicit context to name
for the rules following the directive.

We overview next some of the other features of dlt, which, for space reasons,
can not be focused in the present work.

Complex nested expression. dlt allows the usage of negated attribute expres-
sions. From the operational point of view, if a frame literal in the body of a rule
r has subject o and a negative attribute not m, our prototype removes not m
from the attributes of o, adds not a to the body of r, where a is a fresh auxiliary
atom, and adds a new rule a ← o[m]. to the program. This procedure can be
iterated until no negated attribute appears in the program. Then, the answer
sets of the original program are the answer sets of the rewritten program without
auxiliary atoms. Since negated attributes can appear in negative literals and can
be nested, they behave like the nested expressions of [20], allowing in many case
to represent information in a more succinct way. The model-theoretical seman-
tics of this aspect of the language is not focused in this paper and is matter of
future work.

Example 4. The following rule states that a programmer P is suitable for project
p3 if P knows c++ and perl, but is not married to another programmer knowing
c++ and perl.

P [suitable→→ p3]← X : programmer,

P : programmer[skills→→ {“c++”, “perl”},
not married→ X[skills→→ {“c++”, “perl”}].

Template definitions. A dlt program may contain template atoms, that allow to
define intensional predicates by means of a subprogram, where the subprogram
is generic and reusable. This feature provides a succinct and elegant way for
quickly introducing new constructs using the dlt language, such as predefined
search spaces, custom aggregates, etc. Differently from higher order constructs,
which can be used for the same purpose, templates are based on the notion of
generalized quantifier, and allow more versatile usage. Syntax and semantics of
template atoms are described in [8].

9 http://www.mat.unical.it/dlv-complex

http://www.mat.unical.it/dlv-complex

Versatile Semantic Modeling of Frame Logic Programs 119

7 Related Work

Stable vs well-founded semantics. fas programs have some peculiar differences
with respect to the original F-logic. Importantly, while well-founded semantics
[14] is at the basis of the nonmonotonic semantics of F-logic, fas programs live
under stable model semantics. The two semantics are complementary in several
respects. The well-founded semantics is preferable in terms of computational
costs: at the same time, this limits expressiveness with respect to the stable
model semantics, which for disjunctive programs can express any query in the
computational class Σp

2 .
On the other hand, the well-founded semantics is three-valued. Having a third

truth value as first class citizen of the language is an advantage in several sce-
narios, such as just in the case of object inheritance. Indeed, the undefined value
is exploited in F-Logic when inheritance conflicts can not be solved with a clear
truth value. Note, however, that the stable model semantics gives finer grained
details in situations in which the well-founded semantics leaves truth values un-
defined. The reader can find a thorough comparison of the two semantics in [14].
fas answer sets should not be confused with the notion of stable object model
given in [33].

Semantic Web languages. Since F-logic features a natural way for manipulating
ontologies and web data, it has been investigated for a long as suitable basis for
representing and reasoning on data on the web. The two main F-Logic systems
Flora and Florid ([32,21]) share with fas programs the ability to work both on
the level of concepts and attributes and on instances.

Several Semantic Web initiatives point to F-logic as rule-based language core,
like SWSL ([1]) and WSML ([11]) which in its more powerful variants is based
on F-logic layered on top of Description Logic [10].

F-logic has been investigated as a logical way to provide reasoning capability
on top of RDF in the system TRIPLE ([30]) that has native support for contexts
(called models), URIs and namespaces. It is possible also to personalize semantics
either via rule axiomatization (e.g. one can simulate RDFS reasoning by means
of TRIPLE rules) or by means of interfacing external reasoners. The semantics
of the full TRIPLE language has not been clearly formalized: its positive, non-
higher order fragment coincides with Horn logic.

The possibility to define custom rule set for specifying the semantics which
best fits the concrete application context is also allowed in OWLIM ([18]).

Answer Set Programming. Several works share some point in common with this
paper in the field of Answer Set Programming. An inspiring first definition of
F-logic under stable model semantics can be found in [10]. The fragment con-
sidered focuses on first order F-logic with class hierarchies, and do not explicitly
axiomatize structural inheritance with constructive semantics and single valued
attributes. Higher order reasoning is present in dlvhex [12]. Contexts were inves-
tigated under stable model semantics also in [23]. In this setting, context atoms
are exploited to give meaning to a form of scoped negation, useful in Semantic

120 M. Alviano et al.

Web applications where data sources with complete knowledge need to be inte-
grated with sources expected to work under Open World Assumption. Similarly
to our work, multi-context systems of [4] are used in order to define hybrid sys-
tem with a logic of choice. Contexts can transfer knowledge each other by means
of bridge rules, while in our setting it is not necessary a clear distinction between
knowledge bases and bridge rules.

Nested attribute expressions behave like nested expressions as in [20], although
we do not allow the use of negation in the head of rules. A different approach to
nonmonotonic inheritance in the context of stable model semantics was proposed
in [5], in which modules (which can be overridden each other) are associated
with each object, and objects are partially sorted by an isa relation. The idea
of defining an object-oriented modeling language under stable model semantics
has been also subject of research in [26] and [25].

References

1. Battle, S., et al.: Semantic Web Services Language,
http://www.w3.org/Submission/SWSF-SWSL/

2. Boley, H., Kifer, M.: Rif core design. W3C Editor’s Draft (2007)
3. Boley, H., Kifer, M., Pătrânjan, P.-L., Polleres, A.: Rule interchange on the web. In:

Antoniou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.-L.,
Tolksdorf, R. (eds.) Reasoning Web 2007. LNCS, vol. 4636, pp. 269–309. Springer,
Heidelberg (2007)

4. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context
systems. In: AAAI, pp. 385–390 (2007)

5. Buccafurri, F., Faber, W., Leone, N.: Disjunctive Logic Programs with Inheritance.
TPLP 2(3) (May 2002)

6. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints.
IEEE TKDE 12(5), 845–860 (2000)

7. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: Theory
and implementation (unpublished, 2008)

8. Calimeri, F., Ianni, G.: Template programs for disjunctive logic programming: An
operational semantics. AI Communications 19(3), 193–206 (2006)

9. de Bruijn, J., et al.: WSMO Final Draft (2005),
http://www.wsmo.org/TR/d2/v1.2/

10. de Bruijn, J., Heymans, S.: Translating ontologies from predicate-based to frame-
based languages. RuleML, 7–16 (2006)

11. de Bruijn, J., Lausen, H., Polleres, A., Fensel, D.: The web service modeling lan-
guage WSML: An overview. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,
vol. 4011, pp. 590–604. Springer, Heidelberg (2006)

12. Eiter, T., Ianni, G., Tompits, H., Schindlauer, R.: A uniform integration of higher-
order reasoning and external evaluations in answer set programming. In: IJCAI,
pp. 90–96 (2005)

13. Eiter, T., Ianni, G., Tompits, H., Schindlauer, R.: Effective Integration of Declar-
ative Rules with External Evaluations for Semantic Web Reasoning. In: Sure, Y.,
Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Heidel-
berg (2006)

http://www.w3.org/Submission/SWSF-SWSL/
http://www.wsmo.org/TR/d2/v1.2/

Versatile Semantic Modeling of Frame Logic Programs 121

14. van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM 38(3), 620–650 (1991)

15. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365–385 (1991)

16. Jamil, H.M.: Implementing abstract objects with inheritance in datalog¬. In:
VLDB, pp. 56–65 (1997)

17. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. Journal of the ACM 42(4), 741–843 (1995)

18. Kiryakov, A., Ognyanov, D., Manov, D.: Owlim - a pragmatic semantic repository
for OWL. In: WISE Workshops, pp. 182–192 (2005)

19. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DVL system for knowledge representation and reasoning. ACM TOCL 7(3),
499–562 (2006)

20. Lifschitz, V., Tang, L.R., Turner, H.: Nested Expressions in Logic Programs.
AMAI 25(3–4), 369–389 (1999)

21. Ludäscheret, B., et al.: Managing semistructured data with florid: A deductive
object-oriented perspective. Inf. Syst. 23(8), 589–613 (1998)

22. Muñoz, S., Pérez, J., Gutierrez, C.: Minimal deductive systems for RDF. In: Fran-
coni, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53–67.
Springer, Heidelberg (2007)

23. Polleres, A., Feier, C., Harth, A.: Rules with contextually scoped negation. In:
Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 332–347. Springer,
Heidelberg (2006)

24. Przymusinski, T.C.: Stable Semantics for Disjunctive Programs. New Generation
Computing 9, 401–424 (1991)

25. Ricca, F., et al.: OntoDLV: an ASP-based System for Enterprise Ontologies. Jour-
nal of Logic and Computation (Forthcoming, 2008)

26. Ricca, F., Leone, N.: Disjunctive logic programming with types and objects: The
dlv+ system. J. Applied Logic 5(3), 545–573 (2007)

27. Roman, D., et al.: Web service modeling ontology. Applied Ontology 1(1), 77–106
(2005)

28. Rosati, R.: Dl+log: Tight integration of description logics and disjunctive datalog.
In: KR, pp. 68–78 (2006)

29. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artif. Intell. 138(1-2), 181–234 (2002)

30. Sintek, M., Decker, S.: TRIPLE - an RDF query, inference, and transformation
language. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp.
364–378. Springer, Heidelberg (2002)

31. RDF Core Working Group. The Resource Description Framework (2006),
http://www.w3.org/RDF/

32. Yang, G., Kifer, M., Zhao, C.: Flora-2: A rule-based knowledge representation and
inference infrastructure for the semantic web. In: CoopIS/DOA/ODBASE, pp.
671–688 (2003)

33. Yang, G., Kifer, M.: Inheritance in Rule-Based Frame Systems: Semantics and
Inference. Journal on Data Semantics 7, 79–135 (2006)

http://www.w3.org/RDF/

Deriving Concept Mappings through Instance
Mappings

Balthasar A.C. Schopman, Shenghui Wang, and Stefan Schlobach

Vrije Universiteit Amsterdam

Abstract. Ontology matching is a promising step towards the solution
to the interoperability problem of the Semantic Web. Instance-based
methods have the advantage of focusing on the most active parts of
the ontologies and reflect concept semantics as they are actually being
used. Previous instance-based mapping techniques were only applicable
to cases where a substantial set of instances shared by both ontologies.
In this paper, we propose to use a lexical search engine to map instances
from different ontologies. By exchanging concept classification informa-
tion between these mapped instances, an artificial set of common in-
stances is built, on which existing instance-based methods can apply.
Our experiment results demonstrate the effectiveness and applicability
of this method in broad thesaurus mapping context.

1 Introduction

The problem of semantic heterogeneity and the resulting problems of interoper-
ability and information integration have been an important hurdle to the reali-
sation of the Semantic Web. Different communities use different ontologies and
are unable to intercommunicate easily. Solving matching problems is one step
to the solution of the interoperability problem. To address it, the Database and
Semantic Web communities have invested significant efforts over the past few
years [1,2,3].

Instance-based ontology matching techniques determine the similarity be-
tween concepts of different ontologies by examining the extensional informa-
tion of concepts [4,5], that is, the instance data they classify. The idea behind
such instance-based matching techniques is that similarity between the exten-
sions of two concepts reflects the semantic similarity of these concepts. A first
and straightforward way is to measure the common extension of the concepts
— the set of objects that are simultaneously classified by both concepts [6,7].
This method has a number of important benefits. Contrary to lexical methods,
it does not depend on the concept labels, which is particularly important when
the ontologies or thesauri where written in a multi-lingual setting. Moreover,
as opposed to structure-based methods, it does not depend on a rich ontology
structure; this is important in the case of thesauri, which often have a very weak,
and sometimes even almost flat structure.

However, measuring the common extension of concepts requires the existence
of sufficient amounts of shared instances, something which is often not the case.

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 122–136, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Deriving Concept Mappings through Instance Mappings 123

Therefore, in this paper, we aim at enriching one ontology by instances from the
other ontology which it should be mapped to and vice versa. Such enrichment is
carried out through mappings between instances, that is, similar instances should
be classified to the same or similar concepts. In this way, an artificial common
ontology extension is built so that many current instance-based methods, such
as those in [7], can apply.

Research questions. In this paper, we are experimenting to answer the following
research questions:

1. Can an ontology be automatically enriched by instances from another ontol-
ogy using the similarity between instances?

2. Can the artificially built dually classified instances produce reasonable map-
pings between two enriched ontologies?

Method and experiments. We use the Lucene search engine1 to match instances
from two different ontologies. For each instance it of an ontology T , the most
similar instance is from the to-be-mapped ontology S is automatically classified
to the concepts which it also belongs to. After the enrichment, we preserve
the instances of each concept from both thesauri, which include their original
instances and the ones populated from the ontology to be mapped. Based on such
artificially built extensional information of concepts, we calculate a similarity
(in our case, the simple Jaccard similarity) to measure the overlap between
the extensions of two concepts, which in the end leads to mappings between
them, i.e., the higher similarity, the higher probability they should be mapped.

We applied this method on two different cases of thesaurus mapping, a special
but frequent mapping problem:

1. mapping GTT and Brinkman whose instances are all books from the Na-
tional Library of the Netherlands. These are homogeneous instances with
the same meta-data fields.

2. mapping GTT/Brinkman and GTAA. The latter thesaurus is used to anno-
tate broadcast materials in the Dutch archive for Sound and Vision. These
are heterogeneous instances with different meta-data descriptions.

Evaluation. We first measure the quality of the instance mappings, using the
first case and then evaluate the concept mappings in both cases to check the
effectiveness and applicability of our method to both homogeneous and hetero-
geneous collections.

Relation to our previous work. In [7], the similarity between two concepts is
measured based on the overlap of their instance sets. This method relies on the
existence of a set of common instances and therefore limits itself not applica-
ble if there are no common instances. In [8], all instances of each concept are

1 http://lucene.apache.org/

http://lucene.apache.org/

124 B.A.C. Schopman, S. Wang, and S. Schlobach

aggregated to form a unified representation of this concept. A probabilistic clas-
sifier is trained to model the correlation between the similarity between such ag-
gregated representations and the mapping between two concepts. In this paper,
we directly use the similarity between individual instances and assume similar
instances should be classified to similar concepts. An artificial set of common
instances will be built, based on which the similarity between concepts is mea-
sured by applying the methods used in [7]. This is an extension of the work done
in [7]2 and in parallel with the learning method used in [8].

The rest of the paper is structured as following: Section 2 describes the two
application problems in more details. Section 3 introduce our method of using
instance mappings to derive concept mappings, including how to use the lexical
search engine, Lucene, to achieve instance mappings. In Section 4, we present the
results of our experiments. Section 5 introduces some related work, and finally,
Section 5 concludes this paper and discusses the future work.

2 Application Problems

Our research has been motivated by practical problems in the Cultural Heritage
domain, an interoperability problem within National Library of the Netherlands
(Koninklijke Bibliotheek, or KB), and the problem of unified access to two het-
erogeneous collections, one from the KB, one from the Dutch archive for Sound
and Vision (Nederlands Instituut voor Beeld en Geluid, or BG).

2.1 Homogeneous Collections with Multiple Thesauri

Our first task is to match the GTT and Brinkman thesauri, which contain 35K
and 5K concepts respectively. The average concept depths are 0.689606 and
1.03272 respectively.3 Both thesauri have similar coverage but differ in granu-
larity. These two thesauri are individually used to annotate two book collections
in KB: the Scientific Collection annotated mainly by GTT concepts and the
Deposit Collection annotated mainly by Brinkman concepts.

In order to improve the interoperability between these two collections, for
example, using GTT concepts to search books annotated only with Brinkman
concepts, we need to find mappings between these two thesauri.4 Among nearly
1M books whose subjects are annotated by concepts from these two thesauri,
307K books are annotated with GTT concepts only, 490K with Brinkman con-
cepts only and 222K with both. The books in both collections are described
using the same metadata structure, more specially, using an extension of the
Dublin Core metadata standard.5

2 See Section 4.2 for detailed comparison.
3 Nearly 20K GTT concepts have no parents.
4 Descriptions of different scenarios of using mappings, the requirements on mappings

and various evaluation methods can be found in [9].
5 http://dublincore.org/documents/dces/

http://dublincore.org/documents/dces/

Deriving Concept Mappings through Instance Mappings 125

2.2 Heterogeneous Collections with Multiple Thesauri

Our second task is to match the Brinkman thesaurus from the KB to the GTAA
thesaurus, which is used to annotate the multimedia collection in the BG. The
BG serves as the archive of the Dutch national broadcasting corporations. All
radio and television programmes that are broadcast by these corporations are
continuously added to the archive. Besides over 700K hours of material, the BG
also houses 2M still images and the largest music library of the Netherlands.
Each object in the BG collection is annotated by one or several concepts from
the GTAA thesaurus. The GTAA thesaurus contains 160K concepts in total,
including 3868 from the subject facet which are interesting to map with the KB
thesauri. The concept hierarchy of the subject facet has an average depth of
1.30817.

Mapping GTAA to one or both of the KB thesauri is very interesting from
a Cultural Heritage (CH) perspective, as interoperability across collections has
become an urgent practical issue in this domain. For example, one could be in-
terested to search for some broadcasts from the BG about the author of the book
he is reading in the KB. Aligning these thesauri with which the collections are
annotated provides a promising solution to achieve this interoperability. Differ-
ent from the KB case, the meta-data structure of instances differs significantly
across collections.

In both cases, each of the thesauri to be mapped contains a large amount of
concepts, which many current matching tools could not even load. The concepts
within the thesaurus are poorly structured or rather in a nearly flat list, which
makes the structural matching techniques not really applicable. Luckily, the
instances of those concepts are available which allows us to apply instance-based
methods, as done in our previous work [7,8]. In this paper, we continue exploring
the instance-based method at the meta-data level.

3 Method: From Instance Mappings to Concept
Mappings

Our task is to map two thesauri, each of which is used to annotate a collection
of objects (books or multimedia materials). Thesaurus concepts are used to
annotated the subject of these objects and we consider an object is annotate
by a concept as the instance of this concept. Each object may be annotated by
multiple concepts, therefore, one object can be the instance of multiple concepts.

On top of their subject feature, instances also have other features, such as
title, abstract, creator, etc. These features together uniquely represent an in-
stance. All instances are virtually projected into a space where the distance
between them can be measured, e.g., using the Euclidean distance in the feature
space.

Instances that are close in this space could potentially be classified to similar
concepts. Based on this hypothesis, for one concept in one ontology, if instances in
the other ontology are similar to its own instances, we can add those instances as

126 B.A.C. Schopman, S. Wang, and S. Schlobach

its virtual instances. Therefore, these instances can be seen as common instances
shared by this concept and those they really belong to, i.e., the concept(s) in the
other ontology. Once this artificial set of common instances is built, the existing
instance-based methods can be applied to generate concept mappings.

Let us formally describe the (rather simple) idea: let S (for source) and T
(for target) be two thesauri we want to map, and Is and It be their finite sets of
instances. Let anns(i) = {C ∈ S | i ∈ ext(C)} be the annotation of an instance
i, which contains a set of concepts from S. These concepts have instance i in
their extension ext(C).

Suppose we have a similarity function sim between instances (across Is and
It). For each instance i ∈ Is, we look for an instance j ∈ It which is the most
similar to i. That is,

j = argmax
t

sim(t, i).

We can now simply add j to the extension of all concepts C ∈ anns(i). The
same process is carried out in both directions. This way, we create a virtual
dually annotated corpus. This section remains to explain how we calculate the
similarity between instances, and to recall how we calculate concept mappings
from dually annotated corpora.

3.1 Matching Instances

Based on the above hypothesis, we use the Lucene search engine to achieve
instance mappings. Lucene is a high-performance and scalable information re-
trieval library through which any piece of textual data can be indexed and made
searchable. Indexing with Lucene can be divided into three main phases: (i) con-
verting data to text, (ii) analysing the text and (iii) saving the text to an index.
We feed instance data in Lucene, stored in the form of a Document. A Lucene
document (LD) consists of a collection of fields. Every field contains the content
of the corresponding instance features, such as “title,” “abstract,” “creator,” etc.
Additionally, each instance has a “subject” field which contains the labels or
unique identifiers of the concepts they belong to. Lucene allows keyword-based
search and search results (on the form of LDs) are collected within Lucene Hits.
Each LD contained in the Hits, has an associated score value (between 0 and 1)
that indicates its similarity to the search key. Lucene scoring schema is based
on the Vector Space Model [10] of information retrieval. The benefits of using
Lucene are very fast response time, shown in [11], and complexity almost hidden
to the users.

The instance matching process is as follows. Let Is and It be the two instance
sets of two ontologies, e.g., two book collections annotated by the GTT and
Brinkman thesauri. First we populate the Lucene database (Ldb) with a collec-
tion Is. Each instance is stored as a LD with its fields containing information
about this instance. Since Lucene operates on a lexical level, we use the textual
representations of fields where possible, such as “title,” “subject,” “abstract,”
“descriptions,” etc.

Deriving Concept Mappings through Instance Mappings 127

Then we execute a query for every instance it in the other collection It. The
Lucene search engine allows us to search for information in specific fields of
the documents, by specifying one or more keywords and one or more Fields to
search within. We can use words in, for example, the “title” field of instance it as
keywords and search the “title” fields of all LDs in the Ldb. It is also possible to
carry out cross-field queries. That is, for example, using words in the “title” field
to search the “subject” or “abstract” fields, or vice versa. We can also construct
queries by concatenating multiple fields. In this construction we create Lucene
documents with a single field containing the concatenation of certain fields, for
instance the “title” and “subject” fields. Then we execute single-field queries to
match these concatenations with each other.

For every query Lucene returns a list of hits, which is ordered by relevance.
We take the most similar instance and observe which concepts it belongs to, i.e.,
concepts in the “subject” field. We then classify instance it as an instance of these
concepts, by adding these concepts into its “subject” field.6 The same process
is carried out from collection Is to It, i.e., populating the Ldb with collection
It and enriching the instances of collection Is. In the end, each instance in both
collections will be classified against concepts from both thesauri, which means
an artificial set of common instances is created.

If instances in different collections are homogeneously structured, i.e., the
same features are available across different collections, such as the two collec-
tions in the KB, we can use Lucene to directly map instances. However, in more
cases, different collections have different structures to represent/store their in-
stances, such as the different collections in the KB and the BG. Similarly, we
can feed different collections to the Lucene database, using their own features.
However, we need to specify corresponding query fields in order to run Lucene
queries and map instances afterwards. Different from constructing queries for
the homogeneous case, when it is clear that two fields are good for query, such
as “title” to “title” or “title” to “subject,” in the heterogeneous case, we need
to anticipate these potentially good pairs of fields. Readers are referred to [8] for
different ways of automatically choosing such pairs.

3.2 Matching Concepts

Once the artificial common instance set is built, we can apply existing instance-
based techniques to compute mappings between concepts. Our previous work
has shown simple measures of similarity between instances suffice to produce
sensible mappings [7]. In this paper, we use the Jaccard similarity measure to
determine whether two concepts can be mapped or not. Specifically, each con-
cept corresponds to a set of instances which are annotated by this concept. For
all possible pairs of concepts, we measure the Jaccard similarity between their
instance sets. This is a measure of similarity between the extensional semantics
of those concepts. Pairs of concepts with a high Jaccard similarity are considered
as a mapping.
6 By adding concepts into the “subject” field of an instance, this instance will be

considered as an instance of each added concepts.

128 B.A.C. Schopman, S. Wang, and S. Schlobach

There are two parameters which need to be taken into account:

1. The minimum similarity: a threshold that determines how similar the two
concepts must be in order to define a mapping between them.

2. The minimal number of instances shared by two concepts. If a concept has
very few instances, using these instances to determine its extensional seman-
tics is not sufficient. Sometimes, it may mislead the similarity judgement. For
example, if two concepts each have one instance and by chance this instance
is shared. This will result in a Jaccard measure of 1, but it should actu-
ally carry less weight than the case that two concepts have 1000 instance in
common and a few not.

These two parameters in practice are set in an empirical way. Based on some
evaluation criteria, we can set them up to optimise the performance. Note, this is
obviously a biased solution, as the evaluation criteria may vary due to different
mapping usage scenarios, see [9] for more details.

4 Experiment and Evaluation

We will study the following questions:

1. How good is our method for finding similar instances?
2. How does our proposed method perform on homogeneous data collections?
3. How does our proposed method perform on heterogeneous data collections?

4.1 Evaluation of the Quality of Instance Mappings

In the KB case, we have 222K books which have been previously dually anno-
tated with two thesauri to be matched. This gives us an opportunity to evaluate
whether similarity of the descriptions of instances (books) indeed leads to valid
instance mappings.

For this purpose, we split the original dually annotated instance set into two
parts, noted as IG and IB. By hiding the GTT annotation of each book in IB

and the Brinkman annotation of the books in IG, we created two collections
annotated by only one thesaurus.

We first populated the Lucene database (Ldb) with IG and using the method
introduced in Section 3.1, each instance in IB finds the most similar book in IG

and adopts this book’s GTT annotation as its new GTT annotation. Similarly,
each book in IG also borrows the Brinkman annotations from the most similar
book in IB . By comparing its original manually created annotation and this new
GTT/Brinkman annotation automatically obtained from the mapped instance,
we can evaluate the basic hypothesis of our method.

We calculated the similarity of the original annotations with the artificial ones
built from the instance mappings. As the Jaccard similarity is the most common

Deriving Concept Mappings through Instance Mappings 129

Table 1. Performance of using different query configurations

Query fields Sima

title 0.244
title, subjects 0.324
title, subjects (cross query) 0.318
title, subjects (concatenated) 0.310

way of comparing sets, we use it again for this purpose,7 more concretely: the
quality of a prediction for each book in IG and IB is calculated as following:

sima =
|Sm ∩ Sn|
|Sm ∪ Sn|

(1)

where Sm is the manual (original) annotation and Sn is the annotation built by
the instance mapping. Clearly, a higher similarity implies a higher chance for
this method to produce a reasonable set of common instances. We then take the
average of this Jaccard similarity over all dually annotated books as the final
measure. Different ways of query configurations, as discussed in Section 3.1,
perform differently, shown in Table 1.

From Table 1, we can see that the new annotations obtained by querying the
“title” and “subject” fields separately, on average, are the most similar to the
original manual ones, with a Jaccard measure of 0.324. This may seem to be a
low value, but the following experiments will show that the predicative power
of these (now artificially dually annotated) instances is almost as high as of the
original ones. It is also worth noting that the values given in Table 1 only refer
to the original annotations which are, in our experience, also not necessarily per-
fect, and often incomplete. This means that this measure may under-estimate
the correctness of the new annotations. A proper manual evaluation of this is
impossible due to the size of the corpus, and the specialised nature of the anno-
tation task in a library.

4.2 Mapping Thesauri over Homogeneous Collections

In order to evaluate our proposed mapping method for thesauri over homoge-
neous collections we repeat the experiments of [7] to map Brinkman and GTT,
but now based on the full set of instances (not just the doubly annotated corpus).
We used Jaccard similarity measure to generate mappings based on instances.
We applied this measure on the real singly annotated datasets. In this case, IG

and IB contain 307K and 490K book instances, respectively.

7 The reader should not confuse our use of the Jaccard measure to calculate similarity
of concepts, and to evaluate the quality of the artificial annotations. Here, the Jac-
card similarity measures how similar the artificial annotation is to the original one,
while in the former case, the Jaccard similarity measures the overlap of the common
extension of two concepts.

130 B.A.C. Schopman, S. Wang, and S. Schlobach

Table 2. Comparison with results from the real dually annotated dataset, where the
recovered mappings are those found by our method which are also found from the
real dually annotated dataset and the percentage in the bracket is the corresponding
proportion.

Query fields Recovered mappings New mappings
title 426 (31%) 15
title, subjects 549 (40%) 390
title, subjects (cross query) 640 (47%) 564
title, subjects (concatenated) 1140 (84%) 429

The task to be performed is a book-reindexing scenario, which influences the
way the experiments need to be evaluated.8 The minimal number of instances
shared by two concepts is 10 and the lowest threshold was set to 0.001. The
performance varies with the choice of threshold, as depicted in Fig. 1. In our
case, the Jaccard measure is the one we would like to optimise — a high Jaccard
similarity means the translated annotation covers most of its manual annotation
without introducing many errors.

We can see from this figure that the optimum Jaccard measure is achieved
by taking the threshold around 0.1. Fig. 1 (b) is the performance of mappings
generated from the real dually annotated dataset, which can be seen as an up-
per bound performance of these mappings in this scenario. Mappings generated
from the real singly annotated dataset performs at a similar level to what the
OAEI’2007 participants did on the same dataset.9 This is very encouraging,
because it indicates that our method does not have the constraints on the ex-
istence of the explicit dually annotated instances, and still, performs as well as
the state-of-art tools do.

In Table 2, we compared mappings generated from the real singly annotated
dataset (i.e., 307K books with only GTT annotations and 490K books with
only Brinkman annotations) with those generated from the dually annotated
dataset (i.e., 222K books with both Brinkman and GTT annotations). In the
base case — generate artificial common instances using concatenated “title”
and “subject” — we found 84% pairs which are found from the dually anno-
tated dataset, both using the threshold of 0.1. A manual evaluation has shown
that 97% of the 429 new mappings are correct. This comparison confirms that
our method can to a large extent recover the mappings generated from a dually
annotated dataset if it is available; also the high precision of the new mappings
indicates that our method makes use of the information which was not usable
before. It means that even when dually annotated instances are available, us-
ing our method with singly annotated instances can improve current mapping
results.

8 Technical details can be found in [9].
9 See http://oaei.inrialpes.fr/2007/results/library/ for more details of the re-

sults of OAEI’2007 participants.

http://oaei.inrialpes.fr/2007/results/library/

Deriving Concept Mappings through Instance Mappings 131

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Jaccard similarity between concepts

Precision

Recall

Jaccard

(a) Real singly annotated dataset

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Jaccard similarity between concepts

Precision

Recall

Jaccard

(b) Original dual annotated dataset (upper bound)

Fig. 1. Performance evaluated in book-reindexing scenario

4.3 Mapping Thesauri over Heterogeneous Collections

Now we map GTAA with Brinkman using disjoint and heterogeneous collections.
As we introduced earlier, GTAA is used for annotating multimedia materials in
the Dutch archive for Sound and Vision (BG), Brinkman for books in the KB.
In our dataset from the BG collection, there are nearly 60K instances and their

132 B.A.C. Schopman, S. Wang, and S. Schlobach

subjects are annotated against 3593 GTAA concepts. The task here is to map
these GTAA concepts with 5207 Brinkman concepts.

As we discussed earlier in Section 3.1, we first map instances in order to build
an artificial common extension of these concepts. Each collection was fed into
the Lucene database and the query fields were set up manually.

We specify queries on concatenated “kb:title” + “kb:subject” and “bg:title”
+ “bg:subject” +“bg:description.” Each KB instance will be classified to one or
several GTAA concepts through the mapping between instances, and similarly,
each BG instance will be classified to one or several Brinkman concepts. Then,
all instances of one concept were put together as the extensional representation
of this concept. The Jaccard similarity was measured between the instance sets of
all possible pairs of Brinkman and GTAA concepts. All pairs were then ranked by
their Jaccard similarity into an ordered list, with the most promising mappings
on the top.

Ideally, the generated mappings should be evaluated against a reference align-
ment for a global view of the precision and recall. Unfortunately, obtaining a com-
plete list of possible mappings is not practically possible. We therefore compare
the obtained mappings with results from a lexical mapper and then manually
measure the precision of the top K mappings.

Using a simple lexical mapper,10 we obtained 1458 lexical equivalent mappings
between 5207 Brinkman concepts and 3593 GTAA concepts from the subject
facet. One or both concepts of 115 lexical mappings do not have any instances
and therefore cannot be measured by our method.

Moving from the top of the ranked list, we measure the proportion of lexical
mappings, P lexical, and the coverage over all lexical mappings, C lexical. As Fig. 2
(b) shows, when the Jaccard similarity is relatively high, most of the found map-
pings are actually lexical mappings. This proportion decreases with the Jaccard
similarity. At the Jaccard similarity of 0.05, nearly half of the found mappings
are non-lexical pairs. The coverage over all lexical mappings increases slowly up
to around 20%. However, from the 273 lexical mappings that have a Jaccard
similarity above zero (i.e., there are joint instances) 95.6% are ranked among
the top 1000 mappings.

We carried out a manual evaluation on the top 1000 Brinkman–GTAA map-
pings. The purpose is to check whether the precision decreases and how much it
decreases with the increasing number of non-lexical mappings. Among the top
1000 mappings, there are 261 lexically equivalent pairs, which we consider as cor-
rect mappings. The remaining 739 non-lexically equivalent pairs were presented
to a Dutch-speaker, who judged each pair to be a valid mapping or not.

The evaluation results are analysed as follows. For each 10th mapping in the
list, we calculate the precision of all pairs within a window of size 40, 20 to the
left and 20 to the right. This gives a local average precision, P local, which is
sensitive to its location in the list. It indicates, to some extent, the probability

10 This Dutch language-specific lexical mapper makes use of the CELEX
(http://www.ru.nl/celex/) morphology database, which allows to recognise lex-
icographic variants of a word-form, as well as its morphological components.

http://www.ru.nl/celex/

Deriving Concept Mappings through Instance Mappings 133

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Mapping index

M
ea

su
re

s

P
local

P
global

(a) Global and local precision

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0

0.2

0.4

0.6

0.8

1

Jaccard similarity

M
ea

su
re

s

P
global

C
lexical

P
lexical

(b) Percentage and coverage of lexical mappings vs. the global precision

Fig. 2. Evaluation of mappings between Brinkman and GTAA

for a mapping to be correct in a certain neighbourhood when moving through the
ranked list. The precision of all pairs from the top to the current pair, P global,
is also calculated, which indicates the precision from a more global view.

According to Fig. 2 (a), the global precision slowly decreases when moving
further along the ranked mapping list. Although sensitive to its position in the
ranked list, the local average precision also gradually decreases from 100% to
42.5%. A high precision of 71.6% at the 1000th mapping tell us that the quality
of the returned non-lexical mappings is quite good. The local average precision
at the 1000th mapping is still 42.5%,11 which means that in this neighbour-
hood the mappings have an average probability of 42.5% to be correct. Depicted
in Fig. 2 (b), with the increasing number of non-lexical mappings (from about
5% to nearly 80%), the precision does not decrease dramatically (from 100% to
71.6%). The nice results here illustrate the effectiveness of our method and its
applicability to the heterogeneous case.
11 In order to achieve this measure, the evaluator judged the 20 mappings after the

1000th one.

134 B.A.C. Schopman, S. Wang, and S. Schlobach

Fig. 2 to some extent indicates that lexically equivalent pairs often do not
have similar extensional semantics, especially when used in different collections
or across domains. This is an indication to consider the reliability or limitations
of using lexical mappings in certain applications where extensional semantics
play an important roles, such as retrieving or browsing across collections.

5 Related Work

Ontology matching, as a promising solution to the semantic heterogeneity prob-
lem, has recently become an interesting and important research problem. Many
different matching techniques have been proposed. In order to make use of var-
ious properties of ontologies (e.g., labels, structures, instances or related back-
ground knowledge), existing matching techniques adopt methods from different
fields (e.g., statistics and data analysis, machine learning, linguistics). These
solutions share some techniques and attack similar problems, but differ in the
way they combine and exploit their results. A detailed analysis of the different
matching techniques has been given in [3]. Examples of individual approaches
addressing the matching problem and latest development in this area can be
found on www.OntologyMatching.org.

The most related matching technique to our work is the instance-based meth-
ods, also called extensional matching techniques. The idea behind such tech-
niques is that similarity between the extensions of two concepts reflects the
semantic similarity of these concepts. Many current mapping tools, such as [12],
make very limited use of instances, where instance information are only used
complementarity to other techniques. Instance-based method has not been very
widely investigated until recently [4,5,6,13], where neural networks, machine
learning or statistics were used to model the complex correlation between in-
stances and the semantics of concepts. However, instances are in general simply
used as literals and the instance-based similarity normally results from the set
operations, such as in [7].

A simple instance based method requires the existence of common instances.
However, the explicitly shared instances are often not available, as ontologies
in different applications contain similar but different individuals. As a sufficient
amount of instance data becomes available, it has been proposed to use machine
learning and statistics to grasp the relations between instances themselves. The
similarity between instances using their own information, such as the metadata
of individuals, has recently been investigated in [8]. The method proposed in this
paper is another way of using instance as informative individuals by themselves,
instead of treating them only as simple literals.

6 Conclusion and Future Work

In this paper, we propose to use a lexical search engine to map instances from
different ontologies. By exchanging concept classification information between
these mapped instances, we can generate an artificial set of common instances

www.OntologyMatching.org

Deriving Concept Mappings through Instance Mappings 135

shared by concepts from two ontologies, so that existing instance-based methods
can apply. By comparing mappings between two thesauri, GTT and Brinkman,
generated by explicit dually annotated instances and those by our method us-
ing singly annotated datasets, we have shown the feasibility of our method in
a homogeneous case. Our experiments of mapping Brinkman and GTAA, using
completely different and disjoint collections, have demonstrated this method to
be an effective approach and applicable to a broad mapping context, i.e., het-
erogeneous collections. To the best of our knowledge, this is new, and a very
promising step towards effective semantic interoperability between different col-
lections (e.g. in the Cultural Heritage domain).

In the future, we will further experiment with different query configurations
in the instance mapping step, e.g., the influence of single-field, multi-field and
concatenated-field queries on the generated mappings, whether machine learning
techniques can help map instances without many manual settings, etc.

In the GTT-Brinkman case, a threshold can be decided according to the op-
timal performance of the obtained mappings in a re-indexing scenario. However,
it is not the case for the Brinkman-GTAA case. We will investigate more on how
to find such optimisation tasks for deciding the relevant threshold parameters.

Finally, Lucene uses lexical information for answering queries. This hinders
our method to be applied in a multi-lingual setting. In the future, we will explore
the possibilities to increase the applicability of our method in this direction, such
as using an automatic translation tool to reduce the language barrier.

References

1. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4) (2001)

2. Doan, A., Halevy, A.Y.: Semantic integration research in the database community:
A brief survey. AI Magazine 26(1) (2005)

3. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
4. Li, W.S., Clifton, C., Liu, S.Y.: Database integration using neural networks: Imple-

mentation and experiences. Knowledge and Information Systems 2, 73–96 (2000)
5. Doan, A.H., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between

ontologies on the semantic web. In: Proceedings of the 11th international conference
on World Wide Web, pp. 662–673 (2002)

6. Ichise, R., Takeda, H., Honiden, S.: Integrating multiple internet directories by
instance-based learning. In: Proceedings of the eighteenth International Joint Con-
ference on Artificial Intelligence (2003)

7. Isaac, A., van der Meij, L., Schlobach, S., Wang, S.: An empirical study of instance-
based ontology matching. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
253–266. Springer, Heidelberg (2007)

8. Wang, S., Englebienne, G., Schlobach, S.: Learning concept mappings from in-
stance similarity. In: Proceedings of the 7th International Semantic Web Confer-
ence (ISWC 2007), Karlsruhe, Germany (to appear, 2007)

136 B.A.C. Schopman, S. Wang, and S. Schlobach

9. Isaac, A., Matthezing, H., van der Meij, L., Schlobach, S., Wang, S., Zinn, C.:
Putting ontology alignment in context: Usage scenarios, deployment and evaluation
in a library case. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M.
(eds.) ESWC 2008. LNCS, vol. 5021, pp. 402–417. Springer, Heidelberg (2008)

10. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18, 613–620 (1975)

11. Pirro, B., Talia, D.: An approach to ontology mapping based on the lucene search
engine library. In: Proceedings of the 18th International Conference on Database
and Expert Systems Applications (DEXA 2007), Regensburg, Germany, pp. 407–
411 (September 2007)

12. Hu, W., Qu, Y.: Falcon-AO: A practical ontology matching system. Journal of Web
Semantics (2007)

13. Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: iMAP: Discovering
complex semantic matches between database schemas. In: Proceedings of the ACM
International Conference on Management of Data (SIGMOD), pp. 383–394 (2004)

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 137–151, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Deep Semantic Mapping between Functional
Taxonomies for Interoperable Semantic Search

Yoshinobu Kitamura, Sho Segawa,
Munehiko Sasajima, Shinya Tarumi, and Riichiro Mizoguchi

The Institute of Scientific and Industrial Research, Osaka University
8-1, Mihogaoka, Ibaraki, Osaka, Japan

{kita,segawa,msasa,tarumi,miz}@ei.sanken.osaka-u.ac.jp

Abstract. This paper discusses ontology mapping between two taxonomies of
functions of artifacts for the engineering knowledge management. The mapping
is of two ways and has been manually established with deep semantic analysis
based on a reference ontology of function for bridging the ontological gaps be-
tween the taxonomies. We report on the successful results thanks to such deep
analysis not at the lexical level but at the ontological level. Using the mapping
knowledge, we developed a semantic search system which can provide engi-
neers with interoperable access to technical documents by searching for func-
tional metadata based on either of functional taxonomies.

Keywords: Knowledge management, ontology, ontology mapping, metadata.

1 Introduction

Functionality is one of the key aspects of knowledge about artifacts [1,2]. The goal of
this research is to manage engineering documents using semantic annotation about
functionality of artifacts. Such function-oriented knowledge management is very
useful in engineering design by finding previous design cases for the same required
function or by finding related patents [2]. The semantic annotation about function is
expected to solve the difficulty of the current document-based engineering knowledge
management based on lexical expressions, that is, many terms (verbs) are used in
documents for the same function (and vise versa) without clear semantics.

For this, we have proposed a framework of an ontology-based semantic annotation
about functionality (we call Funnotation (abbreviation of FUNctional anNOTATION)
hereafter) [3]. It includes a metadata schema in OWL for functional annotation. The
schema is based on our functional ontologies [4,5,6] (we call FOCUS (abbreviation of
Functional Ontology for Categorization, Utilization and Systematization)), which
have been deployed successfully in industry [6]. Metadata in RDF based on the
schema shows the function of the artifact mentioned in documents. Then, a document
search system using the functional metadata as an engineering knowledge manage-
ment system is designed to help engineers access technical documents in a web sys-
tem on an intranet within a company by specifying “what they want to realize”, i.e.,
function, independently of lexical terms in the documents.

138 Y. Kitamura et al.

Our aim in this paper is to realize interoperability between functional taxonomies
in the functional annotation. Some taxonomies of verbs for generic functions have
been proposed in the literature, e.g., [1,4,7,8]. Among others, we concentrate on
(Reconciled) Functional Basis in the NIST Design Repository Project (hereafter FB)
[8] and our functional concept ontology (hereafter FOCUS/Tx) [4]. Thus, our goal
here is to search for documents using metadata based on either of these taxonomies.

The research issue here is to establish the two-way mappings (by which we here
mean directed correspondence relations) between similar functional terms in those
taxonomies. This is a problem so-called the semantic integration [9] or ontology
matching [10]. General techniques for this problem can be categorized into ‘automatic
mapping discovery’ [9] and ‘manual mapping analysis’. The current majority of re-
search efforts aim at ‘automatic mapping discovery’ which is to automatically deter-
mine which concepts in two ontologies represent similar notions [9]. Such techniques
mainly use lexical information based on natural language processing techniques, the
structural features of ontologies, and/or shared instances [9,10]. Although the auto-
matic mapping discovery can be applicable to large-scale ontologies, it is difficult to
get precise mappings reflecting the deep semantics1 of the target concepts. Moreover,
the automatic mapping discovery hardly contributes to revealing the underlying dif-
ferences and in-depth investigation on the target concepts.

On the other hand, the manual mapping analysis can establish precise mappings
based on deep analysis of the taxonomies and account for the ontological differences
of taxonomies and the concepts. Of course, the manual analysis is a time-consuming
task and then it is difficult to establish mappings between large-scale ontologies.

The crucial issue here is that the differences between those functional taxonomies
are not only terminological but also ontological, because some functions are based on
different conceptualizations. For example, “link” in FB implies not only “to couple
flows together” [8] as the change at input and output but also “by means of an inter-
mediary flow” [8] as how to realize it. Thus, it cannot be fully mapped onto “com-
bine” in FOCUS/Tx which implies “to bring two operands into an operand” as the
change at input and output, which corresponds to only the former part of the meaning
of “link”. This is not a terminological but an ontological difference, because “the
change in the target object” and “how to realize the change” are ontologically differ-
ent. One of the deep causes of such a confusion is the lack of clear understanding of
the notion of function, though much research has been conducted on functionality in
engineering design (e.g., [1,2]), in artificial intelligence (e.g., [12]) and in philosophy
[13]. Our aims here include contribution to accounting for the notion of function by
comparing those taxonomies as well.

On the basis of the above observation, this research adopts not the automatic map-
ping discovery but the manual mapping analysis based on a reference ontology of
function. Its main reasons are the deep ontological gaps between taxonomies and our
aim of investigating function ontologically discussed above. The small numbers of
terms of the taxonomies (52 terms [8] and 89 terms [4]) enable us to analyze map-
pings manually. Although the numbers are small, FB is founded on a great number of
empirical studies [7,8] and FOCUS/Tx has been successfully deployed in industry [6].

1 Some matching methods use ‘logical semantics’ of axioms (e.g., [11]). The ‘deep semantics’

we would like to capture here is, however, not identical to those formal semantics.

 Deep Semantic Mapping between Functional Taxonomies 139

These facts strongly suggest that these taxonomies cover wide-range of artifacts. So,
it is worth to perform the labor-intensive and time-consuming manual process for
precise mappings. The reference ontology of function [14] defines upper-categories of
several kinds of function. It is utilized here for clarifying ontological differences be-
tween the taxonomies and for bridging the gaps for mappings between them. The
mapping framework has been reported in [15,16]. This paper reports the concrete
two-way mappings (only one-way has been reported in [16]), their analysis, and their
use in interoperable semantic search for knowledge management.

This paper is organized as follows. Firstly, we overview the interoperable semantic
search to be realized in this paper. Then, the taxonomies to be dealt with are intro-
duced in Section 3. Section 4 discusses the reference ontology of function and the
mapping process based on it. Section 5 reports the mappings obtained. Section 6
demonstrates the functional annotation and the interoperable search based on the
mappings. Section 7 discusses related work followed by the conclusion.

2 Framework of Interoperable Semantic Search Based on
Functional Annotation

Figure 1 shows an overview of the Funnotation framework. Its F-Core schema de-
fines fundamental classes such as device, stuff, energy, function and way (of function
achievement) together with properties such as has-function and selected-way. The
way (of function achievement) represents how to achieve a function as discussed in
Section 3.2. The F-Vocab schema defines generic functions based on the functional
concept ontology; FOCUS/Tx [4]. Such schemata implemented in OWL enable us to
describe metadata in RDF representing functionality of engineering devices in docu-
ments. For example, the metadata ma in Fig. 1 shows that the device in annotated
document da (a filter) can perform an instance of the separating function class defined
in the schema. This is annotated to the term “extract” in da. The metadata mb shows
that the distiller in the document db has the same separating function, which is, how-
ever, annotated to the term “refine” in db. In this manner, functional metadata shows
device’s functions independently of the terms in documents and indicates URI to the
original documents and/or terms. Moreover, the metadata show how to achieve a
function, i.e., in this case, two different ways (i.e., the filtering way and the different-
boiling-points (distilling) way) to achieve the separating function.

Moreover, the document dc is annotated in terms of another functional taxonomy;
Functional Basis (FB). The word “grinding” of a coffee grinder is annotated as the
branching function in FB. As discussed in this paper, the authors prepare the mapping
knowledge between FOCUS/Tx and FB based on the reference ontology of function.
As discussed later, in this simple example, the branching function of FB has a direct
mapping to the separating function of FOCUS/Tx.

Given a query in terms of functions of FOCUS/Tx, a semantic search system pro-
vides access to the annotated documents by searching for the functional metadata. In
Fig. 1, if an engineer specifies the separating function as a goal-function (function to
be achieved) as a query, the system provides links to the both documents da and db.
Moreover, according to the mapping knowledge, the document dc is also retrieved.

140 Y. Kitamura et al.

Fig. 1. Overview of Funnotation: A Framework for Semantic Annotation about Functionality
for Engineering Documents

3 The Functional Taxonomies

3.1 Reconciled Functional Basis (FB)

Reconciled Functional Basis has been proposed by Hirtz et al. [8], which is a result of
reconciliation of some previous taxonomies and empirical generalization based on a
great number of empirical studies. A function of a device is expressed as a pair of an
active verb and its (grammatical) object (called ‘flow’). We call the taxonomy of
function (verb) FB in this paper. FB consists of 52 terms in three levels of categoriza-
tion. Table 1 shows its small portion [8]. Each of functional terms is defined in natural
language with examples and correspondents (synonyms). For example, the separating
function is defined as “to isolate a flow (material, energy or signal) into distinct com-
ponents. The separated components are distinct from the original flow, as well as each
other” [8].

 Deep Semantic Mapping between Functional Taxonomies 141

Table 1. A Portion of Reconciled Functional Basis [8]

Class (Primary) Secondary Tertiary Correspondents

Branch

 Separate Isolate, sever, disjoin
 Divide Detach, isolate, release,
 Extract Refine, filter, purify
 Remove Cut, drill, lathe, polish,
 Distribute Diffuse, dispel, disperse
Connect

 Couple Associate, connect
 Join Assemble, fasten
 Link Attach
 Mix Add, blend, coalesce,

Such definitions in natural language are sometimes ambiguous and it is difficult to

distinguish similar terms. Garbacz points out some problems of the classification of
FB such as lack of principle of categorization and non-exhaustiveness from logical
and ontological viewpoints [17]. Moreover, the concept of function is defined as “a
description of an operation to be performed by a device or artifact” [7]. In this defini-
tion, the intention of a designer or a user is implicit, which is a crucial characteristic
of function in comparison with objective behavior [1,2,4,6,12,13].

3.2 The Functional Concept Ontology (FOCUS/Tx)

In comparison with FB, the functional concept ontology (FOCUS/Tx) has an onto-
logical foundation. It is based on a device-centered ontology; FOCUS/Core [6], which
enables us to distinguish function from behavior. The behavior of a device is defined
as temporal changes of things (called operands) as input-output relation in a black
box. A (base-) function is defined as “a role played by such behavior in a specific
context of use” [6]. The context of use depends on intentions of users or designers, or
the system that the component embedded in. This definition is based on the notion of
“role concept” in [18]. Much research has been conducted on “role” in Ontology
Engineering [e.g., 19]. The concept of function satisfies fundamental characteristics in
[19] as discussed in our paper [6].

FOCUS/Tx defines generic types of the base-functions (called functional con-
cepts). Figure 2 shows its portion2. A functional concept (a class of function) is de-
fined ontologically using constraints on the cardinality of operands, relationships
among them and/or designer’s intention to change (focus of intention). For example, a
function, “to divide an operand”, is defined by the following semantic constraints; (1)
the cardinality of the input focused operand must be 1, (2) the cardinality of the out-
put focused operands must be greater than 1, (3) there must be material-product rela-
tionship between the input operand and the output operands and (4) all the output
operands are equally focused. The first three are inherited from the super-concepts
such as ‘separate’. The fourth one is the criterion of categorization at this level and
enables us to distinguish the ‘divide’ function from the sibling function ‘take_out’.

2 The initial version of the ontology was organized in four is-a hierarchies [4]. It has been

restructured into single is-a hierarchy based on the common definitions in the hierarchies.

142 Y. Kitamura et al.

Focused output operand

Output op. / Make op. existentOutput op. / Make op. existent

Base-FunctionBase-Function

Change / Affect op. Change / Affect op.

Receive op.Receive op.

StoreStoreConsumeConsume Supply op.Supply op.

ConvertConvertChange internal
attribute

Change internal
attribute

Change
volume

Change
volume

Change
temp.

Change
temp.

MoveMoveDeformDeform

Change relationship between operandsChange relationship between operandsChange attribute of an op.Change attribute of an op.

Criterion for
categorization

value for
the category

[1→n] [n→1]

MixMix

Separate into ops.Separate into ops.

Split an op.
into portions
Split an op.
into portions

Detach
an op. into parts

Detach
an op. into parts

Decompose an op.
into ingredients

Decompose an op.
into ingredients

Assemble ops. into an op.Assemble ops. into an op.

Compose
different

ingredients

Compose
different

ingredients

Combine
different parts

Combine
different parts

DissolveDissolve JoinJoin

Unify
the same op.

Unify
the same op.

Change
composition

Change
composition

Shift op. from
medium A to medium B.

Shift op. from
medium A to medium B.

Change relative
positions of ops.
Change relative
positions of ops.

Take-out(2)
an op.

Take-out(2)
an op.

Divide
into ops.
Divide

into ops.

an op.

AttachAttach

Numbers of
operands

all output ops.Focused output operand

Output op. / Make op. existentOutput op. / Make op. existent

Base-FunctionBase-Function

Change / Affect op. Change / Affect op.

Receive op.Receive op.

StoreStoreConsumeConsume Supply op.Supply op.

ConvertConvertChange internal
attribute

Change internal
attribute

Change
volume

Change
volume

Change
temp.

Change
temp.

MoveMoveDeformDeform

Change relationship between operandsChange relationship between operandsChange attribute of an op.Change attribute of an op.

Criterion for
categorization

value for
the category

[1→n] [n→1]

MixMix

Separate into ops.Separate into ops.

Split an op.
into portions
Split an op.
into portions

Detach
an op. into parts

Detach
an op. into parts

Decompose an op.
into ingredients

Decompose an op.
into ingredients

Assemble ops. into an op.Assemble ops. into an op.

Compose
different

ingredients

Compose
different

ingredients

Combine
different parts

Combine
different parts

DissolveDissolve JoinJoin

Unify
the same op.

Unify
the same op.

Change
composition

Change
composition

Shift op. from
medium A to medium B.

Shift op. from
medium A to medium B.

Change relative
positions of ops.
Change relative
positions of ops.

Take-out(2)
an op.

Take-out(2)
an op.

Divide
into ops.
Divide

into ops.

an op.

AttachAttach

Numbers of
operands

all output ops.

Fig. 2. A portion of FOCUS/Tx

We distinguish a function from a way of function achievement [5,6], which repre-
sents background knowledge such as physical principle in functional decomposition
[1], in which part-functions achieve a whole-function. It enables us to distinguish
“what to achieve”(function) from “how to achieve” (way of achievement).

FOCUS ontologies have been implemented in our role-centric ontology editor
Hozo [18] (http://www.hozo.jp). Some portions of the implementation have been
reported in [3,6]. Currently, we are rebuilding them and are implementing in OWL.

4 Mapping Process Based on a Reference Ontology

As discussed in Introduction and Section 2, the mappings are based on the reference
ontology of function (FOCUS/Ref hereafter) [3], which defines function categories,
that are, the upper types of functional terms defined functional taxonomies. By a ref-
erence ontology, we here mean that the ontology referred to for categorizing existing
definitions of function and for defining the mappings between them (in comparison
with “reference for system design” such as the ISO’s OSI network reference model).
Note that the set of the functional categories of FOCUS/Ref is neither a super-set nor
a merged-set of those of functional taxonomies.

The upper-right part of Fig. 1 shows a portion of FOCUS/Ref. For example, an ef-
fect function implies changes of a target object (operand). It is categorized into a
device function, an environmental function, and a system-interface function. These
sub-categories imply changes of an operand within the system boundary, that outside
of the boundary and that on the boundary, respectively. The flowing-object function as
a sub-type of the device function represents input-output changes of an operand that
flows through a device from the device-oriented viewpoint. The function-with-way-of-
achievement category implies a specific way of function achievement (discussed
above) as well as a function. Its examples include welding, washing, shearing and
adhering. For example, the welding implies not only the joining function but also the
fusion way. Because meaning of this type of function is impure, we regard this func-
tional category as a subtype of the quasi-function. See [3] for the detail.

 Deep Semantic Mapping between Functional Taxonomies 143

In the mapping process, the authors firstly analyzed the definitions of FB terms and
gave them ontological definitions using Hozo. Then, the authors classified each func-
tional term in the taxonomies into a function category of FOCUS/Ref. Because both
FB and FOCUS/Tx adopt the device-centered viewpoint, all base-functions of FO-
CUS/Tx and many functional terms of FB are categorized into the flowing-object
function category. The definition of function in FOCUS/Core also is based on the
flowing-object function. Some functions of FB are, however, categorized into other
categories of FOCUS/Ref. Then, according to such classification of functional terms,
the mapping knowledge is described for each pair of two functional terms. If func-
tions are categorized into the different categories, the mapping becomes complex for
bridging the ontological gaps as discussed in the following section.

5 Mappings between Taxonomies

We have established two-way mappings (directed correspondence relations) between
FB (52 terms) and FOCUS/Tx (89 terms) according to the mapping process discussed
above. The statistics of the mappings is shown in Table 2. Figure 3 shows the types of
the mappings. Table 2.1 shows statistics on the mappings from FB to FOCUS/Tx. If
both functional terms are categorized into the same functional category of FOCUS/Ref,
they are mapped onto each other directly. For example, ‘couple’ of FB and ‘combine’
of FOCUS/Tx are categorized onto the same flowing-object function category of FO-
CUS/Ref, and they are mapped onto each other (Table 2.1. (A)). In addition, we allow

Table 2. Statistics of the ontology mappings

 Table 2.1. From FB to FOCUS/Tx Table 2.2. From FOCUS/Tx to FB

15%8(C) 1 to N (OR, selection)

Mapping Type Number of
terms in FB

Ratio in FB
terms

Mappings within the same
category of function

31 60%

1 to 1 17 33%

(A) 1 to 1 15 29%

(B) N (OR) to 1 2 4%

(E1) is a func. type 6 12%

Mappings between different
categories of function

21 40%

(D) 1 to N (AND) 10 19%

(E2) is a meta func. 5 9%

(E3) is a way of function
achievement.

4 8%

(F) is an operand. 2 4%

15%8(C) 1 to N (OR, selection)

Mapping Type Number of
terms in FB

Ratio in FB
terms

Mappings within the same
category of function

31 60%

1 to 1 17 33%

(A) 1 to 1 15 29%

(B) N (OR) to 1 2 4%

(E1) is a func. type 6 12%

Mappings between different
categories of function

21 40%

(D) 1 to N (AND) 10 19%

(E2) is a meta func. 5 9%

(E3) is a way of function
achievement.

4 8%

(F) is an operand. 2 4%

Mapping Type
Number of
terms in
FOCUS/Tx

Ratio in
FOCUS/Tx
terms

Mappings with terms in the same grain-size 36 40%

Mappings within the same category of func. 32 36%

1 to 1 23 26%

(A) 1 to 1 15 17%

(B) N (OR) to 1 8 9%

(C) 1 to N (OR, selection) 4 4%

(H1) Mappings to a super-concept 5 6%

Mappings between different categories of
function 4 4%

(G) Partial mapping 4 4%

Mappings with terms in different grain-sizes 53 60%

(H2) Mappings to a super-concept 49 56%

(I) Mappings to a sub-concept 4 4%

Mapping Type
Number of
terms in
FOCUS/Tx

Ratio in
FOCUS/Tx
terms

Mappings with terms in the same grain-size 36 40%

Mappings within the same category of func. 32 36%

1 to 1 23 26%

(A) 1 to 1 15 17%

(B) N (OR) to 1 8 9%

(C) 1 to N (OR, selection) 4 4%

(H1) Mappings to a super-concept 5 6%

Mappings between different categories of
function 4 4%

(G) Partial mapping 4 4%

Mappings with terms in different grain-sizes 53 60%

(H2) Mappings to a super-concept 49 56%

(I) Mappings to a sub-concept 4 4%

(A)

(B)
and

(C)

(D)

or (selection) (E) and

(F)

：Functional term ：Other element

(G) and

(H)

(I)

or

Fig. 3. Mapping types

144 Y. Kitamura et al.

such mapping that several terms are mapped onto one term. For example, both ‘extract’
and ‘remove’ of FB are mapped onto ‘take out’ of FOCUS/Tx (Table 2.1. (B)). Next
example is ‘mix’ in FB which is mapped onto ‘unify’ or ‘compose’ in FOCUS/Tx
(Table 2.1. (C)). By “or” in (C), we here mean that the concrete corresponding term is
selected according to the context of use (e.g., the whole system) in which the mixing
function is used.

On the other hand, if two similar functional terms are classified into different cate-
gories of FOCUS/Ref, they are mapped in a complex manner. For example, ‘guide’ in
FB is categorized into the composite function which consists of two primitive func-
tional concepts. Thus, it is mapped onto ‘supply motion’ plus ‘change direction of
motion’ functions (Table 2.1 (D)). The ‘link’ function of FB is categorized into the
function-with-way-of-achievement category, because its definition implies “by means
of an intermediary flow” [8] which represents a way of achievement as discussed in
Introduction and Sections 3 and 4. Then ‘link’ of FB is mapped onto the ‘combine’
function of FOCUS/Tx plus the intermediate-object way for achieving the combining
function (Table 2.1 (E3)). The ‘import’ and ‘export’ of FB are categorized into the
system-interface category of FOCUS/Ref. Because FOCUS/Tx is defined strictly
based on the device-centered ontology, there is no corresponding functional concept
in FOCUS/Tx. Thus, ‘import’ and ‘export’ of FB are mapped onto an operand from
the outside of the system and an operand to the outside in a functional model of the
FOCUS framework, respectively (Table 2.1 (F)).

Table 2.2 shows the statistics of the mappings from FOCUS/Tx to FB. Since the
grain-sizes (granularity) of the functional concepts in FOCUS/Tx are finer than those
of the FB terms, we took care of the difference of grain-sizes between two taxonomies
in the mapping process. If the grain-size of each functional term is the same (the upper
half of Table 2.2), the mappings have been established in the same manner of the map-
pings from FB to FOCUS/Tx3. If the grain sizes of functional terms are different (the
lower part of Table 2.2), they are mapped to an upper-concept (H2) or to a sub-concept
(I). For example, the ‘deform’ (i.e., ‘change shape') in FOCUS/Tx has subclasses such
as ‘change length’ and ‘change area’, while ‘shape’ in FB has no subclass. In this case,
‘deform’ itself is mapped onto ‘shape’ in FB (Table 2.2 (A)), while those sub-concepts
with finer granularity (e.g., ‘change length’) are mapped onto the coarser one; ‘shape’.
Table 2.2 (H2) shows the numbers of such the mappings. The mapping type (I) indi-
cates the reverse case of the type (H2) for some highly abstracted concepts such as
‘change an operand’ in FOCUS/Tx. In both cases, those concepts are categorized into
the same flowing-object function category.

We here compare the ratios of covering functional terms in the mappings. In the
mappings from FB to FOCUS/Tx, the terms in FB cover (have mappings to) 33 terms
in FOCUS/Tx out of the total of 89 (37%). In the mappings from FOCUS/Tx to FB,
the terms in FOCUS/Tx cover 43 terms in FB out of the total of 52 (83%). Among the
9 terms of FB which are not covered, 6 terms are categorized into the function-way-
of-achievement or the system-interface functions in FOCUS/Ref, both of which are
not functional concepts from the device-oriented viewpoint, strictly speaking. The rest
of 3 terms of FB are classified according to the quantitative difference (e.g., ‘inhibit’

3 In Tables 2.1 and 2.2, the numbers of the case (A) (the 1 to 1 mapping) are the same. The num-

bers of the case (B) are different, because they show the numbers of the source-side terms.

 Deep Semantic Mapping between Functional Taxonomies 145

from ‘prevent’), which is, we think, unnecessary classification of functional concepts.
In other words, these 9 terms in FB are not target terms in the mapping from FO-
CUS/Tx to FB. Thus, we can say that FOCUS/Tx covers FB sufficiently.

Next, we discuss the ratios of successful mappings. There are, however, difficulties
in accurate evaluation of their successfulness. Firstly, because the terms of FB are
defined in natural language, it is difficult to calculate the similarity (or equality) be-
tween the meanings of the mapped terms. Secondly, we allow ambiguous mappings
(‘or’). Lastly, it is essentially difficult to determine criteria for evaluating differences
between concepts in different categorizations. Considering these difficulties, in this
article, we regard a mapping as successful if and only if that mapping is established
only between the functional concepts with neither addition of extra information at
either side nor heavy loss of information. For example, because the case (E3) in Table
2.1 shows mappings to the way of function achievement (i.e., an element other than
the functional concepts in FOCUS/Tx), those mappings in (E3) are regarded as failure.

According to this criterion, in the mappings from FB to FOCUS/Tx, about 80% of
the FB terms have been successfully mapped to the functional concepts of FOCUS/Tx
(note that the covering ratio of those mappings is 37% as discussed above). On the
other hand, in the mappings from FOCUS/Tx to FB, about 30% of the functional
concepts of FOCUS/Tx have been successfully mapped to the terms in FB (the cover-
ing ratio is 83%). This low ratio is mainly due to the difference of granularity of the
taxonomies, because we regard all the mappings between different grain-sizes (i.e.,
Table 2.2 (H2) and (I)) as failure with the heavy information loss. The granularity of a
taxonomy, however, heavily depends on an arbitrary decision made by its author and
thus it is not essential to compare the core contents of different taxonomies. Thus, we
can say that about 70% of the functional concepts of FOCUS/Tx successfully corre-
spond to the terms in FB excluding the terms in the different grain-sizes. More accu-
rate evaluation of the mappings remains as future work.

Even if we consider mappings only between terms in the same grain-size, their
successful ratios in the two mapping directions (about 80% and 70%) are significantly
different. One of its reasons is that FOCUS/Tx can represent the meanings of the
terms of FB as combinations of the finely-categorized concepts such as the functional
concepts and the meta-functions [4] as a system of the function-related concepts in the
mappings from FB to FOCUS/Tx, while FB is single taxonomy of functional terms.

The mapping result discussed above can be regarded as very successful and inter-
esting, considering the following backgrounds of the taxonomies. Firstly, they have
been developed independently from each other. Secondly, the languages used for
definition of the terms are different. FOCUS/Tx is designed firstly in Japanese, while
FB is designed for (and defined by) English. Thirdly, the terms for describing func-
tional knowledge have high diversity. The successful result has been gotten from the
concentration not on lexical terms but on deep semantics of the functional concepts.

Consequently, the result strongly suggests the validity of the content of both FO-
CUS/Tx and FB from their commonality. The suggested validity is supported by their
following applications as well. FOCUS/Tx has been deployed for modeling a real
plant and knowledge management in manufacturing companies in Japan [6]. FB is
widely used by researchers mainly in the United States. Furthermore the result sug-
gests the adequacy of the mapping methodology in this paper.

146 Y. Kitamura et al.

6 Interoperable Semantic Search

6.1 Functional Metadata

The Funnotation schema [3] overviewed in Section 2 enables users to describe func-
tional metadata with RDF which include (1) functions of the device/component (what
is intended to achieve), (2) the used ways of function achievement (how to achieve a
function), (3) a functional structure of the device (how to achieve the whole function),
and (4) candidates (alternative) of ways of achievement. In the terminology in [20],
(1) and (2) are “content descriptors” like keywords, while (3) and (4) are “logical
structure” of “content representation” like a summary or an abstract.

Figure 4 shows an example of the metadata added to the document about a wire
saw, which is a manufacturing machine to slice semiconductor ingots using moving
wires. In Fig. 4, the wire-saw’s function is described as an instance of the splitting
function class (Funnotation:split) defined in FOCUS/Tx shown in Fig. 2. It is anno-
tated to the term “cut” in the document. The wire-saw is annotated as the agent (per-
former) of the function using the agent property. The fact that the splitting function is
achieved using frictional force is described using the frictional_way and the se-
lected_way properties.

Much research has been conducted on automatically annotating web-documents
with metadata elsewhere. Currently, we use two tools for functional annotation: one is
to describe an instance model in Hozo and export it as a RDF file. The other is to use
OntoMat-Annotizer with the schema in OWL exported from Hozo. Moreover, the
authors and colleagues are currently investigating on automatic annotation of patent
documents. It includes automatic identification of functional terms, semi-automatic
mapping discovery from those terms to the functional concepts, and semi-automatic
identification (mining) of functional structures as functional annotation.

6.2 Semantic Search System

In this section, firstly, we overview the basic usages and benefits of the Funnotation
Semantic Search System [3]. Then, we will discuss interoperability with FB based on
the mapping knowledge discussed thus far. This system consists of a user interface on

What is Wire Saw?......
A wire (a piano wire of φ0.08 to 0.16mm) is wound around several hundred times along the groove of
guide roller. Free abrasive grains (a mixture of grains and cutting oils) are applied to the wire while it
keeps running. The abrasive grains rolled on the wire work to enable cutting of a processing object
into several hundred slices at one time. It is mostly used to cut electronic materials.
The free abrasive grains roll to impart fine destruction to the processing object and wear themselves
losing their corners at the same time as making the wire slim. So, the free grains are fed all the time with a
cycle from a tank. As for the wire, it is replaced with a new one little by little. You can say that wire saws
have far more cutting edges than the diamond blades (with diamond grains adhered electrically on the
external or internal circumference of a thin disk) competing with wire saws, and it follows that wire saws
are superior in cutting hard materials difficult for processing. In addition, cutting cost can be figured out
clearly depending on the diameter of wire and abrasive grain.

Document
(adapted from http://www.fine-yasunaga.co.jp/english/home/wiresaw/index.htm)

<rdf:RDF xml:base=“http://www.fine-yasunaga.co.jp/english/home/wiresaw/index.htm”>
<funnotation:split rdf:about="#cut">

<funnotation:agent rdf:resource="#Wire_Saw"/>
<funnotation:selected_way>

<funnotation:frictional_way rdf:about=“#The_abrasive_grains/>
<funnotation:method_function>

<funnotation:split rdf:about="#impart_fine_destruction“/>
....

Functional metadata
Roller

Wire Motor

Ingot Table

wafer

Roller

Wire Motor

Ingot Table

wafer

Fig. 4. An example of metadata for a document of a wire-saw (portion)

 Deep Semantic Mapping between Functional Taxonomies 147

a web browser using JavaScript and a server module on a web server, which is im-
plemented by Java and uses Tomcat with an HTTP server, Jena to operate the RDF
repository, and SPARQL as a RDF query language.

As shown in Fig. 5, the users input the search condition such as a goal-function
(i.e., function to be achieved). For example, let us consider a situation in which an
engineer wants to know the possible ways to separate a semiconductor ingot. Firstly,
the user selects ‘separate’ from the functional terms defined in FOCUS/Tx as a goal-
function. Giving such search conditions shown in Fig. 5, he/she gets the search results
shown in Fig. 6. The center column indicated as “goal-function” shows the words in
documents which are annotated both as the separating function class and as a subject
of a selected_way (or possible_way) property. The rightmost column shows the terms
annotated as a way.

This example shows that users can search for documents with a generic type of
function independently of the lexical words in the documents (e.g., ‘split’ in the
document (a) and ‘cut off’ in (b)). Using the is-a relations in FOCUS/Tx, the search
result includes not only ‘separate’ but also its subclasses such as ‘split’. Moreover,
this search is based on semantic relations. If a ‘separate’ function is not a goal-
function of a way in the metadata of a document, such documents are not retrieved.

Users can also search for possible ways for avoiding problems based on semantic
relationships between functions. For example, in order to search for the ways to avoid
problems caused by scrapings in a slicing machine, a user checks the “supplementary

Fig. 5. The interface of Funnotation search system

(b)

(a)

Fig. 6. Example of search result (1)

148 Y. Kitamura et al.

(a)

(b)

Fig. 7. Example of search result (2) for supplementary functions

Fig. 8. Search result (3) for FOCUS/Tx (denoted as FBRL) and Functional Basis

function” box in Fig. 5 (by a supplementary function, we here mean a non-mandatory
function that contributes to prevention of faults etc.) and sets the ‘separate’ function
to cause the side-effect (e.g., scrapings). Figure 7 shows a result for this query which
includes some possible solutions. The document (a) explains a way that hardens the
target objects with ultraviolet rays before slicing to reduce the scrapings. In the
document (b), to remove the scrapings by a fluid flow is a supplementary function.

The interoperability of the Funnotation framework with FB is enabled by the map-
ping knowledge discussed in Section 5. By translating the functional terms in the
query and the metadata, the search system can access both documents that are anno-
tated based on either of FB or FOCUS/Tx. Figure 8 shows a search result for a given
goal-function ‘split’ of FOCUS/Tx. It includes not only documents annotated as
‘split’ of FOCUS/Tx but also those documents annotated as ‘distribute’ of FB which
has a mapping to ‘split’ of FOCUS/Tx. In this manner, users can search for docu-
ments independently of the natural language of the documents and of the functional
taxonomies used in the metadata. For example, an engineer can get ideas how to real-
ize a function from both English documents annotated in FB from a US-based reposi-
tory and Japanese documents annotated in FOCUS/Tx from a Japan-based repository.
Even if he or she cannot read Japanese, the obtained metadata of the type 2, 3 or 4 (in
Section 6.1) explain the possible way(s) for achieving the function.

7 Related Work and Discussion

As pointed out in [9], a “shared ontology” can facilitate semantic integration. The top-
level generic ontologies such as DOLCE [21], SUMO [22] and PSL [23] can be used
as the shared ontology [9]. Our FOCUS/Ref also can be regarded as a kind of such a

 Deep Semantic Mapping between Functional Taxonomies 149

shared ontology for matching concepts in ontologies, though a concept of the ontol-
ogy is not defined as a subtype of a category of FOCUS/Ref in the ontology building
process but is classified into a category in the mapping process. FOCUS/Ref is at the
intermediate-level lower than those top-level ontologies. It is specific to the engineer-
ing domain, but it is applicable to wide-range of artifacts (see the discussion on limi-
tation in [6]). It covers also several definitions of function that have been proposed in
the literature [6]. We cannot claim its completeness in nature.

ONIONS methodology [24] is pioneering work to integrate terminologies based on
formal and generic ontologies. It includes the “conceptual analysis” phase, in which
the entities of a source terminology are represented in a formal way. Although our
approach is not based on formal and generic (top-level) ontologies for integration, we
described ontological descriptions of FB terms as a kind of the conceptual analysis
and classified them into a category of FOCUS/Ref as an “intermediate ontology” [24].

A matching method based on an ontology that holds ‘background knowledge’ is
proposed in [25]. A concept in source/target ontologies is connected to a concept in
the background ontology (‘anchoring matches’ [25]) similar to the common ontology.
Those anchoring matches are, however, produced automatically based on a simple
lexical heuristic and the background knowledge (e.g., its semantic structure) is used to
find semantic match between the source and target ontologies having few semantics.

Many methods for annotation-based semantic search have been proposed to date
(e.g., [26]). Currently, our method simply shows the documents selected by the given
query without ranking. More sophisticated search method remains as future work.

As mentioned in Introduction, there are many definitions of function (see
[2,12,13]) and functional taxonomies [1,4,7,8]. Reconciled Functional Basis is a result
of merging two existing taxonomies aiming at a ‘standardized taxonomy’ [8]. We aim
at establishing mappings (‘ontology matching’ in the terminology of [10]) rather than
merging (‘ontology merging’), in order to allow the diversity of conceptualization of
functions. Thus, FOCUS/Ref provides not a super-set (logical sum) of the existing
taxonomies but generic upper categories of functions.

A functional modeling framework for the Semantic Web has been proposed in
[27]. It is based on Functional Basis [8] and is used for reasoning tasks. It lacks an
ontological foundation and interoperability with different taxonomies. For example,
because it lacks the notion of “way of function achievement”, the functional model in
[27] is directly associated with components as a part of realization. Such direct asso-
ciation reduces flexibility in realization of functions.

The ontology-based integration and interoperability among engineering knowledge
have been investigated from early 1990’s such as PACT [28] and KIEF [29]. They
mainly focus on generic mechanism for interoperability among engineering tools. The
information integration of product data in the automobile industry is realized by on-
tology mapping [30]. Product data exchange based on a generic ontology has been
proposed in [31]. The target knowledge in these papers is mainly the data level such
as geometry rather than the conceptual knowledge level discussed in this paper.
PhysSys ontology [32] is well-established ontology about physical objects. It, how-
ever, has no ontology for functions from the teleological viewpoint.

Our functional ontology is a domain knowledge and is different from “task”
knowledge of designing or diagnosing, which has been discussed in the task ontology
research (e.g., [33]).

150 Y. Kitamura et al.

8 Conclusion

In this paper, we have established two-way ontology mappings between two func-
tional taxonomies by deep manual analysis based on the reference ontology of func-
tion for bridging the ontological gaps. Such ontological-level analysis has brought us
the successful mappings, which suggest the validity of the taxonomies. Using the
mapping knowledge, the semantic search system can provide users interoperable
access to the technical documents by searching for functional metadata based on ei-
ther of functional taxonomies.

In summary, the contributions of this paper includes (1) to show a successful appli-
cation of ontological matching for interoperable annotation-based document man-
agement, (2) to demonstrate a successful case study of ‘deep semantic mapping’
based on an intermediate-level reference ontology rather than ‘shallow matching’, (3)
to provide an interoperable engineering document management system and (4) to
investigate ontological types of function by comparing the functional taxonomies.

Acknowledgements. The authors are most grateful to Robert B. Stone and his col-
leagues of Missouri University of Science and Technology for the discussion espe-
cially for clarifying some portions of the semantics of FB. The authors thank Masanori
Ookubo and Naoya Washio for their contribution. Special thanks go to anonymous
reviewers for their valuable comments.

References

1. Pahl, G., Beitz, W.: Engineering Design - a Systematic Approach. The design council,
London (1988)

2. Stone, R.B., Chakrabarti, A.(eds.): Special Issues: Engineering applications of representa-
tions of function. AI EDAM 19(2/3) (2005)

3. Kitamura, Y., Washio, N., Koji, Y., Sasajima, M., Takafuji, S., Mizoguchi, R.: An Ontol-
ogy-based Annotation Framework for Representing the Functionality of Engineering De-
vices. In: ASME International Design Engineering Technical Conferences (ASME IDETC
2006), DETC2006-99131. ASME (2006)

4. Kitamura, Y., Sano, T., Namba, K., Mizoguchi, R.: A Functional Concept Ontology and its
Application to Automatic Identification of Functional Structures. Advanced Engineering
Informatics 16(2), 145–163 (2002)

5. Kitamura, Y., Mizoguchi, R.: Ontology-based functional-knowledge modeling methodol-
ogy and its deployment. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW
2004. LNCS, vol. 3257, pp. 99–115. Springer, Heidelberg (2004)

6. Kitamura, Y., Koji, Y., Mizoguchi, R.: An Ontological Model of Device Function: Indus-
trial Deployment and Lessons Learned. J. of Applied Ontology 1, 237–262 (2006)

7. Stone, R.B., Wood, K.L.: Development of a Functional Basis for Design. J. of Mechanical
Design 122(4), 359–370 (2000)

8. Hirtz, J., Stone, R.B., McAdams, D.A., Szykman, S., Wood, K.L.: A Functional Basis for
Engineering Design: Reconciling and Evolving Previous Efforts. Research in Engineering
Design 13, 65–82 (2002)

9. Noy, N.: Semantic integration: A Survey of Ontology-based Approaches. ACM SIGMOD
Record archive 33(4) (2004)

10. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
11. Straccia, U., Troncy, R.: oMAP: Combining Classifiers for Aligning Automatically OWL

Ontologies. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z.
(eds.) WISE 2005. LNCS, vol. 3806, pp. 133–147. Springer, Heidelberg (2005)

 Deep Semantic Mapping between Functional Taxonomies 151

12. Chandrasekaran, B., Josephson, J.R.: Function in Device Representation. Engineering with
Computers 16(3/4), 162–177 (2000)

13. Perlman, M.: The Modern Philosophical Resurrection of Teleology. The Monist 87(1), 3–
51 (2004)

14. Kitamura, Y., Takafuji, S., Mizoguchi, R.: Towards a Reference Ontology for Functional
Knowledge Interoperability. In: ASME IDETC 2007, DETC2007-35373. ASME (2007)

15. Kitamura, Y., Washio, N., Ookubo, M., Koji, Y., Sasajima, M., Takafuji, S., Mizoguchi,
R.: Towards a Reference Ontology of Functionality for Interoperable Annotation for Engi-
neering Documents. In: Posters and Demos of ESWC 2006, pp. 75–76 (2006)

16. Ookubo, M., Koji, Y., Sasajima, M., Kitamura, Y., Mizoguchi, R.: Towards Interoperabil-
ity between Functional Taxonomies using an Ontology-based Mapping. In: 16th Interna-
tional Conference on Engineering Design (ICED 2007) (2007)

17. Garbacz, P.: Towards a Standard Taxonomy of Artifact Functions. In: First Workshop
FOMI 2005 - Formal Ontologies Meet Industry, CD-ROM (2005)

18. Mizoguchi, R., Sunagawa, E., Kozaki, K., Kitamura, Y.: The model of Roles within an
Ontology Development Tool: Hozo. J. of Applied Ontology 2(2), 159–179 (2007)

19. Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gengami, A., Guarino, N.:
Social Roles and Their Descriptions. In: 9th Int’l Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2004), pp. 267–277 (2004)

20. Euzenat, J.: Eight Questions about Semantic Web Annotations. IEEE Intelligent Systems,
55–62 (March/April 2002)

21. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb deliverable
D18, ontology library (2003)

22. Suggested Upper Merged Ontology, http://ontology.teknowledge.com/
23. TC184/SC4/JWG8, I.S.O.: Process Specification Language (2003),

 http://www.tc184- sc4.org/SC4_Open/
 SC4_Work_Products_Documents/PSL_18629/

24. Gangemi, A., Pisanelli, D.M., Steve, G.: An overview of the ONIONS project: Applying
Ontologies to the Integration of Medical Terminologies. Data and Knowledge Engineer-
ing 31 (1999)

25. Aleksovski, Z., Klein, M., ten Kate, W., van Harmelen, F.: Matching unstructured vocabu-
laries using a background ontology. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS,
vol. 4248, pp. 182–197. Springer, Heidelberg (2006)

26. Rocha, C., Schwabe, D., Poggi de Aragao, M.: A Hybrid Approach for Searching in the
Semantic Web. In: WWW 2004, pp. 374–383 (2004)

27. Kopena, J.B., Regli, W.C.: Functional Modeling of Engineering Designs for the Semantic
Web. IEEE Data Engineering Bulletin 26(4), 55–62 (2003)

28. Cutkosky, M.R., et al.: PACT: An experiment in integrating concurrent engineering sys-
tems. Computer, 28–37 (January 1993)

29. Yoshioka, M., Umeda, Y., Takeda, H., Shimomura, Y., Nomaguchi, Y., Tomiyama, T.:
Physical Concept Ontology for the Knowledge Intensive Engineering Framework. Ad-
vanced Engineering Informatics 18(2), 95–113 (2004)

30. Maier, A., Schnurr, H.P., Sure, Y.: Ontology-based information integration in the automo-
tive industry. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 897–912. Springer, Heidelberg (2003)

31. Dartigues, C., Ghodous. P.: Product Data Exchange Using Ontologies. In: Artificial Intel-
ligence in Design (AID 2002), pp. 617–637 (2002)

32. Borst, P., Akkermans, H., Top, J.: Engineering Ontologies. J of Human-Computer Stud-
ies 46(2/3), 365–406 (1997)

33. Schreiber, G., et al.: Knowledge Engineering and Management - The Common-KADS
Methodology. The MIT Press, Cambridge (2000)

ROC: A Method for Proto-ontology
Construction by Domain Experts

Nicole J.J.P. Koenderink1, Mark van Assem2, J. Lars Hulzebos1,
Jeen Broekstra1, and Jan L. Top1,2

1 Agrotechnology & Food Innovations B.V., Wageningen UR
P.O. Box 17 6700 AA, Wageningen, The Netherlands
2 Faculty of Sciences, Vrije Universiteit Amsterdam

The Netherlands

Abstract. Ontology construction is a labour-intensive and costly pro-
cess. Even though many formal and semi-formal vocabularies are avail-
able, creating an ontology for a specific application is hindered in a number
of ways. Firstly, the process of elicitating concepts is a time consuming
and strenuous process. Secondly, it is difficult to keep focus. Thirdly, tech-
nical modelling constructs are hard to understand for the uninitiated. We
propose ROC as a method to cope with these problems. ROC builds on
well-known approaches for ontology construction. However, we reuse ex-
isting sources to generate a repository of proposed associations. ROC
assists in efficiently putting forward all relevant concepts and relations
by providing a large set of potential candidate associations. Secondly,
rather than using intermediate representations of formal constructs we
confront the domain expert with ‘natural-language-like’ statements gen-
erated from RDF-based triples. Moreover, we strictly separate the roles
of problem owner, domain expert and knowledge engineer, each hav-
ing his own responsibilities and skills. The domain expert and problem
owner keep focus by monitoring a well-defined application purpose. We
have implemented an initial set of tools to support ROC. This paper de-
scribes the ROC method and two application cases in which we evaluate
the overall approach.

1 Introduction

Ontology construction is a laborious and expensive process. Even though many
(semi-)formal vocabularies are available, creating one for a specific application
context – in terms of domain and task – still requires considerable effort. Firstly,
producing all relevant concepts and relations is time consuming and strenuous.
Secondly, it is difficult to keep focus on the task for which the ontology is being
developed. Thirdly, knowledge representation languages are hard to understand
for those who are not trained as knowledge engineers.

We propose ROC (Rapid Ontology Construction) as a method to cope with
these problems. ROC identifies three (idealized) roles in the ontology construc-
tion process, each role having its own responsibilities and skills: the problem

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 152–166, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

ROC: A Method for Proto-ontology Construction by Domain Experts 153

owner (PO), who explicates and monitors the purpose of the ontology; the do-
main expert (DE), who creates an informal version of the knowledge model – a
so-called proto-ontology; and the knowledge engineer (KE), who is responsible
for creating a formalized knowledge model from the proto-ontology. During the
process, the roles interact frequently. A second specific feature of ROC is that it
provides a repository of predefined associations to draw from and to stimulate
the domain expert in making his knowledge explicit. The associations are stated
in an informal way, taking away the necessity for the domain expert to under-
stand knowledge engineering terminology. A third characteristic of the proposed
method is that the application purpose of the model is stated in advance and
monitored during the process by the problem owner. A unique characteristic is
that the DE and PO interactively delineate the task and domain ranges.

The ROC approach is divided into three activities identifying associations,
creating a proto-ontology and constructing the final ontology. In the first activity
relevant sources are converted to triples, which are used in the second activity
to construct the proto-ontology. A proto-ontology can be viewed as the starting
material that is the basis for a full-fledged ontology. The activity to finalize the
model in a formal representation is not considered here. The first activity is
mainly performed by the KE, while the DE and PO perform the second activity.
A tool allows the DE to select relevant triples from the repository. Another tool
supports the PO in stating and maintaining the purpose of the ontology to be
created. We provide the PO with a template to specify the purpose and monitor
it during the construction activity.

This paper is organized as follows. In Section 2 we present methodologies and
tools that we build our work on. Section 3 presents the activities ROC consists
of. Then Section 4 presents two use cases – on geometry, resp. on supply chains
– that we have performed to gain insight in the usefulness of the method, which
is evaluated in Section 5. Section 6 provides a discussion and conclusions.

2 Related Work

Since the ’90s, methodologies for ontology engineering have been developed, which
cover all aspects of ontology development, management and support (see [1] for
an overview). We are specifically interested in the specification, conceptualiza-
tion and integration phases in which resp. the ontology’s scope is specified, the
ontology is edited, and existing sources are reused. Our methodology is roughly
an adaptation and specialization of Methontology [2], where ROC emphasizes
integration and reuse.1

In the past it was assumed that the knowledge engineer would gather infor-
mation from the domain expert (knowledge acquisition), and would then use a
formal language to represent it. One of the reasons for this workflow is that gen-
erally domain experts have no background in formal representation languages
and find the associated tools (e.g. Protégé [3]) hard to use. One way to involve
domain experts more in the knowledge creation process is to let them use a
1 A full comparison is beyond the scope of this paper.

154 N.J.J.P. Koenderink et al.

controlled natural language such as ACE, Rabbit or CLoNe [4,5,6]. Sentences
in the controlled language (e.g. “River is a type of Waterway”) are parsed and
the appropriate OWL statements are generated. The DE has to be trained to
use highly constrained sentence structures, because only then is it possible to
unambiguously translate sentences to OWL constructs. Instead, in ROC we ex-
plicitly do not target a specific set of OWL constructs, but allow the DE as much
freedom as possible to express knowledge. The only prescribed structure is that
knowledge has to be entered in a subject-predicate-object format. There are no
restrictions on the triple’s content. In this our work is closer in spirit to tradi-
tional knowledge acquisition methods such as mentioned in [7] (e.g. laddering,
concept sorting).

The integration phase is traditionally also handled by the KE. Semi-automatic
support for reuse activities such as mapping can be supported by tools such as
Falcon-AO [8]. A novel idea in ROC is to combine the conceptualization and
(partial) reuse of existing sources by offering the DE possibly relevant concepts
from a preprocessed repository. Thus we explicitly support the associative pro-
cess of knowledge elicitation (for example, by helping the expert in remembering
to include related concepts). It is also expected that association speeds up the
acquisition process. Some work in this direction is also done by a team from
KMi. It is developing a plugin for both the Protégé and NeOn toolkits which en-
ables to search for related triples on the Web using the Watson semantic search
engine2. The user can select relevant triples for inclusion in the current project.
We provide similar functionality but instead base ourselves on an information
repository focused on the domain at hand that contains triples gathered from
RDF-sources but also semi-structured web documents.

3 Rapid Ontology Construction (ROC) Methodology

3.1 Overview

The ROC method aims to support the process of constructing a purpose-specific
proto-ontology. Proto-ontologies solely consist of concepts and relations; formal
term definitions, knowledge rules and logical constructs are not part of the proto-
ontology. The notion of a proto-ontology has been introduced to provide the DE
with a means to easily gather relevant knowledge, while keeping the process close
to the domain expert’s frame of reference. In other words, we do not require
the DE to use ‘good modelling practices’, as for example defined in [9], since
concepts like ‘subclassOf’, ‘datatypeProperty’, or ‘inverseProperty’ as used in
the ontology language OWL are mostly meaningless to the domain expert and
may even hinder the knowledge identification process. Instead, we stay close
to natural language to better support the domain expert. The resulting proto-
ontology is a useful intermediate product consisting of RDF-triples that the KE
can work on; hence the KE has to spend significantly less time in the knowledge
acquisition trajectory.
2 http://watson.kmi.open.ac.uk/editor plugins.html

http://watson.kmi.open.ac.uk/editor_plugins.html

ROC: A Method for Proto-ontology Construction by Domain Experts 155

Fig. 1. Workflow of the proto-ontology creation process

By using the ROC method, the domain expert is supported in identifying
relevant knowledge, for ROC incorporates a prompting process that offers the DE
terms associated with the terms that have already been selected by the DE. This
prompting process uses existing knowledge sources that have been processed into
simple natural language statements in a ‘subject – predicate – object’ format.
Such statements can easily be mapped onto an RDF/OWL expression, but are,
at the same time, understandable to the domain expert.

3.2 Building the Information Repository

The ROC method requires the presence of semi-structured knowledge in an
information repository. In most cases, web-based sources are not specified in a
semantically structured format. In such cases, the two steps below are needed
to obtain the knowledge and store it in a triple format. In some cases though,
web-based content is already in triple format, e.g. in the form of SKOS thesauri.
In those cases, the triples are directly stored in the information repository.

Step 1.1. Source identification. The first step is to identify sources that may
contain relevant information for the proto-ontology to be developed. We identify
the following types of sources: (i) semi-structured sources, like web pages in
a structured layout (tables, pages with rigid section structures, etc.), and (ii)
existing ontologies and thesauri, typically formalised in OWL or RDFS.

To effectively use semi-structured sources, an additional triple extraction step
is required. Existing ontologies and thesauri are already formalized and struc-
tured as triples. Informal alternatives of the formal relations are required to
ensure that triples can be presented to the DE in a format that is intuitive to

156 N.J.J.P. Koenderink et al.

him and that does not burden him with formal knowledge representation ter-
minology. Hereto, the KE has to review the selected sources and provide such
mappings. For example, the formal ‘rdfs:subClassOf’ relation could be mapped
to the natural language expression ‘is a’.

Step 1.2. Triple Extraction. In the second step we parse semi-structured
sources and extract triples from them. Various techniques can be employed to
do so. The possibility used in this paper is to create a custom parser and triple
extractor for each identified semi-structured source. This ‘tailor-made’ approach
yields relatively high-quality triples, but is labor-intensive for the KE, since
it requires adaptation of the extraction tool for each new source. Alternative
approaches using more generic and robust tooling are supported as well, for
example in the form of more generic parsers and crawlers, but also the integration
of text mining and named entity recognition software (e.g. Calais3). Note that
our claim is not to have created a particularly novel triple extraction technique,
but that when a source is harvested for triples, those triples can be efficiently
used to support the proto-ontology creation process.

Whichever extraction method is used, the quality of the extracted triples can
not be taken for granted and an editorial filtering step is necessary. The triples
that are retrieved from the information sources are stored in an information
repository, in our case realised using the Sesame RDF framework4.

3.3 Creating the Proto-ontology

The proto-ontology creation process is divided into four main parts; stating (1)
purpose, (2) seed terms, (3) concepts, and (4) relations, not unlike existing meth-
ods such as Methontology [2]. The progression through these tasks is presented
in the workflow in Figure 1. However, the DE is free to switch back and forth
between different steps as he sees fit. Below, these steps are presented in more
detail and an example in the plant domain is provided.

Orthogonal to these four steps is the process of evaluation. While each step
has a decision criterion to decide whether or not to progress to the next step,
Step 4 finishes with an overall evaluation of the resulting proto-ontology. The
DE and the PO evaluate the created proto-ontology with respect to the specified
purpose. They decide whether the result is satisfactory. If this is not so, any step
in the proto-ontology construction workflow can be revisited.

Step 2.1. Defining the purpose. Although ontologies are typically considered
purpose-independent artefacts, in ROC we take the purpose-as defined a priori
by a problem owner-into account as a crucial aspect during development, since
it helps the DE to keep focus and to decide on issues such as coverage and
depth of the proto-ontology. The scope of the proto-ontology is constrained in
two dimensions: the application perspective, represented by the problem owner,
and the domain perspective, represented by the domain expert (see Figure 2).
3 http://www.opencalais.com/
4 http://www.openrdf.org/

http://www.opencalais.com/
http://www.openrdf.org/

ROC: A Method for Proto-ontology Construction by Domain Experts 157

The PO is the main stakeholder for the application that is to be supported
by the ontology. Hence, he takes the lead in defining the application’s scope
and purpose. During the proto-ontology construction process, the DE and PO
interactively refine the purpose and adapt the proto-ontology to converge to
a knowlege model that is well suited to support the envisioned application. A
domain expert selects concepts from the domain; the problem owner may reject
some of them and indicate that other concepts are to be explored further.

Aspects that help to set the scope of the proto-ontology are, for instance:

– Description of the application: a description in natural language of the
application for which the proto-ontology is to be used.

– Proto-ontology domain: a list of available domain(s) from which the PO
and DE can choose. Examples are: food, agriculture, mathematics, etc.

– Type of end users: the type of end users of the application influences the
knowledge needed for the proto-ontology. In ROC we distinguish ‘general
public’, ‘professional’, and ‘expert’.

– Level of detail: the level of detail that is appropriate for the proto-ontology
can be specified by offering examples of concepts that are or are not to be
considered for inclusion.

For example, we imagine an application in the plant domain. The descrip-
tion of the application could be: A computer vision application that uses expert

,

Fig. 2. Scoping of the proto-ontology

knowledge to automatically deter-
mine the quality of recorded tomato
plants. The system will typically be
used by Experts. The domains of
relevance that are chosen by the
problem owner may be Agriculture
and Plants. During the process, the
PO identifies concepts that are to
be explored in more detail, such as
Cotyledon and True leaf, and rejects
concepts that are too detailed for in-
clusion such as Petiolule and Stem
hair. The domain expert follows
through by finding related concepts
to True leaf such as Terminal leaflet
and Vein structure. The problem
owner and domain expert work to-
gether to find the concepts that best
suit the purpose of the proto-ontology.

Step 2.2. Seeding the Proto-ontology. The DE is asked to compile a list of
terms that are relevant to the proto-ontology domain, the so-called seed concepts.
The PO has the possibility to identify concepts that are not to be included in the
proto-ontology. This list of non-concepts serves to restrict the proto-ontology to

158 N.J.J.P. Koenderink et al.

its intended scope. The DE and PO can revisit the seeding step whenever they
think of concepts that should or should not be included in the proto-ontology.

For the example in the plant domain, the domain expert may choose the
concepts Stem and Leaf as initial seed concepts.

Step 2.3. Extending the Set of Concepts. The purpose of this task is
to identify relevant terms from a pool of terms associated with the previously
defined seed concepts. The method uses either the seed concepts or previously
associated and approved concepts to automatically look up associated terms in
the information repository. The identified terms are offered to the DE and the
PO for inspection. If a new term is relevant for the domain and task of the proto-
ontology, both the DE and PO accept the term; otherwise, the term is rejected.
Accepted terms may be adapted to better reflect the domain knowledge.

If a term from the seed list is not found in the information repository, it is still
added to the proto-ontology as a single concept. In Step 2.4, the DE can link
this concept to the rest of the proto-ontology by defining appropriate relations.

For the example, the information repository may yield the terms Stem hair,
Plug and Lobe as related terms for Stem. The domain expert may accept all of
these terms; the problem owner may reject the term Stem hair as too detailed,
accept the term Plug and change the Lobe into the preferred term Cotyledon.

Step 2.4. Adding Relations. In this task, the DE identifies relevant relations
and labels them properly. Hereto, relations between approved concepts are looked
up in the information repository and offered for review to the DE. The DE is
asked to either approve or reject the relations. If a relation is approved, the DE
can change the label of the relation. The DE can also add new relations to the
proto-ontology.

With respect to the plant example, the system may present the expert with
the relations Stem – grows from – Plug and Stem – develops into – Cotyledon.
The first relation is accepted by the expert, but the relation Stem – develops
into – Cotyledon is replaced by the relation Cotyledon – is connected to – Stem.

Note that monitoring the purpose of the proto-ontology is important for the
process of defining labels for the relations. Depending on the type of task, the
extent to which the labels have to be specified differs. In some cases, it suffices
to know that a relation exists, but the type of relation is irrelevant. In other
cases, the precise specification of the type of relation is required for a useful
deployment of the proto-ontology.

4 Use Cases

4.1 Case Study 1: The Geometric Proto-ontology

As a first test case for the ROC-method, a proto-ontology containing geometric
concepts has been created. The problem owner had indicated that such a knowl-
edge model has to be created that could be used to support an imaginary 3D
drawing program. In this case study, we used a preliminary implementation of
the ROC method.

ROC: A Method for Proto-ontology Construction by Domain Experts 159

Building the information repository. To prepare the ROC repository, we
have asked the expert to indicate semi-structured sources relevant for a future
3D drawing application. The expert mentioned the Geometrical Classroom on
Mathworld5. Besides this source, we used the sources that were already present
in the information repository. Below we give a short description of the used
sources.

– The CABI thesaurus6, consisting of terms related to applied life sciences.
– The NAL thesaurus7, containing agricultural and biological terminology.
– OUM, the ontology of units and measures8, containing units of measure,

quantities, dimensions, and systems of units.
– The OpenCyc thesaurus, a generic knowledge base9.
– Mathworld Geometrical Classroom, containing an overview of geometrical

terms, their definitions and the categories to which they belong.

The Mathworld Geometrical Classroom is a semi-structured source for which
we have created a tailor-made parser. We have used the structure of the
Mathworld page to find triples like <term> is part of category <category
name>, <term> has definition <definition> and <word> is related to
<term>. Examples of identified triples are: Triangle – is part of category – Poly-
gon, Triangle – has definition – A three-sided (and three-angled) polygon, and
Hypothenuse – is related to – Triangle. The process of creating the parser and
harvesting the triples took the KE approximately 0.5 days. The other sources
were harvested in a similar way. The retrieved triples have been added to the
information repository.

Creating the proto-ontology. For this early test of the ROC method, both
the KE and the DE were present at the proto-ontology creation process. The
KE operated the ROC system, and the DE provided the input. In this first
implementation of the ROC method, the purpose was only defined in terms of
a global description of the application and of the domain of interest.

The DE started the seeding process with two concepts in the seed list: cubes
and cylinders. In the ‘concept step’ these terms were looked up in the repository.
In this first implementation of ROC, we did not distinguish between the ‘concept
step’ and the ‘relation step’. Therefore, the DE was asked to assess the state-
ments and to adjust relations and concepts when necessary. At certain points in
time, the created intermediate proto-ontology was visualised; the KE manually
mapped the concepts in the IR to classes and the relations to properties and used
the TGViz plug-in of Protégé to show the intermediate proto-ontology to the
DE. The DE has used thirteen iterations to reach a satisfactory proto-ontology.
For this process, approximately 20 hours have been used by the DE and 25 by
the KE. The resulting proto-ontology contains 453 triples.
5 http://mathworld.wolfram.com/classroom/classes/Geometry.html
6 http://www.cabthesaurus.info
7 http://agclass.nal.usda.gov.agt/agt.shtml
8 http://www.afsg.nl/foodinformatics/index.asp
9 http://www.opencyc.org

http://mathworld.wolfram.com/classroom/classes/Geometry.html
http://www.cabthesaurus.info
http://agclass.nal.usda.gov.agt/agt.shtml
http://www.afsg.nl/foodinformatics/index.asp
http://www.opencyc.org

160 N.J.J.P. Koenderink et al.

4.2 Case Study 2: The Supply Chain Proto-ontology

For a university, it is important that the expertises of its employees are known to
properly answer questions from e.g. journalists. We have developed a prototype
system for Wageningen UR in which a search term can be entered to find the
corresponding expert.

For the prototype of the expert finder system, we have performed a pilot
study that focussed on the areas of expertise of ‘agrifood supply chains’. Hereto,
we have invited a DE to participate in a ROC session. In these sessions, two
KEs were present: one to guide the DE through the ROC process, the other to
operate the preliminary ROC tools.

Building the information repository. To prepare the information repository,
the DE was asked to identify relevant Web-based sources on ‘supply chains’. The
expert indicated that ‘chain logistics’ and ‘supply chain management’ are more
appropriate terms. Below we give a short description of the identified sources.

– The CABI and NAL thesaurus as in the first case study.
– The MeSH vocabulary10: a controlled vocabulary in the area of life sciences.
– The UMLS vocabulary11: controlled vocabularies in the biomedical sciences.
– The AGROVOC thesaurus12: covering concepts in the agrifood domain.
– Agrologistics list13: a structured list with terms in agrologistics.
– Sustainability list14: a structured list with terms in sustainability.
– Expertise list: a structured list with the expertises of Wageningen UR.
– Wikipedia supply chain management15: containing information on supply

chain management.

A tailor-made parser for each of these sources was used to harvest triples.
This process resulted in triples of the form <term> is subcategory of <chain
logistics term>, <term> is subcategory of <supply chain management
term> , and <term> is related to <term>. Examples are Cost-benefit analy-
sis – is related to – costs, Chain integration – is a subcategory of – organisation,
and Food safety – is a subcategory of – chain transparency.

The process of identifying appropriate additional knowledge sources and writ-
ing parsers for these sources, took the domain expert 0.75 days. The harvested
statements were added to the information repository.

Creating the proto-ontology. The purpose of the proto-ontology was de-
fined as being useful for expert identification within Wageningen UR. The proto-
ontology domain was supply chains and food domain, the expert type of end
users was defined as general public.
10 http://www.nlm.nih.gov/mesh/filelist.html
11 http://www.nlm.nih.gov/research/umls/documentation.html
12 http://www.fao.org/aims/faq aos#30.htm
13 Internal reports ‘kenniskaart agrologistiek en visie agrologistiek’ (in Dutch), and

‘platform agrologistiek’ (in Dutch).
14 Internal report ‘Vitaal en samen’ (in Dutch).
15 http://en.wikipedia.org/wiki/Supply chain management

http://www.nlm.nih.gov/mesh/filelist.html
http://www.nlm.nih.gov/research/umls/documentation.html
http://www.fao.org/aims/faq_aos#30.htm
http://en.wikipedia.org/wiki/Supply_chain_management

ROC: A Method for Proto-ontology Construction by Domain Experts 161

The DE started with a seed concepts list of 49 terms specified in Dutch and
translated into English. The translation to English terms was needed since the
used sources were partly in English. The remainder of the first session was used
for the ‘concept step’. All terms that were automatically looked up in the infor-
mation repository were presented to the DE in separate sets; each set centered
around a seed concept. The advantage of this set-based way of presentation is
that the list of retrieved terms is presented to the DE in manageable chunks
instead of in an overwhelmingly large list. The DE checked for each set all terms
and indicated whether they had to be included or not in the proto-ontology.

The proto-ontology construction step was concluded after a second iteration
of the ‘concept step’. Since the purpose did not require any further specification
of the relations – a simple ‘has-relation-with’ label sufficed – the ‘relation step’
was not entered. In total the process of creating the proto-ontology took 5 hours
for the domain expert and a little less than 16 hours for the knowledge engineers.
The resulting proto-ontology contains 248 triples.

4.3 Experiences and Lessons Learned

One of the goals of the ROC method is to support the domain expert in optimally
performing his task, while staying in his frame of reference. The domain experts
indicated that the use of ‘term – relation – term’ statements was clear to them.
Both experts were well capable of performing the knowledge specification activity
within the predefined knowledge format. They indicated that the separation
of roles of DE and KE was satisfactory, since it made sure that the DE was
responsible for the knowledge specification.

With respect to the first case study, we noted that the combination of the
concept step and the relation step was cumbersome for the domain expert. She
had to look at the visualisation of the intermediate proto-ontologies to recall
what earlier decisions had already been made. In the second implementation of
ROC, the separation of these steps was embedded. The domain expert in the
second case study showed signs of irritation when already discarded concepts,
showed up in relation to other concepts in other sets. As a result, we have added
to the ROC method a filtering module to remove such concepts from all sets.

5 Evaluation

We evaluate ROC with respect to its original objectives and the chosen solu-
tions. Firstly, separated roles ensure that the DE and PO are not confronted
with technical KE constructs. The quality of the ontology construction process
can be assessed by looking at the time spent at ontology construction by DE,
PO and KE and by inspecting the structure of the resulting proto-ontologies.
This evaluation is presented in the next two subsections. Secondly, the developed
proto-ontology should focus on the task for which it is intended. The degree to
which an ontology is task-oriented can be estimated by assessing the perfor-
mance of an application using this ontology. This evaluation can be found in the

162 N.J.J.P. Koenderink et al.

Table 1. In this table, an overview is given of the properties of three manually devel-
oped proto-ontologies and the two proto-ontologies covered in the case studies

proto-ontology # interviews
P

time DE
P

time KE total time # concepts

Plants 13 (13 DEs) 58 hrs 88.5 hrs 146.5 hrs 37
Food Components 4 (4 DEs) 10 hrs 30 hrs 40 hrs 120
Potato 8 (1 DE) 8 hrs 32 hrs 40 hrs 279
Geometry 12 (1 DE) 20 hrs 25 hrs 45 hrs 208
Chains 2 (1 DE) 5 hrs 16.5 hrs 21 hrs 236

system-based evaluation subsection. Thirdly, existing knowledge supports the
association process of the DE through the repository of predefined associations.
The usefulness of the information repository can be measured by identifying how
often the automatically proposed statements are adopted by the domain expert.
The subsection on the use of the repository provides some clues. Finally, we
note that the full evaluation of ROC with respect to other methods awaits the
development of the final phase of the method on ontology construction.

5.1 Cost-Benefit Analysis

To obtain an idea of the costs and benefits of the ROC method, we compared the
method to interview-based proto-ontology creation. Within our group, we have
developed for example the Plant Ontology [10], the Healthy Food Components
Ontology16, and the Potato Ontology [11]. In Table 1, an overview of the creation
processes is given. The problem owner was not explicitly included in the reference
processes. We see that both the KE and the DE are involved in the knowledge
acquisition process, be it in the interview-based or in the ROC-based method.
The potato ontology and the supply chain ontology (see Section 4) are most
comparable, since in both cases only one DE was interviewed and the proto-
ontologies are of comparable size. The geometric ontology was hampered by the
immature character of the initial ROC tools.

When we compare the supply chain ontology and the potato ontology, we
see that for the supply chain ontology, the KE needs three times the time of
the DE, whereas in the potato proto-ontology this ratio is 1 to 4. Although
these results are far from statistically conclusive, they suggest that the ROC
method could reduce the amount of time required by the KE to develop the
proto-ontology. It is indeed one of the design criteria of ROC to not require the
KE to study the domain of the proto-ontology. The numbers for the DE are
more difficult to interpret. In the potato and chain proto-ontologies, the DE is
involved in fewer sessions of the ROC method than for traditional interview-
based knowledge acquisition methods. Whether this is a generic trait of the
ROC-method is still to be seen. The total time used to develop both ontologies
differs a factor of two in favour of the ROC method.

16 The application based on this ontology can be found at www.afsg.nl/icgv

www.afsg.nl/icgv

ROC: A Method for Proto-ontology Construction by Domain Experts 163

Table 2. Network analysis measures on the two cases. The top 3 scoring concepts are
shown.

Case Degree Centr. Betweenness Centr. PageRank

Geo 2d concept (0.13) polygon (791) 3d-geometry (59)
3d concept (0.11) triangle (187) 2d-geometry (10)
polygon (0.07) square (129) 2d-concept (7)

Chain supply chain man’ment (0.20) transport (371) agro-industrial-chains (21)
transport (0.09) models (19.5) food-chains (21)
models (0.02) risk (11) transport (7)

5.2 Structure Analysis of the Resulting Proto-ontologies

Following [12], we applied some network measures to gain insight in structural
features of the developed proto-ontologies: (1) Degree Centrality (which nodes
have a relative high number of in/out links) (2) Betweenness Centrality (which
nodes are central to the network), and (3) PageRank (which nodes are impor-
tant). The results in Table 2 show the top 3 scoring concepts. The average degree
is lower for the chain case (2.21) than for the geometric case (3.75), which is not
surprising since the purpose of the geometric ontology implies that it has to
provide many interlinked concepts to better find appropriate experts. The top
concepts for degree and betweenness centrality are in both cases considered as
‘important’ concepts by the DEs. The top 3 for PageRank are root concepts,
which makes sense given that most relations in the network point ‘upward’. Dis-
tribution of all three measures show a steep curve towards the high end of the
value range. This skewed distribution indicates an unbalanced network. We are
considering the possibility to provide the DE with these measures to give an
indication of which parts of the network might need more attention.

We did an additional qualitative analysis of the hierarchical structure of the
geometrical proto-ontology (only for this case, since the supply chain case has no
hierarchy as this was not needed for its purpose). We identified the hierarchical
relations and analyzed the structure. The geometric case has a maximum depth
of 5 nodes, a mean number of subconcepts of 2.9 and a median of 1. There are
three cases of overly many subconcepts (14, 20, 25).

The first objective of the ROC method is to enable the DE to gather relevant
concepts in his domain. Part of our future research is to guide the DE in adding
not too few or too many concepts in a specific area of the domain. Hereto, we will
enrich ROC with a ‘proto-ontology dashboard’ that indicates to the DE which
parts of the proto-ontology require attention.

5.3 System-Based Analysis

One of the evaluation measures of a proto-ontology is to see how well it supports
an envisaged application. For the geometrical case study no specific application
was created. For the second case study, we developed an expert recommender
system that can be used to identify experts in the field of supply chains.

164 N.J.J.P. Koenderink et al.

For this system, we assumed that experts publish on subjects that are within
their area of expertise. These publications can be used to create individual ‘fin-
gerprints’17, containing the characteristic terms of his expertise. To link a search
term to a fingerprint, we need ontologies for a number of expert domains. If, for
example, a journalist needs information about avian influenza, the appropriate
expert will probably be known as expert on bird diseases. When only text based
search is used, the journalist will not find the desired expert. When a (light-
weight) ontology is used, the link between avian influenza and bird disease is
made, and the expert can be contacted.

To find an expert, a user enters a free text string indicating the topic for which
an expert is required. This term is matched with the terms in the proto-ontology.
If a matching term is found, its related terms in the proto-ontology are identified.
The application uses these terms scans the publications’ fingerprints for the
original search term and its related terms. The authors from the publications
are identified and ranked. The user can see which related terms have been found,
and which experts best match the original query.

To evaluate the supply chain proto-ontology, we randomly selected ten terms
from the proto-ontology for which we queried the system for experts. Next,
we checked with the involved DE whether the Top 3 of scientists returned are
indeed experts in the indicated areas. For the terms food supply, supply chains,
supply chain management and food production, the identified experts were the
persons expected by the DE (i.e. high precision). For the terms logistics and
food safety the DE did not know all identified experts. After looking into the
experts’ affiliations, though, the DE concluded that it was reasonable to assume
that the unknown persons were indeed experts in the indicated fields. The terms
trade barrier and chain governance were on the border of the expertise of the
DE; he could not give an indication of the correctness of the selection. The terms
quality and networks are important for the food supply field of expertise, but also
have a meaning in other areas. The found experts indeed related to these terms,
but were not specifically linked to the area of supply chain quality or networks.
Overall, the expert finder tool seems to have indicated the expected experts
or related persons in the expected departments. This suggests that the proto-
ontology supporting the expert finder tool fulfills its expectations sufficiently
well.

5.4 Use of the Information Repository

In this section we look at the amount of information from the repository that is
actually reused in the case studies. We see in Table 3 that in the geometrical case,
the DE has mainly taken concepts and associations from Mathworld, and has
added many new statements (e.g. equations, parameters, etc.). The skewed ratio
between reused and new concepts was caused by (1) spontaneous associations
at the presented concepts – a desirable effect – and (2) a limited amount of
available dedicated statements in the information repository. This shows that

17 http://www.collexis.com

http://www.collexis.com

ROC: A Method for Proto-ontology Construction by Domain Experts 165

Table 3. Contribution of sources to total triple size of proto-ontology

(a) Case 1: Geo

Source # Triples

CABI 2
Mathworld 164
OUM 8
Expert 279

(b) Case 2: Chains

Source # Triples Source # Triples

CABI 81 NALT 28
AGROVOC 61 Intranet agrologistics 2
Wikipedia 42 Intranet sustainability 3
MeSH 30 UMLS 1

identifying sufficient sources is important to profit optimally from ROC. For the
supply chain case more sources were available. The ratio between triples from
these sources is more balanced and no new concepts were added by the DE.

6 Conclusion

We have observed that the ROC method may accelerate proto-ontology construc-
tion by supporting different players in the process. First, the problem owner is
assisted in defining the application context. Second, the domain expert specifies
a proto-ontology without being hindered by technical modelling details. Third,
the time spent by the knowledge engineer to get to know the domain is mini-
mized. With ROC, association rate, focus and readability during ontology devel-
opment is enhanced. Existing knowledge sources are used from the start of the
construction process and the purpose of the proto-ontology is continuously mon-
itored. This purpose determines the scope, level of detail and level of expertise
for the proto-ontology to be developed. Furthermore, we use natural language
statements generated from a triple format as intermediate representation.

Even though ROC and its tools are still under development, we have al-
ready used them successfully. In the two case studies we have constructed proto-
ontologies in relatively short time. The evaluation of the results shows that
combining multiple sources works well, as they all appear in the resulting proto-
ontology. Not many additional triples need to be added by the DEs when suf-
ficient reusable sources were available. We also analyzed the costs and benefits
of developing ontologies with and without ROC for five cases. It shows that the
time needed by the KE and to a lesser extent the DE is reduced. Measuring
the quality of the proto-ontology, though, remains difficult and is ultimately
expressed by the effectiveness by applying the model in some context.

An aspect of ROC that needs further attention is ensuring that domain ex-
perts stay motivated during the process. This can be achieved by certifying that
the domain expert is committed to the intended application and by minimiz-
ing the amount of manual editing. Another issue we will attend is to include
the selection of appropriate domain experts as a step in the ROC method, not
unlike choosing appropriate text sources. A third extension that we presently
investigate is the inclusion of existing triple extraction tools in the ROC toolkit.
The fourth proposed addition to the ROC method is a proto-ontology structure
dashboard, to guide the PO and DE in creating balanced, high-quality proto-

166 N.J.J.P. Koenderink et al.

ontologies. Lastly, the steps for refinement of a proto-ontology towards e.g. a
full-blown OWL model – if needed – requires additional work.

Acknowledgements

This work was carried out within the VL-e project, subprogram Food Infor-
matics. This project is supported by a BSIK grant from the Dutch Ministry of
Education, Culture and Science and is part of the ICT innovation program of the
Ministry of Economic Affairs. Additional funding was obtained from the Ministry
of Agriculture. We would like to thank the DEs S. Tromp and M. Vollebregt.
We are also grateful to L. Gazendam for providing the PageRank calculations.

References

1. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering. In:
Advanced Information and Knowledge Processing. Springer, Heidelberg (2003)

2. Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: From ontologi-
cal art towards ontological engineering. In: AAAI Ontological Engineering: Papers
from the 1997 Spring Symposium. AAAI Press, Menlo Park (1997)

3. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The protégé owl plugin:
An open development environment for semantic web applications. In: 3rd Interna-
tional Semantic Web Conference (2004)

4. Kaljurand, K., Fuchs, N.E.: Bidirectional mapping between OWL DL and at-
tempto controlled english. In: Alferes, J.J., Bailey, J., May, W., Schwertel, U. (eds.)
PPSWR 2006. LNCS, vol. 4187, pp. 179–189. Springer, Heidelberg (2006)

5. Hart, G., Johnson, M., Dolbear, C.: Rabbit: Developing a control natural language
for authoring ontologies. In: 5th European Semantic Web Conference (2008)

6. Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B., Handschuh, S.:
CLOnE: Controlled Language for Ontology Editing. In: Aberer, K., Choi, K.-S.,
Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D.,
Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 142–155. Springer, Heidelberg (2007)

7. Schreiber, G., Akkermans, H., Anjewierden, A., De Hoog, R., Shadbolt, N., Van
de Velde, W., Wielinga, B.: Knowledge Engineering and Management – The Com-
monKADS Methodology. MIT Press, Cambridge (2000)

8. Hu, W., Qu, Y.: Discovering simple mappings between relational database schemas
and ontologies. In: International Semantic Web Conference, pp. 225–238 (2007)

9. Noy, N., McGuinness, D.L.: Ontology development 101: A guide to creating your
first ontology (2001)

10. Koenderink, N., Top, J., van Vliet, L.: Expert-based ontology construction: a case
study in horticulture. In: TAKMA workshop at the DEXA conference (2005)

11. Haverkort, A., Top, J.L., Verdenius, F.: Organizing data in arable farming: towards
an ontology of processing potato. Potato Research 49, 177–201 (2006)

12. Hoser, B., Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Semantic network anal-
ysis of ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011,
pp. 514–529. Springer, Heidelberg (2006)

A Pattern Based Approach for Re-engineering
Non-Ontological Resources into Ontologies

Andrés Garćıa-Silva, Asunción Gómez-Pérez, Mari Carmen Suárez-Figueroa,
and Boris Villazón-Terrazas

Ontology Engineering Group, Departamento de Inteligencia Artificial,
Facultad de Informática, Universidad Politécnica de Madrid, Spain

hagarcia@delicias.dia.fi.upm.es,{asun,mcsuarez,bvillazon}@fi.upm.es

Abstract. With the goal of speeding up the ontology development pro-
cess, ontology engineers are starting to reuse as much as possible available
ontologies and non-ontological resources such as classification schemes,
thesauri, lexicons and folksonomies, that already have some degree of
consensus. The reuse of such non-ontological resources necessarily in-
volves their re-engineering into ontologies. Non-ontological resources are
highly heterogeneous in their data model and contents: they encode dif-
ferent types of knowledge, and they can be modeled and implemented in
different ways. In this paper we present (1) a typology for non-ontological
resources, (2) a pattern based approach for re-engineering non-ontological
resources into ontologies, and (3) a use case of the proposed approach.

Keywords: Patterns for Re-engineering, Ontologies, Non-Ontological
Resources.

1 Introduction

Research on Ontology Engineering methodologies has provided methods and
techniques for developing ontologies from scratch. Well-recognized methodolog-
ical approaches such as METHONTOLOGY [6], On-To-Knowledge [21], and
DILIGENT [17] provide guidelines to help researchers in the development of
ontologies. However, they have one important limitation: the lack of guidelines
for building ontologies by reusing and re-engineering existing knowledge-aware
resources widely used in a particular domain.

There are some initial works related to the re-engineering of non-ontological
resources (NORs). Examples of projects that perform re-engineering are: (1)
the NeOn Project1, in which Fisheries Ontologies were developed for their use
within the Fish Stock Depletion Assessment System (FSDAS) [4], by reusing
resources available for the fisheries domain; and (2) the SEEMP2 project in which
a Reference Ontology has been built by reusing human resources management

1 http://www.neon-project.org
2 http://www.seemp.org

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 167–181, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

168 A. Garćıa-Silva et al.

standards. However, none of these projects propose any guidelines about how to
carry out that re-engineering process of NORs.

Within the context of the NeOn project, we are proposing a novel scenario-
based methodology for builing ontology networks3. One of the scenarios in the
NeOn methodology is Building Ontology Networks by Reusing and Re-engineering
Non-Ontological Resources. For such scenario we propose methodological guide-
lines for reusing and re-engineering NORs. In this paper we present our approach
for re-engineering NORs, which refers to the process of taking an existing non-
ontological resource and transforming it into an ontology. The rest of the paper
is organized as follows: Section 2 depicts the proposed typology of NORs. Sec-
tion 3 presents the state of the art on re-engineering NORs. Section 4 presents
our approach for re-engineering NORs. Section 5 presents a particular use case
of our approach. Finally, section 6 concludes the paper and proposes future lines
of work.

2 Types of Non-Ontological Resources

Non-Ontological Resources are existing knowledge-aware resources whose seman-
tics have not been formalized yet by means of an ontology.

There is a big amount of NORs that embody knowledge about some particular
domains, and that represent some degree of consensus for a user comunity. These
resources present the form of free texts, textual corpora, web pages, standards,
catalogues, web directories, classifications, thesauri, lexicons and folksonomies,
among others. NORs have related semantics which allow to interpret the knowl-
edge they contain. Regardless of whether the semantic is explicit or not, the
main problem is that the semantics of NORs are not always formalized, and this
lack of formalization avoids the use of them as ontologies.

The analysis of the literature has revealed that there are different ways of
categorizing NORs [14,20,7,13]. Maedche et al. [14] and Sabou et al. [20] classify
NORs into unstructured (e.g. free text), semi-structured (e.g. folksonomies) and
structured (e.g. databases) resources. Gangemi et al. [7] distinguish catalogues
of normalized terms, glossed catalogues, and taxonomies. Hodge [13] proposes
characteristics such as structure, complexity, relationships among terms, and
historical functions for classifying them. However, an accepted typology of NORs
does not exist yet. Additionally, the existing NOR categorizations do not take
into account the NOR data model, an important artifact the re-engineering
process.

In this paper we propose a new categorization of NORs according to three
different features: (1) the type of NOR, which refers to the type of knowledge
encoded by the resource; (2) the data model, that is, the design data model
used to represent the knowledge encoded by the resource; and (3) the resource
implementation. Below we explain in more detail the proposed classification.
3 An ontology network or a network of ontologies is a collection of ontologies together

through a variety of different relationships such as mapping, modularization, version,
and dependency relationships [10].

A Pattern Based Approach for Re-engineering Non-Ontological Resources 169

1. According to the type of NOR we classify them into:
– Glossaries: A glossary is a terminological dictionary that contains des-

ignations and definitions from one or more specific subject fields. The
vocabulary may be monolingual, bilingual or multilingual. As an exam-
ple we mention the FAO Fisheries Glossary4.

– Lexicons : In a restricted sense, a computational lexicon is considered as
a list of words or lexemes hierarchically organized and normally accom-
panied by meaning and linguistic behaviour information. An example is
WordNet5, the best known computational lexicon of English.

– Classification schemes : A classification scheme is the descriptive infor-
mation for an arrangement or division of objects into groups based on
characteristics the objects have in common. For example, the Fishery
International Standard Statistical Classification of Aquatic Animals and
Plants (ISSCAAP)6.

– Thesauri : Thesauri are controlled vocabularies of terms in a particular
domain with hierarchical, associative and equivalence relations between
terms. Thesauri are mainly used for indexing and retrieval of articles
in large databases. As an example we can mention the AGROVOC7

thesaurus.
– Folksonomies : A folksonomy is the result of personal free tagging of

information and objects (anything with a URI) for one’s own retrieval.
An example of the use of folksonomies is the del.icio.us8 website.

2. There are different ways for representing the knowledge encoded by the re-
source. In the following we present several data models for classification
schemes, which are shown in Fig. 1.
– Path Enumeration [2]: A path enumeration model is a recursive structure

for hierarchy representations defined as a model which stores for each
node the path (as a string) from the root to the node. This string is the
concatenation of the nodes code in the path from the root to the node.
Fig. 1-a) shows this model.

– Adjacency List [2]: An adjacency list model is a recursive structure for
hierarchy representations comprising a list of nodes with a linking column
to their parent nodes. Fig. 1-b) shows this model.

– Snowflake [15]: An snowflake model is a normalized structure for hi-
erarchy representations. For each hierarchy level a table is created. In
this model each hierarchy node has a linked column to its parent node.
Fig. 1-c) shows this model.

– Flattened [15]: A flattened model is a denormalized structure for hierar-
chy representations. The hierarchy is represented using one table where
each hierarchy level is stored on a different column. Fig. 1-d) shows this
model.

4 http://www.fao.org/fi/glossary/default.asp
5 http://wordnet.princeton.edu/
6 http://www.fao.org/figis/servlet/RefServlet
7 http://www.fao.org/agrovoc/
8 http://del.icio.us/

170 A. Garćıa-Silva et al.

a) Path Enumeration b) Adjacency List

c) Snowflake

d) Flattened

Fig. 1. Classification Schemes Data Models

3. According to the implementation we classify NORs into:
– Databases : A collection of logically related data stored together in one

or more files.
– XML file: eXtensible Markup Language is a simple, open, and flexible

format used to exchange a wide variety of data on and off the Web. XML
is a tree structure of nodes and nested nodes of information, in which
the user defines the names of the nodes.

– Flat file: A flat file is a file that is usually read or written sequentially.
In general, a flat file is a file containing records that have no structured
inter-relationships.

– Spreadsheets : An electronic spreadsheet consists of an array of cells into
which a user can enter formulas and values.

Fig. 2 shows how a given type of NOR can be modeled following one or
more data models, each of which could be implemented in different ways at
the implementation layer. As an example, Fig. 2 shows a classification scheme

A Pattern Based Approach for Re-engineering Non-Ontological Resources 171

Fig. 2. Non-Ontological Resources (NORs) Categorization

modeled following a path enumeration model. In this case, the classification
scheme is implemented in a database and in an XML file.

3 Related Work

In this section we present an overview of sofware re-engineering and a review of
the state of the art on NOR re-engineering.

3.1 Software Re-engineering

Software re-engineering [5] is defined as the (1) examination of the design and
implementation of an existing legacy system, and (2) application of the different
techniques and methods to redesign and reshape that system into hopefully
better and more suitable sofware.

Software re-engineering main activities are:

1. Reverse engineering [5] is the process of analyzing a subject system to iden-
tify the system components and their interrelationships, and create repre-
sentations of the system in another form or at a higher level of abstraction.

2. Alteration, also called restructuring [5], is the transformation from one rep-
resentation form to another at the same relative abstraction level, while
preserving the subject system’s external behaviour.

3. Forward engineering [5] is the traditional process of moving from high level
abstractions and logical, implementation-independent designs to the physical
implementation of a system.

172 A. Garćıa-Silva et al.

Re-engineering patterns [18] are patterns that describe how to change a legacy
system into a new, refactored system that fits current conditions and require-
ments. Their main goal is to offer a solution for re-engineering problems. They are
also on a specific level of abstraction. They describe a process of re-engineering
without proposing a complete methodology, and they can sometimes suggest a
type of tool that one could use.

3.2 Non-Ontological Resource Re-engineering

Non-ontolgical resource re-engineering, defined in the Glossary of Activities
in Ontology Engineering [24], refers to the process of taking an existing non-
ontological resource and transforms it into an ontology.

The research in NOR re-engineering has been mainly centered on the trans-
formation of standards [16,12], thesauri and lexicons [12,20,25], XML files [8],
hierarchical classifications [9,12], folksonomies [20], relational databases [1,22],
and spreadsheets [11]. These works only concentrate on the re-engineering pro-
cess of the type and implementation of NOR.

In [20] Sabou et al. two approaches for the non-ontological resource transfor-
mation are distinguished. The first one consists in transforming resource schema
into an ontology schema, and then resource content into instances of the ontol-
ogy (Approach 1). The second one transforms resource content into an ontology
schema (Approach 2). We add a third transformation approach which consists
in transforming the resource content into instances of an existing ontology (Ap-
proach 3).

Table 1 shows a summary of the analyzed research works which have been
focused on NOR type. Table 2 shows a summary of the research works which
have been focused on the implementation of NORs. Both tables show the trans-
formation approach, and also, if available, the name of the tool which supports
the transformation approach. These research works just include ad-hoc methods
and techniques for the transformation, i.e. the research works are specific of the
NOR type or NOR implementation.

Re-engineering patterns are defined in [19] as transformation rules applied in
order to create a new ontology (target model) from elements of a source model.
The target model is an ontology, while the source model can either be an ontol-
ogy or a NOR, e.g., a thesaurus concept, a data model pattern, a UML model,
a linguistic structure, etc. In fact, [19] presents a unique example of a schema
re-engineering pattern, which includes four rules to transform a knowledge orga-
nization system into SKOS9. These rules just identify the elements of the source
model that are mapped to their corresponding elements of the target model,
but the rules do not provide information about how to carry out the mapping.
Re-engineering patterns are not integrated within a method to carry out the
re-engineering process. Moreover, a template to describe re-engineering patterns
in a unified way is not proposed.

9 http://www.w3.org/2004/02/skos/

A Pattern Based Approach for Re-engineering Non-Ontological Resources 173

Table 1. Research works centered in the NOR type

Research Work NOR Type
Transformation

approach
Tool

Hepp et al. [12]
Classification schemes,
thesauri, taxonomies 2 SKOS2GenTax

Mochol et al. [16] Classification schemes 2 -
Sabou et al. [20] Folksonomies 2 -
Sabou et al. [20] Lexica 1,2 -

van Assem et al. [25] Thesauri 1 -

Table 2. Research works centered in the NOR implementation

Research Work
NOR

Implementation
Transformation

approach
Tool

Stojanovic et al. [22] Relational Database 1 KAON REVERSE

Barrasa et al. [1] Relational Database 3
R2O,

ODEMapster

Garcia et al. [8] XML files 1 XSD2OWL,
XML2RDF

Han et al. [11] SpreadSheet 3 RDF123

After having analyzed the state of the art on NORs re-engineering, we con-
clude that research efforts have been mainly devoted to the implementation and
the type of NOR. It has also been analyzed how to map NORs content and
schema into ontology instances and schema, but none of the analyzed research
works have taken advantage from the data model which underlies the NOR to
guide the re-engineering process. Finally, it is left to say that none of the analyzed
re-engineering approaches propose a set of re-engineering patterns to guide the
re-engineering process, and that there is also a lack of re-engineering methods.

4 Approach for Non-Ontological Resource Re-engineering

In this section we present our approach for NOR re-engineering. We describe a
proposal for carrying out the NOR re-engineering process. Then, we present an
example of the patterns for re-engineering NORs.

4.1 General Model for Non-Ontological Resource Re-engineering

In a nutshell, our approach for NOR re-engineering considers as input a pool
of NORs and patterns for re-engineering NORs. NORs, as we mentioned in sec-
tion 3, include lexica, classification schemes, thesauri, etc. Regarding patterns for

174 A. Garćıa-Silva et al.

Fig. 3. Re-engineering Model for Non-Ontological Resources

re-engineering NORs, they provide solutions to the problem of transforming
NORs into ontologies. These patterns will be included in the NeOn project
patterns library10.

Based on the software re-engineering model presented in [3] we propose our
re-engineering model for NOR re-engineering in Fig.3.

The NOR re-engineering process consists of the following activities, which are
defined in a Glossary of Activities in the Ontology Engineering[24]:

1. Non-Ontological Resource Reverse Engineering, whose goal is to analyze a
NOR to identify its underlying components and create representations of the
resource at the different levels of abstraction (design, requirements and con-
ceptual). Since NORs can be implemented as XML files, databases or spread-
sheet among others, we can consider them as software resources, and therefore,
we use the software abstraction levels shown in Fig. 3 within this activity. Here
the requirements and the essential design, structure and content of the NOR
must be recaptured.

2. Non-Ontological Resource Transformation, whose goal is to generate a concep-
tual model from the NOR. We propose the use of Patterns for Re-engineering
Non-Ontological Resources (PR-NOR) to guide the transformation process.
First, the transformation approach has to be selected: (1) transforming re-
source schema into an ontology schema, and then resource content into in-
stances of the ontology, (2) transforming resource content into an ontology
schema, or (3) transforming the resource content into instances of an existing
ontology. Second, the semantics of the relations between the NOR entities
have to be identified, these semantics can be a)subClassOf, b)an ad-hoc re-
lation like partOf or c)a mix of subClassOf and ad-hoc relations. Finally
a pattern for re-engineering NORs according to the type of NOR, as well
as the selected transformation approach, and the semantics of the relations
between the NOR entities, has to be searched.

10 http://www.ontologydesignpatterns.org

A Pattern Based Approach for Re-engineering Non-Ontological Resources 175

3. Ontology Forward Engineering, whose goal is to output a new implementa-
tion of the ontology on the basis of the new conceptual model. We use the
ontology levels of abstraction to depict this activity because they are directly
related to the ontology development process.

4.2 Patterns for Re-engineering Non-Ontological Resources

Patterns for re-engineering non-ontological resources (PR-NOR) define a proce-
dure to transform the NOR components into ontology representational primi-
tives. To this end, patterns take advantage of the NOR underlying data model.
The data model defines how the different components of the NOR are represented.

According to the NOR categorization presented in section 3, the data model
can be different even for the same type of NOR. For every data model we can
define a process with a well-defined sequence of activities to extract the NORs
components and then map them to the conceptual model of an ontology. Each
process can be expressed as a pattern for re-engineering NORs.

The resultant ontologies proposed by the patterns for re-engineering NORs
are modeled following the recommendations provided by some other ontological
patterns such as logical and architectural patterns [23]. The current inventory of
NeOn Ontology Modelling Components considered as Architectural Patterns in-
cludes the following ones: taxonomy, lightweight ontology and modular architec-
ture. A taxonomy is the way of organizing an ontology as a hierarchical structure
of classes only related by subsumption relations. A lightweight ontology adds the
following features to the taxonomy structure: (a) a class can be related to other
classes through the disjointWith relation, (b) object and datatype properties
can be defined and used to relate classes, (c) a specific domain and range can be
associated with defined object and datatype properties. Finally, the modular ar-
chitecture consists in structuring an ontology as a configuration of components,
each having its own identity based on some design criteria.

Moreover, the patterns for re-engineering NORs define the transformation
process but they do not provide either an algorithm or an implementation of the
process. We plan to include the algorithms and implementations later on in a
framework which will implement the transformation process.

We have created eight patterns for re-engineering classifications schemes into
taxonomies and lightweight ontologies, two for each data model identified (path
enumeration, adjacency list, snowflake and flattened). We plan to extend this
pool of patterns with more patterns for the rest of transformation approaches.
Also we plan to include patterns for re-engineering the other types of NORs.

Next, we present an example of a re-engineering pattern identified in our
ongoing research work on transforming classification schemes into ontologies. To
present the patterns for re-engineering NORs we adapted the tabular template
for ontology design patterns used in [23].

The pattern for re-engineering NOR shown in Table 4.2 suggests a guide to
transform a classification scheme into a lightweight ontology. The classification
scheme is modeled with a snowflake data model. This pattern aims at creating
a lightweight ontology from the classification scheme.

176 A. Garćıa-Silva et al.

Table 3. Pattern for Re-engineering a Classification Scheme

Slot Value

General Information

Name Classification scheme to Lightweight Ontology (Snowflake model)

Identifier PR-NOR-CLLO-01

Type of
Component

Pattern for Re-engineering Non-Ontological Resources (PR-NOR)

Use Case

General
Re-engineering a classification scheme which follows the snowflake
model to design a Lightweight Ontology.

Example

Suppose that someone wants to build a lightweight ontology based on
the ISO 3166 standard for the representation of names of countries and
their subdivisions. This standard is divided in ISO 3166-1 for countries,
and ISO 3166-2 for subdivisions (regions).

Pattern for Re-engineering Non-Ontological Resources

Resource to be Re-engineered

General

A NOR holds a classification scheme which follows the snowflake
model.
A classification scheme is a rooted tree of concepts, in which each
concept groups entities by some particular degree of similarity. The
semantics of the hierarchical relation between parents and children
concepts may vary depending on the context.
The snowflake model for hierarchical classifications proposes to
create a fixed but separated entity (table, file) for each level of the
hierarchy.

Example

The ISO 3166 standard (codes for the representation of names of
countries and their subdivisions) is divided in ISO 3166-1 for
countries, and ISO 3166-2 for country subdivisions (regions).
For the example, ISO 3166-1 and ISO 3166-2 are hold on different
entities. The relation semantics between the sub-ordinate and the
super-ordinate concepts is partOf.

Graphical Representation

General

Example

Designed Ontology

A Pattern Based Approach for Re-engineering Non-Ontological Resources 177

Table 3. (continued)

Slot Value

General

The generated ontology will be based on the lightweight ontology
architectural pattern (AP-LW-01)[23]. Each snowflake entity is
mapped to a class. An ad-hoc binary relation is defined between the
new classes according to the semantics of the relation between
super-ordinate and sub-ordinate categories. Each data included on an
entity is mapped to an instance of the entity class. The semantics of
the relationship between sub-ordinate and super-ordinate instances is
mapped to an ad-hoc binary relation instance.

Graphical Representation

(UML)General
Solution
Ontology

(UML)Example
Solution
Ontology

How to Re-engineer

General

1. Create a class for each entity in the snowflake model.
2. If there is a relationship between the entity classes then create it

as an ad-hoc binary relation.
3. If there is a super-class for the new entity related classes then

create it and set the appropriate subClassOf relation between
the entity classes and the super-class.

4. For each record on each entity of the snowflake model, create an
instance of the appropriate entity class.

5. If you have created an ad-hoc binary relation between the entity
classes then you have to create the relation instance between the
entity class instance.

178 A. Garćıa-Silva et al.

Table 3. (continued)

Slot Value

Example

1. Create a COUNTRY class for the ISO 3166-1 Countries entity
and a REGION class for the ISO 3166-2 Subdivisions entity.

2. Create the Has region binary relation with COUNTRY as domain
and REGION as range.

3. Create a LOCATION class and assert that COUNTRY and RE-
GION are subClassOf LOCATION.

4. For each record on the ISO 3166-1 Countries entity create an
instance of the COUNTRY class.

5. For each COUNTRY instance look for its REGION on the ISO
3166-2 Subdivisions entity and create an instance of REGION for
each subdivision found. Also create an instance of the Has region
relation associated to the current country instance and related to
the current region instance.

Relationships

Relations Use the Architectural Pattern: AP-LW-01 [23]

5 SEEMP Use Case

A preliminary experimentation of our approach was done within the SEEMP
project, in which NORs of the human resources domain were transformed into
ontologies. We re-engineered four classification schemes using the overall set of
patterns. We obtained the following ontologies:

– Occupation, Education, Economic activity ontologies. We applied the pat-
tern classification scheme (path enumeration) to lightweight ontology (PR-
NOR-CLTX-01), to re-engineer the ISCO-88 (COM), FOET, and NACE
standards. These standards are classification schemes modeled following a
path enumeration data model and they are stored in a MS Access database.

– Geography ontology. We applied the pattern Classification scheme (adja-
cency list) to lightweight ontology (PR-NOR-CLLO-02), to re-engineer the
ISTAT11 geography italian standard. This standard is a classification scheme
modeled following an adjcency list data model and it is stored in a MS Excel
spreadsheet.

In this section we present the activities carried out to re-engineer the ISTAT
standard. This standard contains information about the divisions, regions and
provinces of Italy. It is available in MS Excel spreadsheet format.

– Non-Ontological Resource Reverse Engineering. Within this activity we gath-
ered documentation about ISTAT from domain web sites such as ISTAT web
site itself and Eurostat. From this documentation we extracted the schema
of the classification scheme which consists of 4 divisions, 20 regions and
106 provinces. Since the data model was not available in the documenta-
tion, it was necessary to extract it for the resource implementation itself.

11 http://www.istat.it/

A Pattern Based Approach for Re-engineering Non-Ontological Resources 179

ISTAT is modeled following the adjacency list data model, i.e. each row of
the spreadsheet contains the information related to a province, its region
and its division.

– Non-Ontological Resource Transformation. Within this activity we carried
out the following tasks:
1. We followed approach 1, described in section 3, to carry out the trans-

formation. This approach consists in transforming resource schema into
an ontology schema, and then resource content into instances of the on-
tology.

2. We identified the semantic of the relations between the NOR entities. In
this case the relation was identified as part Of.

3. Then, we looked in our local pattern repository for a suitable pattern
to re-engineer NORs taking into account the selected transformation
approach, the semantics of the relations between the NOR entities, and
the data model of the resource.

4. The most appropriate pattern for this case is the PR-NOR-CLLO-02
pattern. This pattern takes as input a classification scheme modeled
with an adjacency list data model and produces a lightweight ontology.

5. The selected pattern suggests to create a class for each one of the columns
related to the main entities of the ISTAT standard. With this information
we outlined the conceptual model for the ontology.
(a) Create the DIVISION, REGION, and PROVINCE classes according

to the ISTAT entities.
(b) Create the has region binary relation with DIVISION as domain and

REGION as range.
(c) Create the has province binary relation with REGION as domain

and PROVINCE as range.
(d) Create a LOCATION class and assert that DIVISION, REGION and

PROVINCE are subClassOf LOCATION.
(e) Create an instance of the DIVISION class for each distinct ISTAT

division .
(f) Look for the REGIONS of each DIVISION instance in the ISTAT

regions and create an instance of REGION for each distinct region.
Create an instance of the has region relation associated to the current
division instance and related to the current region instance.

(g) Look for the PROVINCES of each REGIONS instance in the ISTAT
provinces and create an instance of PROVINCE for each distinct
province. Create an instance of the has province relation associated
to the current region instance and related to the current province
instance.

– Ontology Forward Engineering. WSML12 is the ontology implementation lan-
guage used in the SEEMP project. Because of the number of divisions, re-
gions and provinces of the ISTAT standard, it was not practical to create the
ontology manually. Therefore, we created an ad-hoc wrapper, implemented

12 http://www.wsmo.org/wsml/

180 A. Garćıa-Silva et al.

in Java, that reads the data from the resource implementation and automat-
ically creates the corresponding classes, attributes and relations of the new
ontology following the suggestion given by the pattern for re-engineering
NORs and the conceptual model. The resultant ontology is available at
http://droz.dia.fi.upm.es/ontologies/.

6 Conclusions and Future Work

In this paper we have introduced a three level categorization of NORs accord-
ing to three different features: type of NOR, data model and implementation.
Moreover, we present a pattern based approach for re-engineering NORs into
ontologies. We take advantage of the NOR data model to define patterns for re-
engineering NORs. We also describe a pattern for re-engineering a classification
scheme into an ontology. Additionally, we present a use case of the proposed
approach. Further work needs to be done to consider data models of the other
NORs. If we can identify data models as we made for classification schemes we
will be able to create more patterns to guide the re-engineering process. This
approach will be extended for creating richer and more complex ontologies. We
also need to calculate how much effort do we save re-engineering NORs using
patterns compared with re-engineering NORs without them.

Acknowledgments. This work has been partially supported by the European
Comission projects NeOn(FP6-027595) and SEEMP(FP6-027347), as well as by
a UPM-BSCH grant, and an I+D grant from the UPM.

References

1. Barrasa, J., Corcho, O., Gómez-Pérez, A.: R2O, an Extensible and Semantically
Based Database-to-Ontology Mapping Language. In: Bussler, C.J., Tannen, V.,
Fundulaki, I. (eds.) SWDB 2004. LNCS, vol. 3372. Springer, Heidelberg (2005)

2. Brandon, D.: Recursive database structures. Journal of Computing Sciences in
Colleges (2005)

3. Byrne, E.J.: A conceptual foundation for software re-engineering. In: Proceedings
of the International Conference on Software Maintenance and Reengineering. IEEE
Computer Society Press, Los Alamitos (1992)

4. Caracciolo, C., Gangemi, A.: Revised and Enhanced Fisheries Ontologies. Technical
report, NeOn project deliverable D7.2.2 (2007)

5. Chikofsky, E.J., Cross, J.H.: Reverse engineering and design recovery: a taxonomy.
In: IEEE Software (1990)

6. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering. In:
Advanced Information and Knowledge Processing. Springer, Heidelberg (2003)

7. Gangemi, A., Pisanelli, D., Steve, G.: Ontology integration: Experiences with med-
ical terminologies. Ontology in Information Systems, 163–178 (1998)

8. Garćıa, R., Celma, O.: Semantic Integration and Retrieval of Multimedia Metadata.
In: Proceedings of the ISWC 2005 Workshop on Knowledge Markup and Semantic
Annotation, Semannot 2005 (2005)

http://droz.dia.fi.upm.es/ontologies/

A Pattern Based Approach for Re-engineering Non-Ontological Resources 181

9. Giunchiglia, F., Marchese, M., Zaihrayeu, I.: Encoding Classifications into
Lightweight Ontologies.. In: The Semantic Web: Research and Applications.
Springer, Heidelberg (2006)

10. Haase, P., Rudolph, S., Wang, Y., Brockmans, S.: Networked Ontology Model.
Technical report, NeOn project deliverable D1.1.1 (2006)

11. Han, L., Finin, T., Parr, C., Sachs, J., Joshi, A.: RDF123: a mechanism to transform
spreadsheets to RDF. In: Proceedings of the Twenty-First National Conference on
Artificial Intelligence (AAAI 2006). AAAI Press, Menlo Park (2006)

12. Hepp, M., de Bruijn, J.: GenTax: A Generic Methodology for Deriving OWL
and RDF-S Ontologies from Hierarchical Classifications, Thesauri, and Inconsis-
tent Taxonomies. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS,
vol. 4519, pp. 129–144. Springer, Heidelberg (2007)

13. Hodge, G.: Systems of Knowledge Organization for Digital Libraries: Beyond Tra-
ditional Authority Files (2000),
http://www.clir.org/pubs/reports/pub91/contents.html

14. Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent
Systems (2001)

15. Malinowski, E., Zimányi, E.: Hierarchies in a multidimensional model: From con-
ceptual modeling to logical representation. Data and Knowledge Engineering
(2006)

16. Mochol, M., Paslaru, E.: Practical Guidelines for Building Semantic eRecruitment
Applications. In: International Conference on Knowledge Management (iKnow
2006), Special Track: Advanced Semantic Technologies (2006)

17. Pinto, H.S., Tempich, C., Staab, S.: DILIGENT: Towards a fine-grained method-
ology for DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies.
In: Proceedings of the 16th European Conference on Artificial Intelligence (ECAI
2004), pp. 393–397. IOS Press, Amsterdam (2004)

18. Pooley, R., Stevens, P.: Software reengineering patterns. Technical report (1998)
19. Presutti, V., Gangemi, A., David, S., Aguado de Cea, G., Suárez-Figueroa, M.C.,

Montiel-Ponsoda, E., Poveda, M.: NeOn Deliverable D2.5.1. A Library of Ontology
Design Patterns: reusable solutions for collaborative design of networked ontologies.
In: NeOn Project (2008), http://www.neon-project.org

20. Sabou, M., Angeletou, S., dAquin, M., Barrasa, J., Dellschaft, K., Gangemi, A.,
Lehman, J., Lewen, H., Maynard, D., Mladenic, D., Nissim, M., Peters, W., Pre-
sutti, V., Villazón, B.: Selection and integration of reusable components from for-
mal or informal specifications. Technical report, NeOn project deliverable D2.2.1
(2007)

21. Staab, S., Schnurr, H.P., Studer, R., Sure, Y.: Knowledge processes and ontologies.
IEEE Intelligent Systems (16), 26–34 (2001)

22. Stojanovic, L., Stojanovic, N., Volz, R.: A Reverse Engineering Approach for Mi-
grating Data-intensive Web Sites to the Semantic Web. In: Proceedings of the
Conference on Intelligent Information Processing (2002)

23. Suárez-Figueroa, M.C., Brockmans, S., Gangemi, A., Gómez-Pérez, A., Lehmann,
J., Lewen, H., Presutti, V., Sabou, M.: Neon modelling components. Technical
report, NeOn project deliverable D5.1.1 (2007)

24. Suárez-Figueroa, M.C., Gómez-Pérez, A.: Towards a Glossary of Activities in the
Ontology Engineering Field. In: Proceedings of the 6th Language Resources and
Evaluation Conference, LREC 2008 (2008)

25. van Assem, M., Menken, M., Schreiber, G., Wielemaker, J.: A method for convert-
ing thesauri to RDF/OWL. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F.
(eds.) ISWC 2004. LNCS, vol. 3298, pp. 17–31. Springer, Heidelberg (2004)

http://www.clir.org/pubs/reports/pub91/contents.html
http://www.neon-project.org

Efficient Index Maintenance for Frequently
Updated Semantic Data

Yan Liang1, Haofen Wang1, Qiaoling Liu1, Thanh Tran2, Thomas Penin1,
and Yong Yu1

1 Department of Computer Science & Engineering
Shanghai Jiao Tong University, Shanghai, China

{yliang,whfcarter,lql,tpenin,yyu}@apex.sjtu.edu.cn
2 Institute AIFB, Universität Karlsruhe, Germany

{dtr}@aifb.uni-karlsruhe.de

Abstract. Nowadays, the demand on querying and searching the Se-
mantic Web is increasing. Some systems have adopted IR (Information
Retrieval) approaches to index and search the Semantic Web data due
to its capability to handle the Web-scale data and efficiency on query
answering. Additionally, the huge volumes of data on the Semantic Web
are frequently updated. Thus, it further requires effective update mecha-
nisms for these systems to handle the data change. However, the existing
update approaches only focus on document. It still remains a big chal-
lenge to update IR index specially designed for semantic data in the form
of finer grained structured objects rather than unstructured documents.
In this paper, we present a well-designed update mechanism on the IR
index for triples. Our approach provides a flexible and effective update
mechanism by dividing the index into blocks. It reduces the number of
update operations during the insertion of triples. At the same time, it
preserves the efficiency on query processing and the capability to han-
dle large scale semantic data. Experimental results show that the index
update time is a fraction of that by complete reconstruction w.r.t. the
portion of the inserted triples. Moreover, the query response time is not
notably affected. Thus, it is capable to make newly arrived semantic data
immediately searchable for users.

1 Introduction

Nowadays, indexing and retrieving the Semantic Web data is drawing an increas-
ing attention. Some systems such as Swoogle [1] and Watson [2] have adopted
IR (Information Retrieval) approaches for indexing these data. In particular, the
semantic search engine [1] has indexed over 1.4 million Semantic Web documents
and began to provide search services in the Semantic Web community similar
to Google. The success is due to the fact that IR is proved to handle Web-scale
data and be efficient on query answering. Moreover, these systems are benefited
from the IR approaches to exploit huge amounts of textual information on the
Semantic Web by keyword queries.

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 182–196, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Index Maintenance for Frequently Updated Semantic Data 183

Additionally, the huge volumes of semantic web data are frequently updated.
Thus it requires semantic search engines not only to be scalable but also have
flexible update mechanisms to make the newly arrived data immediately search-
able for users. For example, with a large number of indexed Semantic Documents,
Swoogle has to update its index on a regular basis.

However, to keep the Semantic Web data up-to-date in an IR index is a dif-
ficult task. The IR-based approaches index the Semantic Web data by reusing
the existing structure of inverted index. Although there are many discussions on
the index update for traditional IR search engines [3,4,5,6,7], current update ap-
proaches are just suitable for semantic documents. However, the index updating
is more difficult for an IR index which is designed as a repository of triples, since
during the update it should also keep the original relations between existing in-
dividuals. Although some methods (such as [8]) have presented to speed up the
index construction, frequently index rebuilding is still costly.

In this paper, we propose an efficient updating mechanism on top of Sem-
plore [9], which is the state-of-art of the current IR approaches to index and
retrieve the large scaled semantic instances (RDF triples). It extends the IR en-
gine’s index structure and functions to provide efficient query processing. More-
over, it supports both the structured queries for semantic web data and the
keyword queries for textual information.

Our approach is based on the idea of dividing the index into blocks, which
reduce the number of update operations during the insertion of triples. Our
index mechanism can also be used for the index update based on an incremental
crawler. Experimental results show that the index update time is a fraction
of complete reconstruction w.r.t. the portion of the inserted triples. Thus it’s
capable to make the newly arrived semantic data immediately searchable by
users. At the same time it preserves both the efficiency on query processing and
the scalability to handle the large-scaled semantic data. Moreover, the reuse of
IR search engine not only can index the structural Semantic Web data but also
the textual information. Thus it supports the hybrid query capability for both
structured queries and keyword queries.

The paper is organized as follows. Section 2 introduces the related work. Sec-
tion 3 describes the basic index structure we are based on. Section 4 discusses
the extended block index structure, along with an update mechanism. Moreover,
a comprehensive analysis on the performance of our update mechanism is pre-
sented in Section 5. Section 6 shows the experimental results and we will give a
conclusion in Section 7.

2 Related Work

The update mechanism for inverted index is a well studied field. Work in [5]
presents a hybrid approach in which long posting lists are updated in-place,
while short lists are updated using a merge strategy. The method proposed in
[3] maintains a dual inverted list which stores short lists in the memory and long
lists on the disk. When the area for the short lists is full, the longest short list will

184 Y. Liang et al.

be merged into a long list. Work in [6] improves the in-place update by saving the
short posting lists within the vocabulary and over-allocating the long lists. [4]
uses overflow ’buckets’ to handle the new arriving postings. Work in [7] presents
a method to update previously indexed documents whose content have changed.
The idea is based on blocking together with the diff algorithm. [10] presents
a just-in-time indexing component which invests less in the preprocessing of
arriving data, at the expense of a tolerable latency in query response time.
Index update can also be achieved by reconstruction. Method in [8] is presented
to speed up the index construction.

However, there are few work on the index update for Semantic Web data.
[11] enables incremental update of index for XML documents part of which are
changed.

Querying and searching semantic web data using IR-based approaches are
emerging areas. Work in [1] presents a crawler based indexing and retrieval
system for semantic web data. It uses an IR engine to index the crawled semantic
web documents by using the n-gram and taking URIrefs as terms. [2] provides
an interface for searching ontologies and Semantic Documents using keywords.
However, these works are designed to index Semantic Documents and they do
not index triples. [9] is designed as a repository of RDF triples based on the IR
engine’s index structure. It supports both structured query and keyword query.
[12] uses keyword search results to do spread activation on semantic networks.
But it does not support structured queries for Semantic Web data. While [13]
combines full text and ontology search based on an IR engine. Work in [14] is
presented as a lookup index over sources crawled on the Semantic Web. But it
acts as locator of RDF resources and not as a query engine. [15] borrows XML
Fragment query language to search semantically annotated text corpora but not
for semantic web data such as RDF triples. Moreover, the inverted index also can
be used in DBMSs to support containment queries in XML documents [16,17].

3 Overview of Semplore

Our work is based on [9], which indexes and retrieves RDF triples using the
existing index structure and functions of current IR engines. It provides the hy-
brid query capability by combining both structured queries and keyword queries.
In this section, we will give a brief introduction to its query capability, index
structure and query evaluation algorithm.

3.1 Hybrid Query Capability

Here the hybrid query is an extension of the DL-based conjunctive query which
was introduced in [18] and can be presented by the SPARQL query language.
To support the keyword queries, an extension of the ordinary conjunctive query
is made by taking keyword as a virtual concept. An individual is an instance
of a certain virtual concept if the textual content of its properties contain the
corresponding keyword. Then the users can input a conjunctive query containing

Efficient Index Maintenance for Frequently Updated Semantic Data 185

keyword constraints. For example, to find all films which are about ”romantic”
and directed by some Chinese director, the query is:
{f | "romantic"(f) ∧ directs(d, f) ∧ ChineseDirector(d)}
Here the queries are restricted as tree-shaped unary queries, whose query

graphs are trees. The detailed definition can be found in [9].

3.2 Index Structure

The index structure of traditional IR search engine is the inverted index which
is based on fields, documents and terms. Work in [9] uses the inverted index
structure to index triples and provides searching and querying based on the
functions of IR search engine. Its main idea is to translate semantic web data into
documents, fields and terms which can be indexed and retrieved by traditional
IR engine. The translation is shown in Table 1.

After the translation, semantic web data can then be indexed by the IR engine.
The IR engine’s retrieval functions can also be used over these indexed data. For
example, for each relation, the IR engine can find all its super relations by
inputting the relation name and the field ”superRelOf” as a query. For each
concept, the IR engine can also returns all its individuals by taking the concept
name and the field ”type” as a query.

For relation triples, the index saves relation names as terms and the subject
individuals as the documents. As it is shown in Fig.1, for each subject in a
certain relation’s posting list, its position list stores all its corresponding objects
in this relation. As an example in Fig.1, i2 and i3 are corresponding objects of
i1, then i2 and i3 are stored in i1’s position list in relation R1’s posting list.
Thus the IR engine can find all the objects of a certain relation with a given set
of subjects by return the union of the corresponding position lists. The index
structure is symmetric, for the objects of a relation can be taken as the subjects
of the inverse relation. So in the similar way, objects of triples are stored in the
posting list of inverse relations and they also have position lists to stored the
corresponding subjects.

To force the search engine to save the object individuals as position infor-
mation, the actual contents stored in the position lists are the object’s local

Table 1. Translation from semantic web data to fields, documents, and terms

Document Field Term

concept C

subConOf super-concepts of C

superConOf sub-concepts of C

text tokens in textual properties of C

relation R

subRelOf super-relations of R

superRelOf sub-relations of R

text tokens in textual properties of R

individual i

type all concepts that i belongs to
subjOf all relations R that (i, R, ?) is a triple in data
objOf all relations R that (?, R, i) is a triple in data
text tokens in textual properties of i

186 Y. Liang et al.

TriplesTriples
(i1, R1 , i2)
(i1, R1 , i3)
(i3, R1 , i4)ii i i

0 1 2 3 4 ……
iR1

(i3, R1 , i4)
(i5, R1 , i6)
(i7, R1 , i4)

i3i1

0 (i2) 1 (i3) 2 (i4) 3 (i6)

i5 i7 …...

2 (i4)

i8

Term Index

R1
- i2 i3 …...i4 i6

0 (i2) 1 (i3) 2 (i4) 3 (i6)

T P iti

2 (i4)

0 1 2 3 ……
1

0 (i1) 1 (i3)0 (i1) 2 (i5)

Term Position

3 (i7)

Fig. 1. Triples stored in the inverted index

positions in the inverse relation’s posting list. For example in Fig.1, in i1’s posi-
tion list stores 0 and 1, which are i2 and i3’s local position in the posting list of
R−. By reading the subject’s position list the search engine can quickly skip to
the corresponding objects in the inverse position list. Based on this index struc-
ture, the search engine can provide efficient query evaluation algorithm which
will be discussed in Section 3.3.

IDs are used throughout the indexing process to uniquely represent a resource
(individual). Individuals in the posting lists or position lists are sorted in ascend-
ing order according to their IDs in order to provide fast query evaluation.

3.3 Query Evaluation

Basic Operations. In modern IR engines, two basic operations can be effi-
ciently achieved, which are the Basic Retrieval and the Merge Sort. Given a field
f and a term t, Basic Retrieval (f, t) returns the corresponding posting list from
inverted index. The result is sorted by individual IDs in ascending order. The
input of Merge Sort are two sorted lists of individual IDs S1 and S2 and a binary
operator op which can be ∩, ∪ or −. The Merge Sort operation m(S1, op, S2)
computes S1 op S2 by merging the lists S1 and S2 and returns the result as a
new sorted list of individual IDs. According to the index structure mentioned in
Section 3.2, works in [9] reuses and extends these basic functions of IR engine
to support its own query evaluation algorithm.

(1) Concept Constraints

The input of this operation is a boolean combination of concepts and keyword
concepts. It’s output is a sorted list of individual IDs which match the con-
straints. This operation can be implemented using basic retrieval and merge-
sort operation mentioned above. For example, for the input Film � “romantic”,
the Concept Constraints can be achieved through two Basic Retrievals and one
Merge Sort: m((type, Film), ∩, (text, “romantic”)).

Efficient Index Maintenance for Frequently Updated Semantic Data 187

(2) Relation Expansion

The input of this operation is a relation R and two sets S1 and S2 of individual
IDs. The operation computes the set {y | ∃x : x ∈ S1 ∧ (x, R, y) ∧ y ∈ S2} and
returns it as a sorted list of individual IDs. The Relation Expansion is not
directly supported by traditional IR engines. This operation needs to find all the
objects of a certain relation with a given set of subjects. According to the index
structure in 3.2, these objects can be obtained by computing the union of the
subjects’ position lists. Since in these position lists it stores the objects’ local
position in the inverse position list, the union can be computed based on a bit
vector which has the same length as the inverse relation’s posting list.

Query Evaluation Algorithm. From these basic operations, a tree-shaped
hybrid query can be evaluated using a bottom-up method. At first for each leaf
nodes in the query graph, it uses the Concept Constraints operation to obtain
the satisfied individuals. When all of the children nodes are evaluated, it moves
forward to the parent node using the Relation Expansion to filter the results.
Then these children nodes are removed. Doing this procedure iteratively then
the final result is obtained when finish visiting all the edges in the query graph.

4 Index Update Mechanisms

Based on the index structure in Section 3.2, for concept names, relation names or
concept individuals which are indexed without using position lists, we can update
the index by adopting the optimizations of traditional index maintenance([3,6]).
However, for relation triples, updating the index is time consuming. During
the index update, newly arrived triples need to be added into the index. Their
subjects and objects are inserted into the posting lists of corresponding rela-
tions and inverse relations. However, inserting new individuals into a posting
list would make some of the original individuals’ local position moved behind.
These affected local positions are stored in the position lists in the inverse re-
lation’s posting lists. As a result, these position lists which store the updated
local positions should be updated. It is certainly a heavy cost, since inserting
one individual may sometimes leads to the reconstruction of the whole posting
list. In this section, we present a Block Index structure based on Section 3.2. It
reduces the cost of inserting new relation triples into the index.

4.1 Block Index Structure

The purpose of our Block Index structure is to minimize the changes in the
position lists when inserting relation triples. The basic idea is to split posting
lists into blocks. The first individual of each block is taking as landmark. All
individuals in the same block have their offsets comparing their local position
to that of the block’s landmark. Then the local position of each individual in
the posting list can be presented as a < Landmark ID, offset > pair. Take
Fig.2 as an example, in the posting list of relation R1, individuals i1 and i7

188 Y. Liang et al.

Block1 Block2

R1 i3 ……i1 i7 i8i5 ……

Block1 Block2

(Lm1,0) (Lm1,1) (Lm1,2) …… (Lm2,0) (Lm2,1) ……. Triples
(i1, R1 , i2)1

(Lm1,0) (Lm1,1) (Lm2,0) (Lm2,0)(Lm2,1)

(i1, R1 , i3)
(i3, R1 , i4)
(i5, R1 , i6)
(i R i)

R - i i i i
(Lm1,0) (Lm1,1) ……… (Lm2,0) (Lm2,1) …….

Block1 Block2 (i7, R1 , i4)

R1 i2

(Lm1,0) (Lm1,1)

i3 ……i4 i6

(Lm1,0)

……

(Lm2,0) (Lm1,2)

Fig. 2. Structure of block based index

are landmarks of Block1 and Block2 respectively. Then the local position of i5
can be represented by the pair < Lm1, 2 > where Lm1 is the landmark ID of
Block1 and 2 is the offset. An auxiliary landmark table is needed to store all
the landmarks and their real position in the posting lists. Thus real positions
of individuals in a posting list can be obtained by getting the landmark’s real
position from landmark table and adding the offset value.

Note that the Block Index structure is only for the storage of relation triples.
For concept names, relation names or concept individuals, which are only stored
in posting lists, the index structure is the same as it defines in Section 3.2.

4.2 Single Update Operation

In this section, we discuss the insertion of a single relation triple into the index,
which is shown as Algorithm 1. First we need to insert the subject into the
relation’s posting list if necessary. Second is to insert the object into the inverse
relation’s posting list in a similar way if necessary. After the insertion, we will
get the local positions of the subject and the object in corresponding posting
lists. Then we can add their local positions into each other’s position list.

Algorithm 1. Single Update Algorithm
Input: An inserted triple (s, R, o)
if s /∈ Posting(R) then Insert(s,R);1

if o /∈ Posting(R−) then Insert(o,R−);2

Add LocalPosition(R, s) to PositionList(o, R−);3

Add LocalPosition(R−, o) to PositionList(s, R);4

The procedure of Insert(s, R) is to insert an individual s into the posting list
of a relation R. For each following individual i in the Block, we read every local
position (< pl, po >) in it’s position list to find the corresponding object o in the
inverse-relation list. Then we update the old local position of i which is stored
in o’s position list by increasing the offset value by one. We should also maintain

Efficient Index Maintenance for Frequently Updated Semantic Data 189

Procedure. Insert(s,R)

Find block B that s should inserted into;1

foreach instance i that i ∈ B ∧ i > s do2

foreach < pl, po >∈ PositionList(i, R) do3

o = Skip To(< pl, po >, Posting(R−));4

Find < nl, no > in PositionList(o, R−) that5

Skip To(< nl, no >, Posting(R)) == i ;
no = no + 1;6

Add s to Posting(R);7

Update the Landmark Table;8

the landmark table after the insertion. Since the insertion of s makes the real
positions of all landmarks of the following blocks moved backward for one space.

Fig.3 shows the procedure of Insert(i2, R1) when inserting a single triple
(i2, R1, i7) into the index. Since the subject i2 does not exist in the posting list
of R1, i2 is then inserted into Block1 of R1’s posting list. The local position of all
following individuals in this block (i3 and i5) should be updated by increasing
the offset value by one. The old local positions of i3 and i5 should be updated,
which are stored in the position list of their corresponding objects. By reading the
position list of i3 and i5 in R1’s posting list, we can easily get these corresponding
objects (i4 and i6) and skip to their positions in the posting list of R−

1 . Then we
can find in i4 and i6’ position lists and update i3 and i5’s old local position by
increasing the offset value by one. In the similar way, the object i7 is inserted into
Block2 of R−

1 ’s posting list and all the local positions of following individuals in
this block have to be updated. As a result, their old local positions which are
stored in the position list of the corresponding subjects in R1 should be changed.

Fig. 3. Procedure of inserting a single individual into posting list

The delete operation is much easier, for we only need to delete the local
positions of the subject and the object in each other’s position lists. Considering
the expenses of inserting an individual in the posting list, we do not delete an
individual with empty position list for further insertion.

190 Y. Liang et al.

4.3 Batch Update Operation

In this section we present a batch update operation, which can reduce the number
of update operations in position lists for multi-triple’s insertion. In the batch
update operation, every time we insert all individuals which belong to the same
block into the posting list. It will avoid the redundant update in position lists.
The Algorithm 3 shows how it works.

Algorithm 3. Batch Update Algorithm
Input: Inserted triples (s1, R, o1),(s2, R, o2) ... (sn, R, on)
foreach block Bi 	 Posting(R) do1

Ssub =2

{st | st /∈ Posting(R)∧ st ≥ Landmark(Bi) ∧ st < Landmark(Bi+1)};
BatchInsert(Ssub, Bi, R);3

foreach block Bi ∈ Posting(R−) do4

Sobj =5 ˘
st | st /∈ Posting(R−) ∧ st ≥ Landmark(Bi) ∧ st < Landmark(Bi+1)

¯
;

BatchInsert(Sobj, Bi, R
−);6

foreach (si, R, oi) do7

Add LocalPosition(R, si) to PositionList(oi, R
−);8

Add LocalPosition(R−, oi) to PositionList(si, R);9

Procedure. BatchInsert(S,B,R)

foreach instance i ∈ B ∧ i > min{S} do1

foreach < pl, po >∈ PositionList(i, R) do2

o = Skip To(< pl, po >, Posting(R−));3

Find < nl, no > in PositionList(o, R−) that4

Skip To(< nl, no >, Posting(R)) == i ;
no = no + | {s | s ∈ S ∧ s < i} |;5

Add each s ∈ S to Posting(R);6

Update the Landmark Table;7

When more triples of a relation are inserted into the index, each time we
select all the individuals which belong to the same block and insert them into the
posting list at one time. The operation of BatchInsert(S, B, R) is an expansion
of Insert(s, R) presented in Section 4.2. Once inserting these individuals in the
posting list, the local position of every original individual in the block which
behind the minimum inserted individual should be moved backward. These local
positions are stored in the position lists of the corresponding objects in the
inverse relation’s posting list. The offset value are updated due to the number
of individuals which will be inserted in front of it. The batch insert operation
is more efficient since it reduce the number of position update when inserting
individuals belong to the same block.

In order to be efficient for the update operation, the block size must be chosen
in a certain range, which will be discussed in Section 5.3. After the batch update,
if a block size exceeds the threshold, it will be split into two smaller blocks.

Efficient Index Maintenance for Frequently Updated Semantic Data 191

5 Performance Analysis

5.1 Space Requirement

According to [7], the landmark-offset encoding for local position does not increase
the space requirement of the index. Suppose k bits are allocated for a location
position in the posting list, then the same k bits can be used to encode a <
landmark ID, offset > pair with b < k bits for the landmark ID and the rest
k− b bits for the offset. However, an extra landmark table will be stored on disk
and loaded in memory during index update and query processing. The size of
landmark table is usually small. For a index with average block size B, the total
number of landmarks is Σ(�LR/B�) ,where LR is the length of R’s posting list
and R is every relation or inverse relation in the index.

5.2 Query Performance

In essence, query evaluation time with block index is not significantly affected
comparing to the index structure mentioned in 3.2. For concept individuals,
which are stored in traditional inverted index without blocks, the IR engine
provides fast processing time. For relation triples, the main difference is that the
individual’s real positions in the posting lists needs to be computed by seeking
the real position of the landmark in the landmark table and then adding the
individual’s offset. In the landmark table, all landmarks in a certain relation’s
posting list is sorted by their real positions. Using the binary search, the seek
operation takes O(log(L/B)) time, where L is the length of posting list and B
is the average block size.

5.3 Index Update Time

In the block based index, contents in the same block are stored continuously.
Based on the optimization of traditional index maintenance([3,6]), inserting in-
dividuals into a block is not time consuming. Moreover, with the help of land-
mark table, seeking in the posting lists can be finished efficiently. During the
index update, the main cost is to look up and update the offset values in the
position lists. Since contents of a position list are physically stored continuously
in modern IR engines, the look up operations in the position lists enjoys the
benefit of spatial locality for fast access.

Using the batch update introduced in Section 4.3, the total index update
time for all newly arrived triples depends on the block size and the number of
blocks which will be inserted with new individuals. So our update mechanism is
especially efficient when the index size is large and the number of update triples
is small. Blocks with larger size lead to more individuals whose local positions are
affected during the insertion. Thus it increases the number of update operations
in the position list. While block with too small size will decrease the efficiency
of both index updating and query processing. That’s because the individuals’
real positions are computed by looking up the landmark table. Small blocks will
increase the size of landmark table and thus slow down the look up operation.

192 Y. Liang et al.

Small blocks also produce many fragments on disk which will affect the disk
access time. In our experiment in Section 6.2, we will demonstrate and further
discuss the impact of block size to the index update.

For concept names, relation names or concept individuals, which only stored
in posting lists, the index structure is the same as it defines in Section 3.2 and
we update the index by using the existing optimizations for traditional IR index
maintenance([3,6]). The update in these posting lists are infrequent and less time
costing comparing to that of relation triples.

6 Evaluation

6.1 Experiment Setup

We use both the real world data and the artificial semantic data in our experi-
ment. In order to simulate the data change on the Semantic Web, a representative
NTriple file (persons.nt) from DBpedia is used as the real world data. Table 2
shows its content update during a time interval of five months 1.

Table 2. Triples of real world dataset

Dataset Version 2.0 Version 3.0 Percentage
No. of triples 557,126 569,051 -

Inserted triples - 157,127 28.2%
Deleted triples - 145,280 26.1%

In order to test the efficiency of our index update mechanism and its impact
on query answering, we also use the LUBM [19] benchmark data. In the LUBM
dataset, data is randomly generated and can be scaled to an arbitrary size. For
each dataset from LUBM(1,0) to LUBM(20,0), we treat its content as triples
to be inserted into an existing block index which is build for the LUBM(50,0)
dataset. Table 3 shows the number of triples from LUBM(1,0) to LUBM(50,0).
In Section 6.3 we also evaluate the query processing time under LUBM(20,0)
and LUBM(50,0).

Table 3. Triples of artificial datasets

Dataset LUBM(1,0) LUBM(5,0) LUBM(10,0) LUBM(15,0) LUBM(20,0) LUBM(50,0)
No. of triples 102,737 643,435 1,311,787 2,014,462 2,772,017 6,865,225

The proposed experiments are carried out on a desktop PC with Pentium 4
CPU of 3.2 GHz and 2Gb memory, running Microsoft Windows Server 2003 with
Sun Java JRE 1.5.0. Note that single indexing thread is used in our experiment
to obtain a raw indexing speed for ease of comparison.
1 The DBPedia 2.0 version was launched in 09/2007 while the 3.0 version was launched

in 02/2008.

Efficient Index Maintenance for Frequently Updated Semantic Data 193

6.2 Index Update Performance

In this section, we evaluate the efficiency and scalability of our index update
mechanism. Table 4 shows both the index construction time and index space
size for persons.nt v2.0 using the two different index structures. Semplore [9] is
based on the index structure already introduced in Section 3.2. Note that our
block index only slightly increases the index construction time. Moreover, the
same conclusion can be drawn on the size of index space, which indicates that
it would not lead to the space overhead.

Table 4. Index construction for persons.nt v2.0

Person.nt v2.0 from DBpedia Semplore Block Index
Index Construction Time (s) 218 231

Index Space (MB) 37 38

When updating the index to persons.nt v3.0, we choose different block size
to test the performance. As shown in Fig. 4, we can see that when the block
size is increasing, the update time increases. Blocks with larger size lead to
more individuals whose local positions are affected during the insertion and
thus increase the number of update operations. However, when the block size is
chosen as 50, it took more time to update the index than with block size equals
to 100. The main reason is that getting individuals’ real position needs to look
up the landmark table. When the block size is small, the size of landmark table
is increased and thus the index update time is slow down. Since Semplore does
not provide the index update mechanism, it’s index can only be updated by
complete reconstruction, which takes 225 seconds.

105

115

125

135

(S
ec

on
ds

)

65

75

85

95

T
im

e

Block Size (# Terms)

Fig. 4. Index update time with different block sizes

For the LUBM dataset, we first build the index based on the Block Index
structure under the dataset of LUBM(50,0). Here we chose the block size equals
to 1000. For every dataset from LUBM(1,0) to LUBM(20,0), we take it as the
set of triples be to inserted into the existing Block Index. Then we insert each

194 Y. Liang et al.

of them into the original index of LUBM(50,0) to evaluate the index update
time. For Semplore, we rebuild the index for the original dataset LUBM(50,0)
together with the new inserted dataset. The results are shown in Fig.5. Together
with Table 3, we can find that the index update time is a fraction of complete
rebuild due to the portion of the inserted triples.

8000

10000

12000

14000

U d Ti b Bl k I d

0

2000

4000

6000 Update Time by Block Index
(Seconds)

Rebuild Time by Semplore
(Seconds)

Fig. 5. Index update time vs. index rebuild time

6.3 Query Response Time

In additional to the efficiency of index update performance, it is also important
to test whether the block index structure would largely influence the time of
query answering. We choose 8 of 14 LUBM benchmark queries mentioned in
[19] for the evaluation, which is shown in Table 5. The excluded queries are
either cyclic or with multiple variables which are out of the query capability
of Semplore (i.e. unary tree-shaped conjunctive query). Here we only focus on
testing the efficiency on retrieval but not the reasoning capability.

Table 6 shows the query response time under LUBM(20,0) and LUBM(50,0)
by the two different indices. The block index is built by setting the block size
as 1000. The response time of the block index is slightly slower than that of

Table 5. LUBM benchmark queries

Q1 (type GraduateStudent ?X) (?X takesCourse
Department0.University0.GraduateCourse0)

Q3
(type Publication ?X) (?X publicationAuthor
Department0.University0.AssistantProfessor0)

Q5 (type Person ?X) (?X memberOf
Department0.University0)

Q6 (type Student ?X)

Q10 (type Student ?X) (?X takesCourse
Department0.University0.GraduateCourse0)

Q11
(type ResearchGroup ?X) (?X subOrganizationOf

University0)
Q13 (type Person ?X) (University0 hasAlumnus ?X)
Q14 (type UndergraduateStudent ?X)

Efficient Index Maintenance for Frequently Updated Semantic Data 195

Table 6. Query Response Time for LUBM Datasets (ms)

Query LUBM(20,0) LUBM(50,0)
Semplore Block Index Semplore Block Index

Q1 14 63 14 84
Q3 2 43 3 51
Q5 1 32 2 43
Q6 16 19 31 34
Q10 2 43 2 47
Q11 1 1 1 2
Q13 1 39 13 59
Q14 1 2 32 36

Semplore as it needs to lookup the landmark table stored in the main memory
when returning the individuals local position. Moreover, the retrieval time is
almost the same as Semplore when queries are tend to find individuals of concepts
or keywords. This is due to the fact that the corresponding posting lists do not
use the position lists thus are not stored in the block index. This way, the block
index is proved to provide much more flexibility for index update mechanisms
while preserving the efficiency of query answering.

7 Conclusion

In this paper, we present a well-designed update mechanism on the state of the
art IR index (Semplore) for triples. Benefited from the basic idea of dividing the
index into blocks, it reduces the number of update operations during inserting
triples, which results in several orders of magnitude decrease on the index update
time compared to that by complete reconstruction. Moreover, both the size of
index space and query response time are not notably effected. Thus, our proposed
mechanism makes it possible for Semplore to handle frequent semantic data
update while preserving efficient hybrid query answering. One future work we
are considering is to offer more suitable block sizes and update strategies to meet
the requirements of different situations in order for self-tuning.

References

1. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,
V.C., Sachs, J.: Swoogle: A Search and Metadata Engine for the Semantic Web.
In: Proceedings of the Thirteenth ACM Conference on Information and Knowledge
Management. ACM Press, New York (2004)

2. d’Aquin, M., Baldassarre, C., Gridinoc, L., Sabou, M., Angeletou, S.: Watson:
Supporting next generation semantic web applications. In: WWW 2007 (2007)

3. Tomasic, A., Garćıa-Molina, H., Shoens, K.: Incremental updates of inverted lists
for text document retrieval, pp. 289–300 (1994)

4. Brown, E., Callan, J., Croft, W.: Fast incremental indexing for full-text informa-
tion retrieval. In: Proceedings of the 20th International Conference on Very Large
Databases (VLDB), Santiago, Chille, pp. 192–202 (1994)

196 Y. Liang et al.

5. Büttcher, S., Clarke, C.L.A., Lushman, B.: Hybrid index maintenance for growing
text collections. In: Proceedings of SIGIR 2006, New York, NY, USA, pp. 356–363.
ACM, New York (2006)

6. Lester, N., Zobel, J., Williams, H.: Efficient online index maintenance for contigu-
ous inverted lists. Inf. Process. Manage. 42(4), 916–933 (2006)

7. Lim, L., Wang, M., Padmanabhan, S., Vitter, J.S., Agarwal, R.C.: Efficient up-
date of indexes for dynamically changing web documents. In: World Wide Web,
pp. 37–69 (2007)

8. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems 30(1–7), 107–117 (1998)

9. Zhang, L., Liu, Q., Zhang, J., Wang, H., Pan, Y., Yu, Y.: Semplore: An ir approach
to scalable hybrid query of semantic web data. In: Proceedings of ISWC/ASWC
2007, pp. 652–665 (2007)

10. Lempel, R., Mass, Y., Ofek-Koifman, S., Sheinwald, D., Petruschka, Y., Sivan, R.:
Just in time indexing for up to the second search. In: CIKM, pp. 97–106 (2007)

11. Jang, H., Kim, Y., Shin, D.: An effective mechanism for index update in structured
documents. In: CIKM, pp. 383–390 (1999)

12. Rocha, C., Schwabe, D., Aragao, M.P.: A hybrid approach for searching in the
semantic web. In: Proceedings of the 13th international conference on World Wide
Web, pp. 374–383. ACM Press, New York (2004)

13. Bast, H., Chitea, A., Suchanek, F.M., Weber, I.: ESTER: efficient search on Text,
Entities, and Relations. In: Proceedings of SIGIR 2007, Amsterdam, Netherlands,
pp. 671–678. ACM, New York (2007)

14. Tummarello, G., Oren, E., Delbru, R.: Sindice.com: Weaving the open linked data.
In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck,
J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 552–565. Springer, Heidelberg
(2007)

15. Chu-Carroll, J., Prager, J.M., Czuba, K., Ferrucci, D.A., Duboué, P.A.: Semantic
search via XML fragments: a high-precision approach to ir. In: Proceddings of
SIGIR, pp. 445–452 (2006)

16. Li, Q., Moon, B.: Indexing and querying XML data for regular path expressions.
In: The VLDB Journal, pp. 361–370 (2001)

17. Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang,
C.: Storing and querying ordered XML using a relational database system. In:
SIGMOD Conference (2002)

18. Horrocks, I., Tessaris, S.: Querying the semantic web: A formal approach. In: Hor-
rocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 177–191. Springer,
Heidelberg (2002)

19. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
J. Web Sem. 3(2-3), 158–182 (2005)

Towards a Component-Based Framework for
Developing Semantic Web Applications

Raúl Garćıa-Castro1, Asunción Gómez-Pérez1, Óscar Muñoz-Garćıa1,
and Lyndon J.B. Nixon2

1 Ontology Engineering Group, Departamento de Inteligencia Artificial
Facultad de Informática, Universidad Politécnica de Madrid, Spain

{rgarcia,asun,omunoz}@fi.upm.es
2AG Netzbasierte Informationssysteme, Freie Universität Berlin, Berlin, Germany

nixon@inf.fu-berlin.de

Abstract. For those outside the research community, to develop Seman-
tic Web applications entails real difficulty. This difficulty is due in part
to the lack of usable approaches for planning Semantic Web solutions,
even though Semantic Web tools have already reached industrial matu-
rity. We propose here the Semantic Web Framework, a component-based
framework for analysing rapidly the required components, the depen-
dencies between them, and selecting existing solutions. This approach
has been tested with a number of industrial partners, which justifies the
effort made in this direction.

1 Introduction

Semantic Web technologies are slowly but surely moving out of the borders of
the research community and reaching all types of business users, ranging from
large multinational companies to individuals. These users, when convinced of
the benefits that the Semantic Web technology provides to their problems and
processes, may want to switch from being technology consumers to technology
producers, by building their own Semantic Web-based solutions on top of exist-
ing tools and methodologies. However, when non-expert users try to plan and
develop Semantic Web solutions they currently face several obstacles:

– They do not know the types of technologies now existing nor the functionali-
ties that these provide, nor do they know what are the dependencies between
the different technologies.

– They do not know how to use the Semantic Web technology, so they cannot
reuse or include this technology into their own applications.

– They do not know whether these technologies can interoperate either be-
tween themselves or with their own technologies and, if so, how this inter-
operability can be achieved.

– They cannot accurately make decisions, such as cost or resource estimations,
when including semantic capabilities into their applications or when building
Semantic Web applications from scratch.

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 197–211, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

198 R. Garćıa-Castro et al.

Although reaching a universal agreement on how to develop a Semantic Web
application is almost impossible, facilitating the understanding and development
of Semantic Web applications by giving design guidelines through software pat-
terns and exploiting software reuse techniques is really feasible. Nowadays, to
construct applications from a collection of reusable components and frameworks
is a popular approach to software development. Components provide a number
of benefits because they simplify application development and maintenance, and
thus, they allow systems to be more adaptive and to respond rapidly to changing
requirements [1].

The Semantic Web Framework is intended to help Semantic Web application
developers design and build Semantic Web applications. This framework can be a
first step to solve the above problems, though later on it should be extended with
interface descriptions, benchmarking, interoperability tests and cost models. The
framework is a reference framework that currently provides descriptions of the
existing types of Semantic Web technologies and their functionalities, and of the
dependencies between these technologies.

Our approach involves classifying the different Semantic Web technologies
according to their functionalities and representing them as independent compo-
nents grouped under a smaller set of component groups. For each component, we
give a description of the functionalities that the component provides and then
we identify the dependencies between the different components. The level of
the descriptions is understandable enough to non-experts; additionally, with our
industry partners we have validated through use case analysis the accessibility
of the framework to non-experts, enabling them to identify rapidly the required
components with their planned Semantic Web application, thus ensuring a viable
final concept through taking component dependencies into account.

With the appropriate extensions to the framework, we expect to facilitate the
use and reuse of this technology and to avoid inconsistencies when developing
Semantic Web applications by providing further specifications and guidelines for
components.

This paper is structured as follows: Section 2 presents a brief explanation of
component-based software development, software architectures and frameworks.
Section 3 describes the commonalities of Semantic Web applications and the
related work that supports application development in this context. Section 4
focuses on the Semantic Web Framework, the components involved in it and in
the dependencies between such components. Section 5 shows how the Semantic
Web Framework is used to support real industrial use cases and to determine
their component needs and dependencies. Finally, Section 6 draws the conclu-
sions of this work and proposes future lines of research.

2 Background

2.1 Component-Based Software Engineering

Reuse-based software engineering is becoming the main development approach
for business and commercial systems. One of this reuse-based approaches is

Towards a Component-Based Framework 199

Component-Based Software Engineering (CBSE), which is the process of defin-
ing, implementing and composing loosely coupled independent components into
systems [2]. In CBSE, application developers reuse components already devel-
oped and tested to build their applications in a robust and rapid way, only
knowing the component interface or contract and not knowing the details of the
component implementation or the way the component was conceived to be used.

CBSE relies on independent components that are completely specified by their
interfaces, component standards that facilitate the integration of components,
middleware that provides software support for component integration and a
development process that is geared to CBSE. According to this, the Semantic
Web Framework provides the skeleton for a specification of the independent
components needed.

A software component is a software composition unit that specifies a set of
interfaces and a set of requirements; and that can be composed with other com-
ponents independently in time and space [3].

Component-based systems have the following characteristics:

– Interoperability. Components cooperate despite differences in language, in-
terface, and execution platform.

– Distribution. Components can be hosted in different machines in a network.
– Heterogeneity. Components can be executed in different platforms or oper-

ating systems and written in different languages by different developers.
– Extensibility independence. The applications are modifiable and extensible

adding new components.
– Dynamism. Applications can evolve by component extension, extinction,

substitution, or by reconfiguring the relationships between components.

The Semantic Web Framework has been defined as a component-based
framework because Semantic Web applications possess similar characteristics
to component-based systems above presented. Furthermore, component-based
frameworks provide the features that facilitate software reuse [4]: abstraction, to
reduce and factor out details; selection, to help developers locate, compare and
select reusable software artifacts; specialisation, to particularize generic artifacts;
and integration, to combine a collection of artifacts.

2.2 Software Architectures and Frameworks

A software architecture is defined as the fundamental organization of a sys-
tem embodied in its components, their relationships to each other and to the
environment, and the principles guiding its design and evolution [5].

The objectives of software architectures are to understand and improve com-
plex application structures; to reuse application structures so as to solve similar
problems; to plan the application evolution; to analyse the application correction
and the compliance degree with respect to the initial requirements; and to allow
the study of some domain specific parts.

Software architectures are described by a) the components that realise the
computational and data storage aspects; b) the interaction between components

200 R. Garćıa-Castro et al.

during the execution; c) the patterns that describe the component composition;
and d) the restrictions imposed when applying those patterns.

Frameworks are a kind of domain-specific software architecture [6], which
define the architectural style relating the components inside a system. Further-
more, they define a set of components and their interfaces in an abstract way,
establishing the interaction rules and mechanisms between them.

Depending on the framework applicability, frameworks can be classified into
horizontal and vertical frameworks [3]. Horizontal frameworks are valid for ev-
ery application domain relative to a concrete aspect of the system (e.g., com-
munication infrastructures, user interfaces, visual environments, etc.). Vertical
frameworks are developed specifically for a concrete application domain such as
telecommunications, manufacturing, multimedia services, etc.

In this paper, the Semantic Web Framework is a horizontal framework that
constitutes an abstract reusable design represented by the components com-
monly involved in the architecture of semantic applications as well as the depen-
dencies between these components.

3 Semantic Web Applications

The Semantic Web is an extension of the current web, in which information is
given well-defined meaning, better enabling computers and people to work in
cooperation [7]. In this context, in which the web is a network of application-
usable information, we can define a Semantic Web application as a software
application that uses or produces information for the Semantic Web.

As companies begin to perceive the benefits of semantic technologies, they
will explore how to apply this technology to build Semantic Web applications.
These applications have been characterised by different authors [8] and by events
such as the Semantic Web Challenge1 with the following features:

– Data has semantics and is represented using formal descriptions.
– Semantic data is reused, manipulated and processed.
– Data sources are heterogeneous and are owned or controlled by different

organisations.
– Applications assume an open world (i.e., the information is never complete).
– Multiple natural languages are supported.
– RDF(S) and OWL, the open standards recommended by the W3C, are used.

In the Semantic Web, the term reuse appears not only at the data level,
as shown above, but also at the application level, because nowadays there exist
many open software from a wide range of sources that can be reused when build-
ing Semantic Web applications. At the application level, reuse follows three dif-
ferent approaches: a distributed services approach, which integrates web service
technology into their architectures; a shared memory approach, which composes
components using a shared space of common memory to communicate, as is the
case of libraries being reused inside an application; and a mixed approach, which
combines the two approaches explained before.
1 http://iswc2007.semanticweb.org/callfor/SemanticWebChallenge.asp

http://iswc2007.semanticweb.org/callfor/SemanticWebChallenge.asp

Towards a Component-Based Framework 201

3.1 Semantic Web Application Architectures

Only a few architectures for Semantic Web applications have been proposed so
far.

Mika et al. sketch a generic architecture of ontology-based applications
grounded in a call-and-return style and structured in hierarchical layers [9]. The
layers involved from bottom to top are the following: ontology, middleware and
application. The ontology layer contains the components concerned with the
creation and maintenance of the model of the application; the middleware layer
supplies common ontology-related services; and the application layer rests on the
ontology and on related services to provide some kind of ontology functionality
to an end user.

Tran et al. [10] present a service-oriented architecture also structured in hier-
archical layers: the data layer hosts any kind of data sources, including sources
different from ontological ones; the logic layer includes application-specific ser-
vices that are implemented for a particular use case and that operate on specific
object models; finally, the presentation layer hosts presentation components that
the user interacts with. These authors also classify the components inside the
logic layer into ontology services, ontology engineering services and ontology
usage services.

By contrast, the framework described in this paper is an open system and
is not divided in layers. Layered approaches, on the other hand, present several
disadvantages, such as the difficulty in structuring some systems in a layered
fashion; performance considerations when high level functions require close cou-
pling to low level implementations; and the difficulty in finding the right level of
abstraction, especially if existing systems cross several layers [11].

The two architectures presented above identify some example components
that illustrate their approaches. However, in the Semantic Web Framework we
have tried to identify exhaustively the existing semantic components of Semantic
Web applications. The 32 components we have identified in the Semantic Web
Framework cover the 16 and 21 components identified in the previous approaches.

4 The Semantic Web Framework

In this paper, the Semantic Web Framework is defined as a structure in which
Semantic Web applications can be organised and developed. The Semantic Web
Framework is guided by some general design principles that state that the Se-
mantic Web Framework should be

– Developer-oriented. Different audiences such as developers with low expertise
in Semantic Web technologies or ontology practitioners should be considered.

– Easy to understand. To facilitate the understanding and use of the Seman-
tic Web Framework, its components have been organised in dimensions ac-
cording to the major properties of the problem space that have significant
variation over Semantic Web technology.

202 R. Garćıa-Castro et al.

– Inexpensive to adopt. To develop a Semantic Web application or to upgrade
an existing application with semantic capabilities should be easy and thus,
the impact on legacy systems is minimised.

– Semantics focused. To describe only the components that provide semantic
functionalities and functionalities to manage semantics. Other components
that deal with communication, distribution, etc. have not been taken into
account to ease the integration of the components of the Semantic Web
Framework into other software architectures.

– Component based. To define some specifications of these components that
allow different implementations of them, providing each of these components
a basic functionality.

– Evolving. To extend easily the Semantic Web Framework by inserting new
components or by modifying existing ones because the Semantic Web, and
its technology, is continuously evolving.

According to the definition of software architecture presented in Section 2, if
we want to define the architecture of the Semantic Web Framework, we need to
identify its components, the interaction between them, the patterns that describe
their composition, and the restrictions to impose when applying those patterns.

Therefore, this paper is focused on the identification of the components of
the Semantic Web Framework; on their classification, as stated below; and on
the main interfaces of the Semantic Web Framework components with other
components and with the environment. In a future work, we will define a concrete
specification of the interfaces and the different patterns that can be used in
Semantic Web applications.

4.1 Definition and Classification of Components

We follow the definition of component given by Szyperski [3] since a Semantic
Web Framework component is as an autonomous and modular unit with well
defined interfaces that describes a service and performs a specific functionality.
These components can be used either independently or together to develop ap-
plications for the Semantic Web; and they can be implemented using services,
program libraries or applications.

Components are usually defined by specifying some general information about
them, such as a natural language description; their interfaces, including the
functionalities that the component implements and those that it uses; and their
contracts, which are specifications added to the interface that establish use and
implementation conditions [3].

Within the Semantic Web Framework, we do not describe the component
contracts, since these will be defined in future work, but we explicitly classify
the interfaces into the functionalities that a component implements and those
that it uses. Therefore, each component is defined by the following:

– Name. The name of the component.
– Description. A high-level description of the component.

Towards a Component-Based Framework 203

Fig. 1. Components of the Semantic Web Framework

– Functionalities provided. An enumeration of the functionalities that the com-
ponent provides, specifying for each functionality the type or types of inter-
face that it has (user interface, programming interface, service interface,
hardware interface, etc.).

– Component dependencies. These include an enumeration of the functionali-
ties required by the component to work correctly and that are provided by
other components.

To classify the components of the Semantic Web Framework, we have consid-
ered the dimensions of an architecture as the major properties of the problem
space that have significant variation over Semantic Web systems, in other words,
the groups of components that provide some specific support to the architecture.
These dimensions, however, are not exhaustive; we have classified the different
components according to the main functionalities that they provide, as stated
in previous Semantic Web technology classifications [12,13].

Figure 1 presents the components that have been identified from software
currently available or under construction. The enumeration of components is
neither exhaustive nor complete, and is open to improvements and extensions.
The current components have been identified by members of the Knowledge
Web2 Network of Excellence who have great expertise in each of the dimensions.

In Figure 1, each dimension of the architecture is represented as a column
and reflects those components that provide a particular functionality to the
architecture. It should be noted that the order of the components or of the
2 http://knowledgeweb.semanticweb.org/

204 R. Garćıa-Castro et al.

Fig. 2. Dependencies of the components on the Ontology engineering dimension

dimensions in the figure does not imply any precedence or relation between
them.

The dependencies of each of these components on other components of the
framework were identified. Figure 2 shows the basic dependencies of the com-
ponents on the Ontology engineering dimension. Component dependencies are
represented graphically in the following way: when one component depends on
the functionalities of another, it is then represented with an arrow going from
the first component to the component that provides the functionalities.

Existing software that implements the components was also identified. It must
be observed that existing implementations may include the functionalities of mul-
tiple components. This is clearly seen in ontology engineering platforms, which
give support to different tasks of the ontology development process and cover
multiple components. In total, we identified 200 component implementations:
43 in the Data and Metadata Management dimension, 10 in the Querying and
Reasoning dimension, 78 in the Ontology Engineering dimension, 25 in the On-
tology Customization dimension, 10 in the Ontology Evolution dimension, 15
in the Ontology Instance Generation dimension, and 19 in the Semantic Web
Services dimension.

On the other hand, even if there is a dependency between two components
(e.g., an Ontology editor requires an Ontology repository), in the real world all
the implementations of a certain component will not be compatible with all the
implementations of the dependent component.

Next, a description of the dimensions of the Semantic Web Framework and of
the components included inside each dimension is given. The full description of
the Semantic Web Framework components, dependencies and implementations
can be found in [14].

Towards a Component-Based Framework 205

Data and Metadata Management. This dimension includes those compo-
nents that manage knowledge and data sources, such as:

– Information directory manager. It handles query distribution, manages
provider directories, identifies information providers from a query, and han-
dles the storage and access to distributed ontologies and data.

– Ontology repository. It locally stores and accesses ontologies and instances.
– Data repository. It locally stores and accesses data and ontology annotated

data.
– Alignment repository. It handles the storage and access to distributed align-

ments.
– Metadata registry. It locally stores and accesses metadata information.

Querying and Reasoning. This dimension includes those components that
generate and process queries, such as:

– Query answering. It takes care of the logical processing of a query by pro-
viding reasoning functionalities to search results from a knowledge base.

– Semantic query processor. It takes care of the physical processing of a query
by providing functionalities to manage query answering over ontologies in
distributed sources.

– Semantic query editor. It takes care of the user interface for editing queries.

Ontology Engineering. This dimension includes those components that pro-
vide functionalities to develop and manage ontologies, such as:

– Ontology editor. It allows creating and modifying ontologies, ontology el-
ements, and ontology documentation. These functionalities include single
ontology component editing or more advanced editing, such as ontology
pruning, extension or specialization.

– Ontology browser. It allows visually browsing an ontology.
– Ontology evaluator. It evaluates ontologies, either their formal model or their

content, during the different phases of the ontology life cycle.
– Ontology learner. It acquires knowledge and generates ontologies of a given

domain through some kind of (semi)-automatic process.
– Ontology matcher. It matches two ontologies or an ontology and another data

source and outputs some alignments. Two types of ontology matchers can
be distinguished, one that generates matchings and one that uses matchings
for other tasks (merging, mediating, etc.).

Ontology Customisation. This dimension includes the components that cus-
tomize and tailor ontologies, such as:

– Ontology localization and profiling. It adapts an ontology according to some
context or some user profile.

– Ontology discovery and ranking. It finds appropriate views, versions or sub-
sets of ontologies, and ranks them according to some criterion.

206 R. Garćıa-Castro et al.

– Ontology adaptation operators. It is in charge of applying appropriate oper-
ators to the ontology in question, resulting in an ontology customized ac-
cording to some criterion.

– Ontology view customisation. It enables the user to change or amend a view
on a particular ontology to fit a particular purpose.

Ontology Evolution. This dimension includes those components that manage
the ontology evolution, such as:

– Ontology versioner. It maintains, stores and manages different versions of an
ontology.

– Ontology evolution visualizer. It visualises different versions of an ontology.
– Ontology evolution manager. It is in charge of the timely adaptation of an

ontology to the changes undergone and of the propagation of such changes
to dependent artifacts.

Ontology Instance Generation. This dimension includes those components
that generate ontology instances, such as:

– Instance editor. It allows creating and modifying manually instances of con-
cepts and of relations between such concepts in existing ontologies.

– Manual annotation. It allows the manual and the semi-automatic annotation
of digital content documents (e.g. web pages) with concepts in the ontology.
This annotation process may be assisted or guided by a machine (semi-
automatic annotation).

– Automatic annotation. It allows the automatic annotation of digital content
(e.g., web pages) with concepts in the ontology. Occurrences in the considered
content of concept instances are automatically detected and subsequently
annotated.

– Ontology populator. It automatically generates new instances in a given on-
tology from a data source.

Semantic Web Services. This dimension includes those components that
discover, select, mediate, compose, choreograph, ground, and profile semantic
web services, such as:

– Web service discoverer. It publishes and searches service registries, controls
access to registries, and distributes and delegates requests to other registries.

– Web service selector. After discovering a set of potentially useful services,
this component checks whether the services can actually fulfil the user’s
concrete goal and under what conditions.

– Web service composer. It automatically composes web services to provide
new value-added web services.

– Web service choreography engine. It uses the choreography descriptions of
the service requester and provider to drive their conversation.

– Web service process mediator. It reconciles the public process heterogeneity
that can appear during the invocation of web services.

Towards a Component-Based Framework 207

– Web service grounding. It is responsible for web service communication.
– Web service profiling. It creates web service profiles based on their execution

history.
– Web service registry. It registers semantic web services.

5 Use Cases

In order to check the viability of use of the Semantic Web Framework by non-
experts from the industry, we selected some of the use cases from Knowledge
Web and carried out face-to-face interviews with industry members. Then, a few
days before the meeting, we sent them a copy of the Semantic Web Framework
specification to read. When the meeting was held, they had the opportunity to
raise any questions about the framework they had encountered. Then, their use
case was analysed according to the required components. This analysis was led
by the industry partner while the Knowledge Web researcher’s function was to
help the industry partner understand the functioning of the components.

We found out that even before being prompted by the researcher, the indus-
try partners were able to identify most of the components required by their use
case and were able to intuitively understand the dependency diagrams, leading
to avoidance of inconsistencies (e.g., recognizing that they had forgotten to ex-
plicitly add a certain component). In total, 8 use cases were analysed with the
Semantic Web Framework. Here we show only one of those use cases, but the
reader can find them all in [14].

5.1 Semantic Aggregation of News Stories

We chose a use case from the technology provider Neofonie GmbH3. Neofonie
represents the typical case of a small company with an interest in deploying
semantic solutions to improve their technology offer and better their competi-
tiveness. They have a general knowledge of what semantic technologies are, but
lack expert knowledge to successfully evaluate and deploy the technology. We
illustrate the framework with their use case as we consider this an ideal scenario
for our work to support industry in better modelling of semantic solutions for
their needs, the necessary first step before further evaluation and deployment of
the technology.

The selected use case deals with the provision of an aggregated news service
able to provide business clients with accurate search, thematic clustering, clas-
sification of news stories, and e-mail notification of stories of interest. The news
sources used are not just the main news feeds and media outlets but also press
releases, announcements on websites and other “alternative” sources.

The result of the analysis is shown in Figure 3, which presents the compo-
nents of the Semantic Web Framework that can support this use case and their
dependencies. This analysis could be performed within the company based on a
reading of the component descriptions and dependencies, with the final diagram
resulting from a briefer meeting with an expert to clarify open issues.
3 http://www.neofonie.de

http://www.neofonie.de

208 R. Garćıa-Castro et al.

Fig. 3. Components and dependencies for the use case

In order to achieve all of the goals proposed in the business use case, the
system could use the following Semantic Web Framework components:

– The Ontology repository, the Data repository, the Alignment repository and
the Metadata registry store all the data necessary for the use case: the on-
tologies used for each source, the instance data extracted from these sources
and the alignments that have been created between each source ontology.

– The Query answering, the Semantic query processor and the Semantic query
editor provide both the user interface support for formulating the query and
displaying the results and the system-intern support for performing the query
across the aligned instance data and extracting the results.

– The ontologies for representing the data of each source are semi-automatically
created using ontology learning techniques through the Ontology learner
component. The initial ontology extraction is refined with the Ontology
browser component to view the ontology and the Ontology editor compo-
nent to complete the ontology manually.

– It is possible that with the use of the system over time, the ontologies will
need to be revised as new concepts or properties gain relevance. Hence, the
Ontology versioner component may be employed at a later stage in the sys-
tem. Likewise, in the ontology extraction part, extracted terms may overlap
with those of existing ontologies for related domains such as politics, sport
etc. Given the existence of an ontology that represents terms from a cer-
tain source, knowledge extraction can take place. Instance data is generated
through semi-automatic annotation approaches with the Automatic anno-
tation component, the Manual annotation component for adding semantic
data to news sources, and the Ontology population component.

Towards a Component-Based Framework 209

– Finally, two approaches to searching can be considered. In one, queries are
expressed in terms of one ontology and, at run time, they are mapped into
the other ontologies of the sources; then they are executed across the dif-
ferent source data and the results are combined at the end. However, this
approach is very resource intensive at query time. The other approach con-
sidered is that, given that we update the source data only periodically, it
makes better sense to transform all source data into a core ontology, which
can be built from the merge of all source ontologies. Then, we first gener-
ate alignments between the source ontologies and a core ontology using the
Ontology matcher component. These alignments need manual proofing and
correction. The alignments also help refine the core ontology. Given now a
core ontology and alignments to the individual source ontologies, mediators
can be generated for the transformation of instance data from any source
in terms of the core ontology. Hence a core ontology is maintained against
which the queries are executed.

5.2 Results from Use Cases

The findings of the eight selected use cases reveal that some of the components,
namely, the Ontology repository, the Data repository and the Metadata registry,
are used in all the use cases. Other components, such as the Alignment repos-
itory, the Query answering, the Semantic query processor, the Ontology editor,
the Ontology browser, the Ontology view customization, the four components of
the Ontology evolution dimension, and the Ontology matcher are used in almost
all the use cases. On the other hand, some other components, namely, the Infor-
mation directory manager, the Ontology evaluator, the Ontology discovery and
ranking, the Ontology adaptation operators, the Instance editor and all the com-
ponents of the Semantic Web Service dimension are not used in the use cases
or almost not used. These findings can serve as an indicator of those fields of
research that should be focused on to meet more readily industrial requirements
on Semantic Web applications.

Another benefit of this analysis is that the industry members had a basis
for choosing which existing Semantic Web tools could be directly re-used in
their applications. For each identified component, we provide a list of existing
implementations.

Our dependency diagrams are a first step towards a formal analysis of the
overall design, where the industry partner can prove whether all dependencies
between components are taken into account. In future work, this will be sup-
ported further by specifications of component interfaces and reports on compo-
nent interoperability.

6 Conclusion and Future Work

The Semantic Web Framework is intended to help developers build Semantic
Web applications and to diminish development costs. This work is a first step

210 R. Garćıa-Castro et al.

to provide the foundation for large-scale development of Semantic Web applica-
tions; it presents a first definition of the Semantic Web Framework and describes
the existing types of Semantic Web technology, their functionalities, and the de-
pendencies between these technologies.

Although the Semantic Web Framework is useful as a reference and helps
reusing existing technology, Semantic Web application developers will still have
to develop their applications and their functionalities.

Immediate uses of the Semantic Web Framework include the identification
of the components needed for a Semantic Web application in the software de-
sign phase or the identification of existing implementations of components to
be reused. In these cases, having descriptions of the Semantic Web Framework
components and their implementations in a machine-processable form can help
automate these tasks.

Future work includes providing sets of compatible tools from the components
which are already implemented by existing tools. Therefore, the Semantic Web
Framework will provide not just single component implementations but also
groups of already-interoperable implementations.

We will extend the usability of the framework by providing evaluations and
benchmarks of component implementations, interoperability testing between
components and cost/benefit models for Semantic Web application development.

Another line of work is to realise the Semantic Web Framework as an in-
frastructure of semantic focused services so they can be used in the context
of a Service Oriented Architecture when semantic functionalities are needed.
This will require to develop specifications of the component interfaces, of their
interactions, and to develop the middleware needed to adapt the interface spec-
ifications to the concrete implementations API. These developments will allow
utility computing for semantic resources, i.e., to organise semantic resources so
that they may be accessed when needed, just like traditional utilities such as
gas, water, or electricity [15].

Within the NeOn project (IST-2005-027595) we are creating a methodology
to support the rapid prototyping and development of a new generation of large
scale, complex, semantic applications. The overall goal of this methodology is
to ensure that economically viable solutions will appear on the market and
help application developers to build Semantic Web applications from scratch
or by including semantic components into traditional information systems. In
this context, the Semantic Web Framework constitutes the starting point of the
NeOn methodology that will take into account the existing methods for building
component-based software as for example the described in [16].

Acknowledgements

Thanks to the collaborators in the definition of the Semantic Web Framework
components: S. Costache, S. Dasipoulou, Y. Ding, M. Dzbor, J. Euzenat, M.
Kaczmarek, F. Lécué, D. Maynard, V. Novacek, R. Palma, R. Piskac, M.C.
Suárez-Figueroa, and D. Zyskowski. This work is partially supported by a FPI

Towards a Component-Based Framework 211

grant from the Spanish Ministry of Education (BES-2005-8024), by the IST
project Knowledge Web (FP6-507482), by the CICYT project Infraestructura
tecnológica de servicios semánticos para la web semántica (TIN2004-02660), and
by the InnoProfile-Corporate Semantic Web project funded by the German Fed-
eral Ministry of Education and Research (BMBF) and the BMBF Innovation
Initiative for the New German Länder - Entrepreneurial Regions. Thanks to
Rosario Plaza for reviewing the grammar of this paper.

References

1. Oberle, D.: Semantic Management of Middleware. Semantic Web and Beyond
(2006)

2. Sommerville, I.: Software Engineering, 8th edn. International Computer Science
Series. Addison-Wesley, Reading (2007)

3. Szyperski, C.: Component Software, Beyond Object Oriented Programming.
Addison-Wesley, Reading (1998)

4. Krueger, C.W.: Software Reuse. ACM Comput. Surveys 24, 131–183 (1992)
5. IEEE: IEEE Std 1471-2000. IEEE Recommended Practice for Architectural De-

scription of Software-Intensive Systems. IEEE (2000)
6. Traz, W.: DSSA frequently asked questions. ACM Software Engineering Notes 19,

52–56 (1994)
7. Berners-Lee, T., Handler, J., Lassila, O.: The Semantic Web. Scientific American

(2001)
8. Motta, E., Sabou, M.: Next generation semantic web applications. In: Mizoguchi,

R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 24–29.
Springer, Heidelberg (2006)

9. Mika, P., Akkermans, H.: D1.2 Analysis of the State-of-the-Art in Ontology-based
Knowledge Management. Technical report, SWAP Project (2003)

10. Tran, T., Haase, P., Lewen, H., Muñoz-Garćıa, Ó., Gómez-Pérez, A., Studer, R.:
Lifecycle-Support in Architectures for Ontology-Based Information Systems. In:
Proceedings of the 6th International Semantic Web Conference, pp. 508–522 (2007)

11. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline, 1st edn. Prentice Hall, Englewood Cliffs (1996)

12. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering.
Springer, Heidelberg (2003)

13. Davies, J., Studer, R., Warren, P. (eds.): Semantic Web Technologies - trends and
research in ontology-based systems. John Wiley & Sons, Chichester (2006)

14. Garćıa-Castro, R., Muñoz-Garćıa, O., Suárez-Figueroa, M., Gómez-Pérez, A.,
Costache, S., Maynard, D., Dasiopoulou, S., Palma, R., Novacek, V., Lécué, F.,
Ding, Y., Kaczmarek, M., Piskac, R., Zyskowski, D., Euzenat, J., Dzbor, M., Nixon,
L., Léger, A., Vitvar, T., Zaremba, M., Hartmann, J.: D1.2.5 Architecture of the
Semantic Web Framework v2. Technical report, Knowledge Web (2007)

15. Pulier, E., Taylor, H.: Understanding Enterprise SOA. Manning (2006)
16. Cheesman, J., Daniels, J.: UML Components. A Simple Process for Specifying

Component-Based Software. Component Software Series. Addison-Wesley, Reading
(2001)

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 212–226, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Bounded Ontological Consistency
for Scalable Dynamic

Knowledge Infrastructures

Maciej Zurawski, Alan Smaill, and Dave Robertson

Centre for Intelligent Systems and their Applications (CISA), School of Informatics,
University of Edinburgh, Informatics Forum

10 Crichton Street, EH8 9AB Edinburgh, Scotland
m.zurawski@sms.ed.ac.uk, A.Smaill@ed.ac.uk, dr@inf.ed.ac.uk

Abstract. Both semantic web applications and individuals are in need of
knowledge infrastructures that can be used in dynamic and distributed environ-
ments where different autonomous entities create knowledge and build their
own view of a domain. Our framework represents this using evolving simple
contextual ontologies and mappings between them, at the same time as incre-
mental logical coherence is maintained. The definition of semantic autonomy
includes these aspects. Our earlier research has shown that a knowledge infra-
structure can have semantic autonomy that maintains global consistency, if the
knowledge representation is kept simple. We generalize that research by inves-
tigating what happens if the consistency of a knowledge infrastructure is
bounded 1) within certain regions called spheres of consistency, and 2) by al-
lowing a limited variable degree of inconsistency. Our experiments show that a
phase transition can occur in this kind of system, beyond which constant-time
and constant-memory complexity is approached.

Keywords: Semantic autonomy, ontology evolution, ontology management,
bounded consistency, rule-based process modelling, phase transition.

1 Introduction

Distributed knowledge infrastructures are becoming more important in a networked
society where it is difficult for a single authority to provide a perfect model of how
knowledge should be represented using ontologies. This is for example true for decen-
tralized organizations that in order to operate efficiently have to make decisions that
are adapted to their local needs and where every division develops an ontology that
reflects how they conceive reality [1]. Practically, this means that many different
ontologies will evolve - but to give up the task of maintaining their coherence is to
give up the idea of one knowledge infrastructure being used by such an organization.
Similar arguments can be made about distributed semantic-web applications where
ontologies are needed and used.

In our earlier work [3], we assumed that a system maintaining these ontologies has to
enforce global consistency in every state of evolution, but we now relax and generalize

 Bounded Ontological Consistency 213

that assumption (see table 1). By doing so we wish to make our framework applicable to
other scenarios, e.g. modelling two organizations where there is a higher logical coher-
ence between the divisions within one organization than the coherence between the
divisions of two different organizations. Also, this is useful in semantic-web related
applications where certain local environments (that all have their own ontology) must be
kept perfectly consistent because their interaction is of great importance whereas not
that of others. Full logical consistency would sometimes be impractical or unnecessary
because of different reasons, e.g. such as:

1) The application domain that is
modelled as such does not assume
such perfect consistency, and
2) Application domains that
require extensive or many on-
tologies, and where better com-
putational scalability is required
and even though full consistency
would be beneficial that is seen
as a less important requirement
than a highly scalable infrastruc-
ture with a short response time
3) Even though from an episte-
mological point of view we
assume there is an objective
reality (but no single language)
that in theory would facilitate a
perfectly consistent mapping
between all ontologies, perhaps
in practice that knowledge cannot be acquired immediately so then some disagreement
and inconsistency are accepted as provisional phenomena.

We are interested in properties of the whole dynamic system as such that are
incrementally sustained when the system is evolving – this time two types of consis-
tency. We are interested in scalability of the whole system for managing evolving
ontologies, the autonomy of the various divisions of the system (formalized as con-
texts) and in formalizing an explicit change process that manages the initiatives and
decisions of the autonomous units and consequently can change both the individual
ontologies and the mappings between them. The framework is a specification of a
knowledge infrastructure (that could include other elements as well that will not be
analyzed here, e.g. authorization and a graphical user interface).

Consider several organizations with many divisions (every having its own ontology
using the subsets of RDFS or OWL mentioned in 4.1.3) and then the engineers define
the required levels of consistency between the divisions. When engineers from any
division (in any organization) feel they need to propose a change in their ontology or
mappings to other ontologies, they can do so, while this infrastructure mechanism

The definition of Semantic autonomy requires
these properties to hold:

1. The local contexts have the freedom to propose a
change in their local ontology (i.e. the ontology of
the local context) or in the mappings from their on-
tology. All the possible request types, operation
types and explicit change process that manage
them, are explicated and formalised

2. The system does “in some way” maintain full or
bounded consistency as defined within every sphere
of consistency.

3. The ontological language is dynamic and open-
ended (i.e. not confined by a pre-defined set) but
there is a knowledge source that can provide
knowledge about this language.

Table 1. The generalised definition of semantic
autonomy

214 M. Zurawski, A. Smaill, and D. Robertson

automatically guarantees to maintain all the defined consistency levels in the whole
infrastructure – so humans are freed from this hard but crucial task that preserves the
integrity of the infrastructure, the organizations and the relationships between them.

Motivation of the Logical Languages Used. Instead of using an expressive Descrip-
tion Logic (DL) this time, we have chosen another much more scalable RDFS-like
logic (see the end of section 4.1.3). Therefore, the ontologies and mappings can be
visualized as graphs. That simple logic has been extended with explicit notions of
context and temporal states, because an explicit notion of state is useful for a dynamic
system and the ontologies express several cognitive contexts describing a domain.
One could develop a framework and knowledge infrastructure that use a different
logic than the one we use and we hope that our work will be repeated using another
scalable logic (even without both these explicit features - temporal states and context).
We also use a rule-based language for modelling the change processes, and it is inde-
pendent of the languages for expressing ontologies and mappings.

1.1 Novel Contribution

The novel contribution is that we have both formalized and empirically evaluated
a notion of spheres of consistency, that can contain several ontologies and the
mappings between them, inside which the framework and its reasoning process
automatically maintains full or proof-bounded consistency (as defined by the
user).

This novelty utilizes an underlying ontology-based framework specifying a knowl-
edge infrastructure and formalizing semantic autonomy (see Table 1) by means of:

 Distributed multi-contextual state-based semantics (i.e. a particular logic).
 Distributed ontology evolution (governed by an explicit change process).
 Distributed mapping evolution (governed by an explicit change process).
 The distributed explicit process of initiating change.

all in one framework. We will express the explicit change processes using a rule-
based language.

2 Related Research

Some researchers [6] distinguish between structural consistency (that the ontology
obeys the constraints of the language) and logical consistency (the ontology is satisfi-
able). A model-theoretic inconsistency measure is presented by [7], whereas ours is
proof based. The question how to make ontologies autonomous is investigated by [8].
Their theoretical model uses unidirectional relationships (bindings) for borrowing
entities from other ontologies. We instead use ontology mappings that are directed
relationships. They formalize two kinds of reasoning: cautious and brave. The first
one uses a local ontology and its neighbours whereas the second one uses the transi-
tive closure. In our own work, a sphere of consistency is a symmetric relationship that
can include an arbitrary amount of ontologies and we do explicit modelling of change

 Bounded Ontological Consistency 215

processes. Research related to the NEON Project [9] compares four different descrip-
tion-logic based formalisms for modular ontologies – all of them have better expres-
sivity than our current logical language but at the cost of exponential worst-time time
complexity. The authors mention the interesting distinction between two different ap-
proaches: 1) linking/mapping between ontologies and 2) importing (parts of) ontologies
into other ontologies. We use the first approach. Some researchers [10] motivate why the
social process of creating meaning is important. An interesting application that is also
using an ontology-based layered approach is described by the authors of [11]. How-
ever, their system is designed for the particular purpose of automating system admini-
stration and not for the purpose of maintaining distributed ontologies.

3 The Notions Used and an Introductory Example

Before defining our framework we will present the basic assumptions and show a
simple example. We assume that there are multiple different contexts and every dif-
ferent context has a potentially unique ontology that expresses the point of view of
that context (the formal side of this will be explained later). The ontologies that the
current system supports are actually simple because that benefits the system’s ability
to maintain coherence among distributed ontologies while keeping the system scal-
able. These simple ontologies can be visualized as graphs where every node corre-
sponds to a logical concept and every edge to an ontological relation (currently we
define four different ones). Every ontology mapping between two ontologies (cur-
rently we define five different ones in section 4.1.3) can be visualized as an edge that
connects the nodes of two different graphs. The reason for this simplicity of the on-
tology language is that instead of studying a complex knowledge representation

everything thing

colour

green blue

plant

flower tree

orchid
sunflower conifer_tree

ccode
plant without
bark (PBA)

g8
b

y1 ”Aerides”

”Argophyllus”

plant with
bark (PBB)

pine tree

O1 O2

A
B Cor. (A, B)

Is (A, B)
A

L E G E N D

B

Fig. 1. The ontologies of two local contexts and some mappings between them

216 M. Zurawski, A. Smaill, and D. Robertson

language we want to study a whole
dynamic system where this complexity
is observed at the macroscopic level
instead, e.g. many ontologies that are
changing while being constrained – this
complexity will be clear in expression
(7) and the behaviour exhibited in fig 5.
Once the logic is defined, inconsistency
can be defined as a contradiction of the
logical entities within a sphere of con-
sistency, whose degree of contradiction
surpasses that of the defined level in-
side that consistency sphere (see sec-
tion 4.1.3 for details). To make things more clear, assuming this simple logic we can
always visualise a contradiction as a closed loop (or in special cases several con-
nected loops) in the graph. This means that given two specific concepts and then trav-
ersing one path (connecting them) and combining the relationships transitively to a
new single relationship gives different results depending on the path taken and that
these different results cannot coexist – they contradict each other when the meaning
of the relationships is taken into account (see fig. 4 in section 4.1.2.). An application-
oriented interpretation of these notions is to view every context as a division within an
organization and the ontologies as models of the division’s local understanding of a
certain domain (e.g. in fig. 1 the first context could represent a customer-facing divi-
sion and the other context a product division).

Figure 1 shows an example of two local contexts and their ontologies. The dark
edges within the ontologies are subsumption relations, whereas the dotted lines visu-
alize the ontology mappings (two ontology mapping types are shown here: correspon-
dence and the IS-mapping). Let us now conceive that the first local context initiates
the proposal to add a new concept, e.g. yellow that actually is a type of colour. The
framework mechanism should then consider this proposal and formally investigate its
consequences – more concretely, it has to investigate if this operation would induce
contradiction or redundancy in any of the spheres of consistency that ontology 1 be-
longs to and if that the levels of contradiction or redundancy surpass the accepted rate.
Fig. 2 illustrates the spheres of consistency. As the next step, the framework accepts
these changes (but it could have rejected them in other situations) and then the first
local context initiates a proposal to add an ontology mapping between yellow and e.g.
ccode in the other ontology. Then the framework mechanism has to formally investi-
gate the consequences and the opinions of both local contexts, before a potential
change is made. Let’s now look at the framework in general.

4 The Framework and Its Layers

We are proposing a solution that will have semantic autonomy as we have defined it.
The solution is a framework consisting of five layers (see fig. 3). The two bottom

layers represent the epistemological and logical assumptions whereas the three top
layers constitute the executable system itself (they are the main focus of this paper).
We will now describe the whole framework (the logical formalization used at the

c1:O1
c2:O2

M21
pc=1

pc=1

pc=1

Fig. 2. An abstract illustration that shows two
contexts having an ontology each, a set of
mapping connecting them, and three spheres of
consistency having full consistency (pc=1)

 Bounded Ontological Consistency 217

EPISTEMOLOGICAL ASSUMP-

TIONS

LOGICAL FORMALIZATION

REASONING LAYER

THE FRAMEWORK MIDDLE

LAYER

THE FRAMEWORK TOP

LAYER

FRAMEWORK

Fig. 3. Our framework

bottom is mentioned in section 4.1.3). Also, we are interested in the process of pro-
posing and reconciliating ontological changes and therefore we define a rule-based
process language (for the purpose of evolving the ontologies and mappings) that al-
lows these three types of statements:

• entity: Predicate (parameters) where

entity=ci F (ci is a local context i and F the framework mechanism)
(1)

• Predicate (parameters)
(this purely declarative statement can be true or false)

(2)

• statement1⇒ statement2 (this is the definition of rule) where

statement1= entity: Predicate (parameters)

CNFj(entityj: Predicate (parametersj)) ∧ Predicate(parameters)

statement2= rule1 rule1 or rule2 rule1 or rule2 or rule3 statement1

(3)

We will call the three types of statement type 1, 2
and 3 respectively. The first type of statement means
that entity makes Predicate (parameters) true. The
second statement type means that Predi-
cate(parameters) returns its global truth value. The
third type of statement is a rule where if statement1
has been made true, then the rule fires. CNFj(expj)
means conjunctive normal form that can contain exp1,
exp2, … etc. If statement2 is a disjunction of several
rules, then they are investigated sequentially until one
of them fires – when that happens then the remaining
ones are not executed. This formalism has been in-
spired by [2] but our formalism is simpler because it
does not use message-passing, except in one case
(when F: COMM(message, recipient) is used to explic-
itly communicate something. The whole system S
consists of n different local contexts ci (i=1…n), their ontologies and the mappings
between them. Every local context possesses its own ontology.

4.1 The Reasoning Layer and Spheres of Consistency

4.1.1 Defining Spheres of Consistency
Whereas our framework has in the past [3] supported a notion of semantic autonomy
that requires full consistency of the whole system, we now relax that assumption and
thereby generalize this notion. A proof tree is analogous to a tableau or resolution
derivation, where the reasoning mechanism tries to prove a new statement by refuting
its negation. In our case the proof tree uses a type of breadth-first search when adding
new facts (see end of section 4.1.3.) and it has a certain depth.

Now we define spheres of consistency, in the following way:

Given a set of contexts {c1, c2, c3, … }
where every context ci has an ontology Oi

218 M. Zurawski, A. Smaill, and D. Robertson

and given a set of mapping sets {m12, m13, m23, … }
where every mij is the set of all mappings connecting contexts i and j where i<j,
a sphere of consistency is defined as

({ , ,...},{ , ,...},)i j ij ik cCons c c m m p (4)

where {ci…} and {mij…} are defined as above and pc is a continuous consistency
parameter that can vary between

pc=1 which means full consistency, and

pc=2 which means that inconsistencies of all depths are fully allowed

When 1<pc<2 then the sphere of consistency defines a proof-bounded consistency,
where there is no proof of contradiction where the proof tree has a smaller depth than
d (that must be an integer), and pc and d are related through the following formula:

2
2

1c
s

d
p

tot

−= −
−

 (5)

where tots is the total amount of relationships in all the ontologies and mapping sets
that are included in the sphere of consistency. In an analogous way we define
1 2rp≤ ≤ that measures the amount of bounded redundancy within a sphere of con-

sistency where there is no proof of redundancy where the proof tree has a smaller
depth than d, and pr and d are related through the same formula as (5) but pr is simply
substituted for pc.

4.1.2 Explaining and Motivating the Definition of Spheres of Consistency
The reasoning layer detects if a proposal
would cause a contradiction or redundancy
within some specified spheres of consistency.
If consistency has to be maintained within a
reasoning space that has ontologies and/or
mappings (that in total contain tots relation-
ships) then in the worst case the depth of the
reasoning proof tree will be d=tots+1 because
if there is no contradiction smaller than
d=tots+1, complete consistency can be guar-
anteed. The reason for this is that this particu-
lar reasoning algorithm uses breath-first
search. If we use d=tots+1 in formula (5) then pc=1, i.e. full consistency, but d=2 will
give the result pc=2, i.e. all inconsistencies are possible. The smallest contradiction
that our reasoning recognizes has size 2 [e.g. fig.4 shows a contradiction of size 4]
and if contradictions of that size are accepted then all operations that would introduce
contradictions are accepted.

The reason why we have chosen to define consistency in terms of the depth of the
proof tree is that we can make sure that the system holds this property incrementally
when it moves to the next state. Before the whole system S starts to evolve the user
has to define all spheres of consistency, their regions (i.e. the sets in formula (4)) and

 C1

 C2

 C3

 C4

COR(C1,C2)

COMPATIBLE(C2,C4)

DISJOINT(C1,C3)

COR(C3,C4)

Fig. 4. An example of contradiction
between concepts C1 and C4

 Bounded Ontological Consistency 219

their individual degrees pc and pr. Then there must be some expectation of the size the
system will reach, and using that expectation (as tots) the reasoning layer will then
calculate d in every sphere using formula (5) but solving for d. Then a proposed
change that would introduce a contradiction of length d or smaller would be discov-
ered by the reasoning mechanism that always investigates all possible contradictions
(that the proposed change would create) starting with the small ones.

Finally, one should note that a inconsistency that has a proof tree that is more shal-
low, is a more serious one because it is very direct (e.g. when the size is 2), whereas if
it requires a more extensive proof then there are more choices for how to resolve it
and a smaller proportion of the relationships have to be removed. One could also
claim that in organizational policies the “obvious” contradictions first have to re-
moved, whereas the more subtle ones are discovered later. Also, in the agent-related
theory of “bounded-rationality” agents are required only to be able to achieve tasks
that require a limited amount of reasoning – and that is true for smaller contradictions.

4.1.3 The Reasoning Layer
The vocabulary of this layer is:

Expression Meaning
F: C_CONTRA(sp, ont_op) returns true if ont_op would have introduced a

contradiction in sphere sp of degree dc that is higher
than the defined degree pc in that sphere.

F: IS_INFERABLE(sp, ont_op) returns true if ont_op would have introduced a
redundancy in sphere sp of degree dr that is higher
than the defined degree pr in that sphere.

F: IS_NEW(sp, ont_op) returns true if neither F: C_CONTRA(sp, ont_op) or
F: IS_INFERABLE(sp, ont_op) are true.

F: CREASON(sp, ont_op) returns a subset of sp that creates a contradiction if
ont_op is performed.

The first 3 statements return either true or false, the fourth returns a subset. Notice
that “higher” degree means worse. In the case when C_CONTRA(S, ont_op) is true,
CREASON(S, ont_op) returns one of the contradiction reasons, i.e. one of the mini-
mal subsets in the whole system S that show that S with the ont_op performed creates
a contradiction (the best solution would be for the user to select one of these).

Function Return values
Spheres(ci, cj) All spheres of consistency that contain both contexts i and j.
Spheres(ci) All spheres of consistency that contain context i.

The paper title uses the word “dynamic” because we define several ontology opera-
tions that change ontologies and mappings. The current list of operations that evolve
ontologies or mappings between them is the following (and the second mentions a
special ontology operation):

ont_op = add_mapping(m, cj, ck) add_ontorel(m, cj, dj)

delete_mapping(m, cj, ck) delete_ontorel(m, cj, dj) ε

spec_ont_op= RC(sp, P) [where P ⊆ sp,]

220 M. Zurawski, A. Smaill, and D. Robertson

RC() is the whole sphere sp that remains after one of the inconsistent subsets P has
been removed. If there are several alternative such inconsistent subsets, several of
them might have to be removed in order to make the whole sphere sp consistent.

The Reasoning Method. Because of limited space we will not investigate the reason-
ing algorithms in this paper. However, we have adopted the approach from [4] in
order to do efficient and complete reasoning using this inexpressive language. The
logical meaning of every ontology mapping uses a combined temporal and contextual
logic that defines relationships between concepts in different local context and how it
will persist in future states. That representation is transformed to one only using
propositions, and C_CONTRA () and IS_INFERABLE() are implemented building
refutation proof trees (analogous to using resolution by refutation) in a breadth-first
fashion that use caching, loop-prevention and proof-pruning (automatically cutting of
branches that cannot be successful). Our algorithm has worst-case linear time and
memory complexity for computing C_CONTRA () and IS_INFERABLE() in spheres
where pc=1, based on an analysis of the reasoning algorithm.

The Logical Formalization. This will only be briefly discussed here, but [3] provides
a full formalization. From a logical point of view a “context” is something that adds
an index to the logical language, domain and interpretation functions (i.e. these are
multiplied), and prohibits direct import of and access to concepts from other ontolo-
gies, because only ontology mappings can mediate such access. Informally, contexts
model several cognitive points of view of a reality. They are expressed by different
ontologies, and we define ontology mappings between them. We have been infor-
mally inspired by the five ontology mappings proposed by [5] as a part of C-OWL.
However, the actual semantics are different and are defined in [3]. There is no single
standard for ontology mappings. These are the five ontology mappings types between
a concept A in ontology i and a concept B in ontology j that we use in the contextual
state-based logic we have chosen for this scenario (and is used in the implemented
prototype): COR(Ai, Bj), IS (Ai, Bj), IS2 (Ai, Bj), DISJOINT (Ai, Bj), and COMPATI-

BLE(Ai, Bj). They approximately correspond to (but C-OWL doesn’t have a temporal
notion of state, and our logic doesn’t have directionality) and could be created by
importing the following 5 C-OWL bridge rules [5]:

The formal meaning of our mappings and ontology language is defined in [3] and also
the epistemological assumptions. Here is our ontology language (given an ontology j)
and how axioms can be imported from OWL (the first three axioms can be repre-
sented in RDFS and could therefore be imported from RDFS to our language).

OWL Axiom Our ontology language OWL Axiom Our ontology language

 COR(Cj, Dj) IS2 (Cj, Dj)

 IS (Cj, Dj) D¬ DISJOINT (Cj, Dj)

 Bounded Ontological Consistency 221

4.2 The Framework Middle Layer

This vocabulary will be used for defining this layer (and also some of the functional-
ity of the reasoning layer):

Expression Meaning
ci : CONFIRM (ont_op) ci accepts that ont_op should be performed
ci : REFUSE (ont_op) ci rejects the performance of ont_op
F: DO (ont_op) The framework mechanism performs ont_op
F: COMM(message, re-
cipient)

The framework mechanism sends a message to recipi-
ent (that must be a context).

F:MCHOICE({cj, ck, …},
ont_op1, ont_op2)

The framework mechanism chooses between
ont_op1 and ont_op2 on behalf of several contexts.

contexts_of(sp) A conjunction of all contexts included in the spheres sp.

The first rule available at this framework level is the following.

j k

n{ , ,...}

n n{ , ,...} { , ,...}

F: MCHOICE({c , c ,...}, ,)

c : CONFIRM() {1,2}

{1,2} c : REFUSE() c : CONFIRM() ()

1 2

i in j k

i in j k n j k

stat stat

stat i stat or

i stat stat DO ε

=

= =

⇒

⎞⎛ ⎞⎛ ∧ ∈ ⇒ ⎟⎜⎜ ⎟
⎝ ⎠⎝ ⎠

⎞⎛ ∈ ∧ ∧ ⇒⎜ ⎟
⎝ ⎠

∧
∨ ∨

(6)

MCHOICE() is a choice between two mutually exclusive statements (e.g. do an on-
tology operation or not) that is done involving a set of local contexts (at least two) and
sent back to the framework mechanism. The formalization (6) says that if all involved
local contexts choose one of the ontology operations, then that becomes their joint
choice, and if there is some disagreement then the joint choice is to do nothing.

The DO() statement is important and can only be performed by the framework
mechanism itself when it actually performs an ontology operation. It is actually the
DO() statement that moves the whole system S to the next state – simply because
it changes S. Before then, the system only does hypothetical reasoning (“what would
have happen if an operation ont_op1 would be performed?”).

We will now investigate what happens when a local context initiates a proposal to
add a mapping to another local context.
Case 1. Proposing to add an ontology mapping

j j k

j k(,)

(,)

j k

c : PROPOSE(add_mapping(m, c , c))

 (F:C_CONTRA(sp, add_mapping(m, c , c)))

(F: COMM("contradicted:"+

F: CREASON(sp, add_mapping(m, c , c)),contexts_of(sp)))

F: M

sp spheres c cj k

sp spheres c cj k

∈

∈

⇒

⇒

∧

∨
∧

j k

j k(,)

j k

CHOICE(contexts_of(spheres(c , c)), (),

 F:C_CONTRA(sp, add_mapping(m, c , c))

(RC(sp,CREASON(, add_mapping(m, c , c)))))

sp spheres c cj k

or
DO

DO sp

ε

∈

⎞⎛
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜

⇒⎟⎜
⎟⎜

⎜ ⎟
⎝ ⎠

∧

(7)

222 M. Zurawski, A. Smaill, and D. Robertson

j k(,)

j k

j k j k

(F: IS_INFERABLE(, add_mapping(m, c , c)))

F: COMM("already_known", contexts_of(spheres(c , c))

F: MCHOICE({c , c }, (), (add_mapping(m, c , c)))

sp spheres c cj k
sp

or

DO DOε

∈
⎞⎛ ⇒⎟⎜
⎟⎜

∧ ⎟⎜
⎟⎜
⎟⎜⎜ ⎟

⎝ ⎠

∨

j k(,)

j k

j k j k

(F: IS_NEW(sp, add_mapping(m, c , c)))

F: COMM("new", contexts_of(spheres(c , c))

F: MCHOICE({c , c }, (), (add_mapping(m, c , c)))

sp spheres c cj k

DO DOε

∈
⎞⎛ ⇒ ⎟⎜
⎟⎜

∧ ⎟⎜
⎟⎜
⎟⎜⎜ ⎟

⎝ ⎠

∧

This statement in the beginning of the rule (7) means: a local context cj is propos-
ing to add a mapping from its ontology to another local context ck. This rule uses
some statements from the reasoning layer. Only one of the three sub-rules (inside this
big rule) can actually be activated. Intuitively, this formalization (7) then says that if
the proposed change would introduce a forbidden contradiction in any sphere contain-
ing both cj and ck, then one of the contradiction reasons is communicated to them and
the involved contexts either do nothing or one of the reasons for the contradiction is
removed in every sphere where a contradiction occurs (but without adding the pro-
posed mapping within the same step). Notice that all local contexts that have ontolo-
gies in spheres where one of the contradictions resides, have to participate in making
this decision (this situation is referred to as “All involved inside the sphere...” below).
The second and third sub-rule in (7) express that if the mapping can already be in-
ferred or is new, the change is allowed but the two local contexts involved have to
decide if they actually want to have it performed (this situation is referred to as “Pair”
below). E.g. if, in fig.1, we invent the concept yellow in O1 and then propose to add
Is(yellow, colour) then it will be classified as IS_NEW by the process above, because
this proposal neither creates a contradiction nor redundancy.

Table 2. The table shows how decisions are made if ci: PROPOSE (ont_op) is proposed

ont_op= C_CONTRA()
is true

IS_INFERABLE()
is true

IS_NEW()
is true

add_mapping(m, cj, ck) All involved
inside the sphere(s)
of consistency

Pair Pair

delete_mapping(m, cj, ck) Contradiction
cannot happen.

Pair (i.e. mappings
was already deleted)

Pair
(i.e. mapping
existed)

add_ontorel(m, cj, cj) All involved
inside the sphere(s)
of consistency

Individual Individual

delete_ontorel(m, cj, cj) Contradiction
cannot happen.

Individual (i.e.
relationship didn’t exist)

Pair (i.e. rel.
existed)

Now we have investigated the case (case 1 above) when the proposal is to add a
mapping between two ontologies, and the formalization showed what happens in the
three cases. Table 2 above summarizes how this formalization would look like to for

 Bounded Ontological Consistency 223

the cases when the proposal is to delete an ontology mapping, or add or delete an
ontology relation. In all these cases formulas similar to (7) would be defined, but
using the appropriate decision-making entities. The term “individual” in the table
means that the local context that created the proposal, can decide itself if it wants the
logically allowed change to actually be performed. If the proposal is to delete a map-
ping or delete a relation within an ontology this always logically allowed (because
that is safe in this particular logic), so the individual local context or the pair of con-
texts decide whether to actually perform this act. This policy is allowing for individ-
ual ontologies that are not always singly connected.

4.3 The Framework Top Layer

We now formalize the top layer. This layer’s vocabulary is:

Expression Meaning
ci: PROPOSE (ont_op) , where {1,.., }i n∈ (8) context ci proposes operation ont_op

NEWCONCEPT(dj) that is true iff concept dj was created
in the previous state

F: REQUEST(ci : PROPOSE (ont_op)) The framework requests context ci
to propose operation ont_op

The top layer governs the general system because all action is initiated there.
Firstly, any local context can initiate the synchronization processes of the whole

framework by activating statement (8) above assuming the framework mechanism is
in waiting mode (and doesn’t process another proposal then, e.g. is in “busy mode”).
So this is the formal sense in which the local contexts can exercise their semantic
autonomy. After this statement is invoked, the framework mechanism invokes the
corresponding procedural rules of the other layers. The top layer contains this rule:

jF: DO (add_ontorel(m, c ,)) NEWCONCEPT(d)

F: REQUEST(c : PROPOSE(add_mapping(m, d ,)))

where k {1,...,n} k j

j j

j j k

d

c

∧ ⇒

∈ ∧ ≠

(9)

This means that if an ontology relation m has actually been created within the ontol-
ogy of a local context j and it connects a new concept dj (to an existing concept cj)
then that local context is requested to “try” to generate proposals that would map this
new concept to the other local contexts. It means that it has to ask the knowledge
source to generate knowledge that fits that pattern, and sometimes that will actually
result in this knowledge being generated. The rules are acting here as performative
statements in a multi-agent system.

5 Experiments

We now present an experimental evaluation where our implementation (built in Java)
tests the core part of the framework. We assume two contexts c1 and c2 and they have
one ontology each (that evolves) and an evolving set of mappings that connect these.

224 M. Zurawski, A. Smaill, and D. Robertson

We then define spheres of consistency like in fig. 2, with the exception that the largest
sphere has a variable consistency we shall call vc. So the three defined spheres are
Cons({c1},{}, 1), Cons({c2},{}, 1), Cons({c1, c2},{m12}, vc).

ti
m

e
co

m
p

le
xi

ty
 k

-v
al

u
e

consistency level

Time k-value vs.
consistency level

m
em

o
ry

 c
o

m
p

le
xi

ty
 k

-v
al

u
e

consistency level

Memory use k-value
vs. consistency level

ti
m

e
p

er
 t

ra
n

sa
ct

io
n

in

 [
m

s]

amount of proposals made (while the system grows)

Time Complexity

Constant
memory-
complexity

Linear
memory-
complexity

p.t.

Linear
time-
complexity

Constant
time-
complexity p.t.

Fig. 5. Visualization of the time-complexity directly (top) and using k-values (slope of the lines
in the top graph) and memory/consistency k-values.The phase transition (in both time and
memory use) is marked with “p.t.”

We now think of an application scenario where the contexts represent divisions
within an organization, and all the “proposals” express organizational needs to adapt
to a changing business environment. In this evaluation we assume that both contexts
evolve ontologies having tree-like structures with a recursive branching factor 3, but it
is randomized how quickly they grow. These things can happen:

• ci : PROPOSE (Is (Cnew,i, Cold, i)) - a proposal to change(grow) the ontology i where
the concept Cnew is invented and added as a sub-concept of Cold.

• ci : PROPOSE (add_mapping(m, ci, ck)) - a proposal to add a mapping m from on-
tology i to k. One of the 5 mapping types is randomly chosen.

I.e. either one of the ontologies decides to grow or it proposes a random mapping
from a recently created concept. So the rules (5), (6) and (7) are obeyed but we don’t
yet simulate the removal of contradictions (in (7)). During this simulation the system
grows while obeying the rules and the sphere of consistency constraints. We have

 Bounded Ontological Consistency 225

evaluated this implementation looking at the scalability and more precisely the incre-
mental effort of the system to respond to a proposal and do the required reasoning.
The total system size is 2000 in the experiment so e.g. d=2001 if vc=1 but d=13 if
vc=1.994 (we solve formula (5) for d that is defined just before that formula). Our
results are seen in fig. 5. The experiments also showed that the system’s memory use
has a linear upper bound. These figures show the effort of the system to process pro-
posals for adding the ontology mappings while maintaining all the above-mentioned
constraints – so some proposals are rejected but others accepted. Every marked data
point is the average for 100 consecutive proposals (x-values) for 420 different runs of
the system (for every fixed vc). We see that the difference between vc=1 and vc=1.994
is small, because the proofs of contradiction that occurs in an application domain
having this structure have a depth that is small compared to the overall system size
(but they could be very wide). One could therefore re-normalize parameter pc (here
vc=pc) depending on the application. However, around vc=1.993, vc=1.994 we observe
a phase transition between two states with different behaviour: to the left of the
transition the system has linear time- and memory-complexity but to the right of it the
system is approaching constant time- and memory-complexity.

Validation of the algorithm. We have implemented a module that use a slow brute-
force method for measuring the smallest inconsistency in a set of ontologies and map-
pings – for any pair of variables it investigates if it can prove and disprove that any of
the five mappings hold. We have generated 170 times a system of size 100 and vali-
dated that the measured inconsistency is never higher than the promised one.

In fact, often it is much lower (especially in a small system) because we have
measured that the probability of a single proposal (in a system growing to the size of
2000) creating a contradiction is less than 0.6% for pc=1 (it does decrease when pc
increases). But because of the potential risk that a contradiction could occur reasoning
about the existence of a contradiction still must be done.

6 Conclusions

The semantic web relevance. Ideally, many ontology-based applications should
maintain perfect consistency. In reality, many distributed information systems have
no notion of consistency at all and sometimes this could nourish disorder. A frame-
work for maintaining bounded consistency could help in bridging this gap – the sys-
tem would safeguard a chosen level of consistency in every sphere of consistency. In
the introduction (section 1) we mentioned three reasons when it is not necessary or
possible to provide full consistency, which we now refer to. In the first case our
framework can be used for specifying a knowledge infrastructure that maintains in-
cremental bounded consistency. As regards the second argument, we have seen from
fig. 5 that if consistency is bounded enough (i.e. parameter pc is increased bey-ond the
phase transition) the system become very scalable, i.e. its behaviour is altered. As
regards the third argument, our framework supports the maintenance of bounded-
consistency, but we have not yet evaluated the effort to reduce inconsistency. Future

226 M. Zurawski, A. Smaill, and D. Robertson

work to be done is investigating what happens when the spheres change their scope
and parameters during run-time in cases when the application domain exhibits this
behaviour and requires the knowledge infrastructure to follow in its footsteps.

References

1. Zurawski, M.: Towards a context-sensitive distributed knowledge management system for
the knowledge organization. In: Workshop on Knowledge Management and the Semantic
Web, 14th International Conference on Knowledge Engineering and Knowledge Manage-
ment (EKAW 2004), UK (2004)

2. Robertson, D.: Multi-agent Coordination as Distributed Logic Programming. In: Demoen,
B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 416–430. Springer, Heidelberg
(2004)

3. Zurawski, M.: Distributed multi-contextual ontology evolution – A step towards semantic
autonomy. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS, vol. 4248, pp. 198–213.
Springer, Heidelberg (2006)

4. Zurawski, M.: Reasoning about multi-contextual ontology evolution. In: The First Interna-
tional Workshop on Context and Ontologies: Theories, Practice and Applications, The
Twentieth National Conference on Artificial Intelligence (AAAI 2005), Pittsburgh, PA,
USA, July 9-13 (2005)

5. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: C-OWL:
Contextualizing Ontologies. In: Sekara, K., Mylopoulis, J. (eds.) Proceedings of the Sec-
ond International Semantic Web Conference. LNCS, pp. 164–179. Springer, Heidelberg
(2003)

6. Haase, P., Stojanovic, L.: Consistent evolution of OWL ontologies. In: Gómez-Pérez, A.,
Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 182–197. Springer, Heidelberg
(2005)

7. Ma, Y., Qi, G., Hitzler, P., Lin, Z.: An algorithm for computing inconsistency measure-
ment by paraconsistent semantics. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS,
vol. 4724, pp. 91–102. Springer, Heidelberg (2007)

8. Zhao, Y., Wang, K., Topor, R., Pan, J.Z., Giunchiglia, F.: Semantic cooperation and
knowledge reuse by using autonomous ontologies. In: Aberer, K., Choi, K.-S., Noy, N.,
Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R.,
Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825,
pp. 666–679. Springer, Heidelberg (2007)

9. Wang, Y., Bao, J., Haase, P., Qi, G.: Evaluating Formalisms for Modular Ontologies in
Distributed Information Systems. In: Marchiori, M., Pan, J.Z., Marie, C.d.S. (eds.) RR
2007. LNCS, vol. 4524, pp. 178–193. Springer, Heidelberg (2007)

10. Froehner, T., Nickles, M., Weiß, G.: Towards modeling the social layer of emergent
knowledge using open ontologies. In: ECAI Workshop on Agent-Mediated Knowledge
Management (AMKM), pp. 10–19 (2004)

11. Stojanovic, L., Schneider, J., Maedche, A., Libischer, S., Studer, R., Lumpp, T., Abecker,
A., Breiter, G., Dinger, J.: The role of ontologies in autonomic computing systems. IBM
Systems Journal 43(3), 598–616 (2004)

An Editorial Workflow Approach For Collaborative
Ontology Development

Raúl Palma1, Peter Haase2, Oscar Corcho1, Asunción Gómez-Pérez1, and Qiu Ji2

1Ontology Engineering Group, Laboratorio de Inteligencia Artificial
Facultad de Informática, Universidad Politécnica de Madrid, Spain

{rpalma,ocorcho,asun}@fi.upm.es
2Institute AIFB, University of Karlsruhe, Germany
{pha,qiji}@aifb.uni-karlsruhe.de

Abstract. The widespread use of ontologies in the last years has raised new
challenges for their development and maintenance. Ontology development has
transformed from a process normally performed by one ontology engineer into
a process performed collaboratively by a team of ontology engineers, who may
be geographically distributed and play different roles. For example, editors may
propose changes, while authoritative users approve or reject them following a
well defined process. This process, however, has only been partially addressed by
existing ontology development methods, methodologies, and tool support. Fur-
thermore, in a distributed environment where ontology editors may be working
on local copies of the same ontology, strategies should be in place to ensure that
changes in one copy are reflected in all of them. In this paper, we propose a
workflow-based model for the collaborative development of ontologies in dis-
tributed environments and describe the components required to support them. We
illustrate our model with a test case in the fishery domain from the United Nations
Food and Agriculture Organisation (FAO).

1 Introduction

The growing use and application of ontologies in the last years has lead to an increased
interest of researchers in the development of ontologies, either from scratch or by
reusing existing ones. Ontology development and maintenance activities are addressed
by many different methodologies (e.g. Methontology, On-To-Knowledge, DILIGENT,
etc.). However, most of them only consider the development of ontologies by single
users or a small group of ontology engineers placed in the same location. More impor-
tant is that even though they address the methodological aspects, in general they focus
less on the process followed by organisations to coordinate the collaborative ontology
development. In practice ontologies may be distributed, and a whole team of ontology
engineers with different roles may collaborate in the development and maintenance,
usually following a well defined process. Examples of such collaborative development
processes can be found in international institutions like the United Nations Food and
Agriculture Organisation (FAO), who are developing and maintaining large ontologies
in the fishery domain [8]. Other similar examples are those of the Gene Ontology (GO)

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 227–241, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

228 R. Palma et al.

project1, which addresses the need for consistent descriptions of gene products in dif-
ferent databases, the caGrid project2, which aims at providing a virtual informatics
infrastructure that connects data, research tools, scientists, and organizations, etc.

Consequently, in this collaborative organisational setting, existing approaches are
not enough to support all ontology development and maintenance needs. Furthermore,
although recently some proposals and tools have been designed specifically to sup-
port collaborative ontology development (e.g. client-server mode in Protégé along with
the PROMPT and change-management plugins), they generally only address parts of
the overall problem (see section 4). Most of the existing advanced ontology tools (e.g.
Protégé core system, SWOOP, etc.) support only the single-user scenario, where there
is just one user involved in the development and later modification of the ontologies.
With such tools, a typical scenario of collaborative ontology development would look as
follows: An editor changes an ontology using his ontology editor system and then sends
(e.g. using email or uploading it to an ontology repository) his locally changed ontol-
ogy to other users (i.e. to add more changes using their own Protégé system, or review
current changes). Even in the scenario where all users are editing the same ontology
stored in a central server (e.g. using client-server mode in Protégé), the coordination of
the actions of the editors (e.g. when editors want their changes to be reviewed or what
kind of actions they can perform) is not yet fully supported.

As we can see from the previous discussion, in this type of collaborative scenario,
change management is central. Hence, we need appropriate procedures (and corre-
sponding infrastructure) to control and support the management of ontology changes.
This procedure can be modelled as a collaborative workflow, which according to [2],
is a special case of epistemic workflow characterized by the ultimate goal of designing
networked ontologies and by specific relations among designers, ontology elements,
and collaborative tasks. The need for such workflows has also been acknowledged in
the past by other related works (e.g. [17]). An example of such workflow is that fol-
lowed by the FAO (described in [8]), which we take as a use case in our work, in order
to derive a generic set of required activities to support it.

Following this workflow, the development process starts with proposals for ontology
changes. These proposals are discussed by multiple users (with different roles) in a col-
laborative way. For instance, if a change is made by an ontology editor, it has to be ap-
proved by a validator. After that, the change will be considered definitive and permanently
added to the structure. Once changes are definitive, we will have a new stable version of
the ontology, which requires the appropriate support to manage different ontology ver-
sions. Of course one could think of other kinds of workflows in different situations.

In this paper we present our approach for the management of collaborative ontol-
ogy development in a distributed scenario by means of an editorial workflow. We
analyse the collaborative development process using as illustrating scenario the case
study at FAO and derive a set of functional requirements to support the process. We
then introduce our proposal to support the collaborative ontology development where
we address the identified problems. In particular, we propose a formal model for the
representation of the workflow and describe the relationship with other models and

1 http://www.geneontology.org/
2 http://www.cagrid.org/

http://www.geneontology.org/
http://www.cagrid.org/

An Editorial Workflow Approach 229

methods required in the management of ontology changes in distributed environments.
Our contribution also includes the implementation of the proposed approach. The re-
mainder of this paper is organised as follows: In section 2 we analyse the collaborative
workflow scenario at FAO and derive a set of requirements based on the editorial work-
flow. In section 3 we introduce our approach for the collaborative ontology development
based on the requirements derived in the previous section and present our implemen-
tation that provides the technological support to the presented models and methods.
Section 4 provides a brief summary of related approaches to collaborative ontology
development. Finally we conclude with a discussion in section 5.

2 Requirements for Collaborative Ontology Development

In this section we present the most relevant requirements to support the collaborative
ontology development based on the analysis of the process (i.e. workflow) typically
followed by organisations in the development and maintenance of ontologies3. For our
analysis we considered existing processes for collaborative ontology development, also
taking similar works in the state of the art into account (e.g. [10]). We use a case study
of the NeOn project4 for illustration: Specifically, we consider the editorial workflow
of the fisheries ontologies lifecycle from FAO [8].

2.1 Overview of the Fisheries Ontologies Lifecycle

Within this case study, NeOn partners are developing an ontology-based information
system to facilitate the assessment of fisheries stock depletion by integrating the variety
of information sources available. In this context, the goal of the case study is to to
implement an ontology-based Fishery Stock Depletion Assessment System (FSDAS)
as well as an application to manage the fishery ontologies and their lifecycle.

The full lifecycle of the fisheries ontologies is introduced in [9], we here focus on
the ontology engineering phase: In a nutshell, there are several actors involved in the
engineering phase of the fishery ontology lifecycle, including experts in ontology mod-
eling, that are in charge of defining the original skeleton of the ontology, ontology edi-
tors, that are in charge of the everyday editing and maintenance of the ontologies, and
subject matter experts who know about the domain to be modeled. Finally, validators
are subject experts who can move a change to production status for external availability.
Ontology development follows a well defined collaborative workflow, which needs to
be supported in the engineering environment. The editorial workflow allows ontology
editors to consult, validate and modify the ontology keeping track of all changes in a
controlled manner. Finally, once editors in charge of validation consider the ontology
final, they are authorized to release it and make it available to end users and systems.

2.2 Functional Requirements

The functional requirements for the collaborative editorial workflow specify the spe-
cific functionality of the workflow, including the specification of the workflow behavior.

3 In the remainder of this paper we refer to this process as the collaborative editorial workflow.
4 http://www.neon-project.org/

http://www.neon-project.org/

230 R. Palma et al.

Some of the requirements that we introduce in the following are similar to the ones that
have been already identified in the past (see the analysis of [10] in section 4). How-
ever, in our work, we further identified additional requirements to support the process
followed typically by many organisations to coordinate the collaborative ontology de-
velopment. When appropriate, we illustrate the requirement using FAO scenario.

Lifecycle Requirements. A collaborative editorial workflow should implement the
necessary mechanisms to allow ontology editors to: consult, modify and validate on-
tologies. In some cases, ontologies may also need to be published on the internet once
they are fully validated. Furthermore, the process should ensure that the aforementioned
activities are carried out in a controlled and coherent manner. Hence, the editorial work-
flow is responsible for the coordination of who (depending on the user role) can do what
(i.e. what kind of actions) and when (depending on the status of the ontology elements
– classes, properties and individuals – and the role of the user).

The activities of the editorial workflow are being done by users that are ontology
editors in charge of the everyday editing and maintenance work of the ontologies. Each
user is assigned a specific role (which has associated permissions) by the organisation
based on his expertise and responsibilities. Depending on the user permissions, he can
be in charge of developing specific fragments of ontologies, revising work done by
others, or developing new versions of ontologies. Ontology editors know about the on-
tologies domain, but usually know little or nothing about ontology software or design
issues. For instance, one approach for assigning the user role can be driven by the mod-
ule of the ontology the user is responsible for (e.g. [6]). As another example, in FAO,
an ontology editor can be assigned one of the following roles:

– Subject experts (SE) know about specific aspects of the ontology domain and are in
charge of adding or modifying ontology content.

– Validators (V) revise, approve or reject changes made by subject experts, and they
are the only ones who can copy changes into the production environment for exter-
nal availability. They have a broader knowledge of the ontology domain and have
at least some knowledge about design issues.

To enforce permissions, it is required that (i) the system supports the different user
roles and (ii) users identify themselves to the system before using it. Furthermore, to
control when the ontology editors are allowed to work with an ontology element, in
addition to the user roles, every ontology element is required to have a status. Ontol-
ogy editors can change the status depending on their role. For instance, the possible
status ontology elements can have in FAO include: Draft for the proposed additions or
updates, To Be Approved for the proposed changes that are ready to be reviewed by a
validator, Approved for the accepted changes, To Be Deleted for the proposed removals
and Published for the changes released to the internet.

Workflow Activities. Activities required to support the editorial workflow include the
operations (or possible actions) the ontology editors are allowed to perform depending
on their roles and the status of the ontology elements.

Edit ontology element
Insert an ontology element. This operation triggers the start of the editorial workflow.

An Editorial Workflow Approach 231

Update an ontology element. Editors can update ontology elements. Depending on
their role and the status of the element, this operation could trigger also the start of
the editorial workflow. For instance, in our illustrative scenario, a SE can only update
elements in ”Draft” or ”Approved” status. In both cases the status of the element is
automatically reset by the system to ”Draft”, and the element will need to pass through
the whole workflow again.

Delete an ontology element. Editors propose elements for deletion. In general this is
not a definitive action, and it has to be authorized by an appropriate editor.

Change status of ontology element. While inserting, updating and deleting elements,
their status is automatically changed by the system. There are other cases where a spe-
cific action from editors is required to move an element from one status to another and
make the editorial workflow to function (e.g. SE’s need to explicitly send elements in
”Draft” status to the ”To Be Approved” status).

Publish ontology. In some organisations, authorized editors are allowed to copy an
ontology from the test and validation environment (editorial workflow in the Intranet)
to the production environment (Internet). By doing so, the system automatically assigns
the right version to the published ontology following a versioning scheme.

Visualization Requirements
View change history. Editors need to be able to view the logs of ontology changes and
their related information including the history notes e.g. argumentation of the tracked
changes.

View based on status and user role. The interface should be able to provide different
data views based on the user role.

View use statistics. Editors can view information about an ontology regarding how
the ontology has been used or evolved throughout the time e.g. provenance, editors,
frequency of changes, the fragment/domain of the ontology changed most rapidly, etc.

View ontology statistics. Authorized users can view statistics of the ontology being
edited e.g. depth of the class hierarchy; number of child nodes; number of relationships
and properties; number of concepts per branch.

Change Management
Representation of changes. A main requirement is the explicit representation of the
changes that editors are able to perform to ontologies. The representation should ensure
the accessibility and interoperability with other components (e.g. workflow, ontology
metadata, etc.) and the maintenance of the chronological order of the changes to sup-
port e.g. undo/rollback operations or reconstruction of performed operations (e.g. when
syncrhonizing/propagating changes). Additionally, to facilitate the previous tasks and
provide an efficient link between what the user sees (e.g. ontology elements) and what
the system manage internally (e.g. axioms), the representation should provide a flexi-
ble classification of changes that considers the actual ”atomic” operations that can be
performed over ontologies in addition to operations at the element level (e.g. to support
the different status that each ontology element can have during the editorial workflow)
or the complex operations that have been considered in the past (see section 4). In-
formation about changes should include e.g. the operation performed, the time of the
operation, the user, the element associated, the previous change and the description.

232 R. Palma et al.

Capture ontology changes. The system should automatically log ontology changes.
Change Propagation and notification. After new changes are submitted to the ontol-

ogy, editors involved in this workflow process should be informed when they log into
the system. Each author (or the coordinator) should be able to view changes made by
other authors, even without editing permission.

Versioning. An additional requirement is the management of ontology versions. The
first modification to an approved/published ontology automatically changes the current
version. This modified version of the ontology will either become a new version (i.e.
with a different version information) or if specified by the editor remain the same ver-
sion. In any case, versions need to be uniquely identified.

Concurrency Control and Conflict Resolution. An important issue that has to be
addressed in this collaborative scenario is to ensure the integrity of the ontology via
concurrency control mechanisms and appropriate means for the resolution of conflicts
whenever two or more editors submit changes to the same element concurrently.

3 A Workflow-Based Collaborative Ontology Development
Approach

In this section we present our solution to support the collaborative ontology develop-
ment and describe how it tackles the aforementioned requirements. We first present the
conceptual models5 that provide the foundations to represent the required information
in our solution and then we present the implementation support.

3.1 Conceptual Models

Change Representation. A core element in our approach is the representation of
changes (c.f. change management requirement). In [13] we presented our proposal for
the representation of changes which integrates many of the features of the existing ap-
proaches (e.g. [15], [5]) in a consistent layered manner. In this paper we highlight only
the most relevant parts of our representation of changes: We refine and extend existing
work and propose a layered approach for the representation of changes that consists
of a generic ontology that models generic operations in a taxonomy of changes that
are expected to be supported by any ontology language and that can be specialized for
specific ontology languages (e.g. OWL) while still providing a common, independent
model for the representation of ontology changes. It comprises three levels for the clas-
sification of changes: Atomic (i.e. the smallest and indivisible operation that can be
performed in a specific ontology model), Entity (i.e. basic operations that can be per-
formed over ontology elements usually from an ontology editor) and Composite (i.e.
group of changes applied together that constitute a logical entity). It also provides the
link to capture the argumentation of changes and it relies and uses some of the knowl-
edge defined in our early work, the Ontology Metadata Vocabulary (OMV) [3] to refer
to ontologies and users. OMV is a metadata schema that captures relevant information
about ontologies such as provenance, availability, statistics, etc. Besides the main class

5 Our conceptual models are available in OWL at http://omv.ontoware.org

http://omv.ontoware.org

An Editorial Workflow Approach 233

Ontology, OMV also models additional classes and properties required to support the
reuse of ontologies, such as Organisation, Person, LicenseModel, OntologyLanguage
and OntologyTask among others. Our change ontology has been implemented as an
OMV extension because it models specific ontology metadata (i.e. ontology changes).

Furthermore, the change ontology provides the means to support not only the track-
ing of changes but also the information that identifies the original and the current ver-
sion of the ontology after applying the changes (versioning requirement). This is not a
trivial issue: even though ontologies are in general identified by an URI, in practice it is
not enough to identify a particular ontology version (i.e. different versions of the same
ontology have the same URI). Hence, the management of ontology versions requires a
clear definition of the ontology identification. In our solution, we rely on the identifica-
tion of ontologies that we presented in [3], which consists of a tripartite identifier: the
ontology URI, the ontology version (if present), and the ontology location.

Finally, to keep track of the actual sequence of changes (i.e. the order in which
changes were performed), our ontology relies on two elements: each change is linked to
its predecessor via the ”hasPreviousChange” object property and a ”Log” class provides
the pointer to the last change in the ontology history.

Workflow Model. Based on the analysis presented in section 2 we found that some
of the possible actions and states in the editorial workflow apply at different levels of
abstraction. Therefore our solution considers the editorial workflow at two levels: on-
tology level and ontology element level. Although the workflows can be used indepen-
dently of the underlying ontology model, the specific set of ontology elements depend
on the ontology model. In our approach we are mainly considering the OWL ontology
model, in which an OWL ontology consists of a set of axioms and facts6. Facts and ax-
ioms can relate to classes, properties or individuals, and hence that is the set of ontology
elements we are considering.

As previously discussed, the workflow details (e.g. the specific roles, actions, etc.)
depend on the organisation setting. To exemplify, in the rest of this section we discuss
our solution for the particular scenario in FAO. Figures 1 and 2 show the two different
workflow levels (i.e. element and ontology level). States are denoted by rectangles and
actions by arrows. The information in parenthesis specifies the actions that an editor
can perform depending on its role, where ”SE” denotes Subject Expert, ”V” denotes
Validator and ”-” denotes that the action is performed automatically by the system.

The possible states (see Figure 1) that can be assigned to ontology elements are:

– Draft: This is the status assigned to any element when it passes first into the editorial
workflow, or when it was approved and then updated by a subject expert.

– To be approved: Once a ”SE” is confident with a change in draft status the el-
ement is passed to the ”To Be Approved” status, and remains there until a ”V”
approves/rejects it.

– Approved: If a ”V” approves a change in an element in the ”To Be Approved”
status, it passes to the ”Approved” status. Additionally, this is the default state for
every element of the initial version of a stable ontology.

6 In our current implementation we support the upcoming OWL 2 language. See
http://www.w3.org/TR/owl2-syntax/

http://www.w3.org/TR/owl2-syntax/

234 R. Palma et al.

Fig. 1. Editorial workflow at the element level

Fig. 2. Editorial workflow at the ontology level

– To be deleted: If a ”SE” considers that an element needs to be deleted, the item
will be flagged with the ”To Be Deleted” status and removed from the ontology,
although only a ”V” will be able to definitively delete it.

The ontology has a state (see Figure 2) that is automatically assigned by the system
(denoted with ”-” in Figure 2), except from the ”published” state as described below:

– Draft: Any change to an ontology in any state automatically sends it into draft state.
– To be approved: When all changes to an ontology version are in ”To Be Approved”

state (or deleted) the ontology is automatically send to ”To Be Approved” state.
– Approved: When all changes to an ontology version are in ”Approved” state (or

deleted) the ontology is automatically send to ”Approved” state. Additionally, this
is the default state of the initial version of a stable ontology.

– Published: Only when the ontology is in ”Approved” state, it can be sent by a
validator to ”Published” state.

As described in section 2.1, the editorial workflow starts after getting a stable popu-
lated ontology that satisfies all the organizational requirements. Hence, we assume that
the initial state of this stable ontology (and all its elements) is ”Approved”7.

Note that during the editorial workflow, actions are performed either implicitly or
explicitly. For instance, when a user updates an element he does not explicitly perform
an update action. In this case the action has to be captured from the user interface and
recorded when the ontology is saved. In contrast, Validators explicitly approve/reject
proposed changes and the action is recorded immediately when performed.

Similarly to our change ontology, we decided to model the workflow elements (i.e.
roles, status, actions) using an (OWL-Lite) ontology (i.e. a workflow ontology) that al-
lows the formal and explicit representation of knowledge in a machine-understandable

7 In a different scenario, the workflow could start with an empty ontology (without elements),
which we could assume that will be by default in ”Approved” state.

An Editorial Workflow Approach 235

format. Furthermore, having both models (i.e. ontology changes and workflow) formal-
ized as ontologies will facilitate the representation of the tight relationship that exists
between both of them. For instance, consider a user with role ”subject expert” that ”in-
serts” a new ontology ”class” to the ontology. That ”class” will receive automatically
the ”draft” state. All the information related to the process of inserting a new ontology
element will be captured by the workflow ontology, while the information related to the
particular element inserted, along with the information about the ontology before and
after the change is captured by the change ontology. Additionally, the workflow process
also relies on OMV to refer to ontologies and users.

Workflow ontology. The main classes and properties of the workflow ontology and its
relationships with the other ontologies in our approach are shown in Figure 3.

Fig. 3. Workflow ontology

The different roles of the ontology editors are modelled as individuals of the Role
class that is related to the Person class of the OMV core ontology (i.e. a person has
a role). To explicitly model the separation between the possible states of ontology el-
ements (i.e. classes, properties and individuals) and the possible states of the ontol-
ogy itself, the State class is specialized in two subclasses (i.e. EntityState and
OntologyState. Similarly to the roles, the possible values of the states are mod-
elled as individuals of their respective subclass. Furthermore, the two subclasses of
State allow to represent the appropriate relationships at the element and ontology
level: To specify that an ontology element has a particular state we rely on the class

236 R. Palma et al.

EntityChange from the change ontology which is associated to a particular ontology
element (as described in section [13]) and associate it with subclass EntityState,
and to specify that an ontology has a particular state we rely on the class Ontology
from the OMV core and associate it with the subclass OntologyState.

Finally, for the actions there is also a separation between the possible actions at the
element level and actions at the ontology level. Hence, the Action class is special-
ized in two subclasses (i.e. EntityAction and OntologyAction. To track the
whole process (and keep the history) of the workflow, the possible actions are modelled
as subclasses of the appropriate Action subclass. Similar to the states, the two sub-
classes of Action also allow to represent the appropriate relationships at the element
and ontology level: to specify that an action was performed over a particular ontology
element, the subclass EntityAction is associated with class EntityChange. As
we explained before, actions at the ontology level are performed automatically by the
system except from publish which changes the public version of the ontology. There-
fore, the only subclass of OntologyAction is Publish that is associated to the
class Ontology to specify the previous and next public version of the ontology.

3.2 Implementation Support

Our approach has been implemented within the NeOn Toolkit8, an extensible ontology
engineering environment based on Eclipse, by means of a set of plugins and extensions.
A high level conceptual architectural diagram of the involved components is shown in
Figure 4. We present in the following, first the change capturing related components (i.e.
left side of the figure), then the workflow management related components (right side
of the figure), next the user related components for editing and visualizing ontologies
(and related information) in the editorial workflow (upper part of the figure) and finally
our distributed registry implementation (bottom part of the figure).

Fig. 4. Conceptual architecture for the collaborative ontology development support

Change Capturing Components. Once the ontology editor specifies that he wants to
monitor an ontology, changes are automatically captured (change management

8 http://www.neon-toolkit.org/

http://www.neon-toolkit.org/

An Editorial Workflow Approach 237

requirement) from the ontology editor by a change capturing plugin. This plugin is noti-
fied about events that consist of ontology changes performed by the user in the ontology
editor. For each of these events, the change is represented according to the change on-
tology by creating the appropriate individual. For example, adding a class individual in
the ontology editor creates the entity change ”Add Individual” and the two correspond-
ing atomic changes (OWL 2 axioms): ”Add Declaration” and ”Add ClassMember”. As
described by the change ontology, each individual includes relevant information such as
the author, the time, the related ontology, etc. The individuals are stored into the Oys-
ter distributed registry [12]. This plugin is also in charge of applying changes received
from other clients to the same ontology after Oyster synchronizes the changes in the dis-
tributed environment (see last subsection). Finally, this plugin extends the NeOn Toolkit
with a view to display the history of ontology changes (visualisation requirements).

Workflow Management Components. In our implementation, the workflow manage-
ment component (i) takes care of enforcing the constraints imposed by the collaborative
workflow, (ii) creates the appropriate action individuals of the workflow ontology and
(iii) registers them into the distributed registry. Hence, whenever a new workflow action
is performed, the component performs the following tasks:

– It gets the identity and role of the user performing the action (if it is an explicit
action) e.g. send to approve, or the associated change (if it is an implicit action) e.g.
adding a new class implicitly creates an insert action.

– It gets the status of the ontology element associated to the action/change.
– It verifies that the role associated to the user can perform the requested action when

the ontology element is in that particular status.
– If the verification succeeds, it creates the workflow action and registers it.
– If the verification fails, it undoes the associated change(s) for the implicit actions

because the complete operation (e.g. adding a new class) failed.

Ontology Editing and Visualization Components. To support the workflow activities
(workflow activities requirements) we rely on the NeOn Toolkit which comes with an
ontology editor that allows the editing of ontology elements. Additionally, according to
the visualisation requirements the NeOn Toolkit is extended with a set of views that al-
low editors to (i) see the appropriate information of ontologies in the editorial workflow
and (ii) perform (as described in 3.1) the applicable workflow actions (approve, reject,
etc.), depending on their role. There are four views9:

– Draft view: Shows all proposed changes (from all editors) to that ontology version.
In accordance to FAO scenario the changes of the current editor are editable while
changes from other editors are non editable (see Figure 5).

– Approved view: Shows the approved changes.
– To Be Approved view: Shows all changes (from all editors) pending to be approved.
– To Be Deleted view: Shows all proposed deletions (from all editors).

9 Subject experts see the first two views, validators see the latter three.

238 R. Palma et al.

Fig. 5. Draft View in the NeOn Toolkit

Distributed Registry. Ontologies are stored within a repository and their metadata is
managed by the Oyster distributed registry10 (change management requirement). The
metadata includes information about ontologies and users (represented using OMV), the
changes to the ontology (represented using the change ontology) and about the actions
performed (represented using the workflow ontology). For each change the status is also
kept to support the editorial workflow. When a new change is registered into an Oyster
node, Oyster automatically updates the log history keeping track of the chronological
order of changes: It gets the last registered change (using the ”Log” class) and adds it
as the previous change of the current one. Then it updates the ”Log” class to point to
the current change.

The local Oyster nodes contact each other creating a distributed ontology registry.
In this distributed environment, Oyster also propagates the ontology changes, thus al-
lowing the notification of new changes to ontology editors (change management re-
quirement). That is, once we have the required changes in a machine-understandable
format, the system propagates them to the distributed copies of the ontology. For this
task, we follow a synchronization approach that is a combination of a push and pull
mechanism. During the synchronization, nodes periodically contact other nodes in the
network to exchange updated information (pull changes) and optionally they can push
their changes to a specific node (called the super node) such that if a node goes offline
before all other nodes pull the new changes, the node changes are not lost. In this way,
Oyster minimizes the conflicts or inconsistencies due to concurrent editing as it auto-
matically synchronizes changes periodically (and it allows to force the synchronization
immediately) in the distributed environment such that every editor will have an up-to-
date copy of the ontology with the proposed changes (concurrency control and conflict

10 http://ontoware.org/projects/oyster2/

http://ontoware.org/projects/oyster2/

An Editorial Workflow Approach 239

resolution requirement). Nevertheless, conflicts in the collaborative workflow could still
occur as logical conflicts in the form of inconsistencies or conflicts due to concurrent
editing of an ontology. The strategies to deal with those potential problems are out of
the scope of this paper, and we refer the reader to [13] for additional information.

4 Related Work on Collaborative Ontology Development

The problem of collaborative ontology development has been partially addressed in
the literature with methodological and technological results, which are not necessarily
aligned. In the remainder of this chapter we mainly focus on the existing works of
ontology development where some kind of reviewing process has been acknowledged.

In [16], [14] the authors introduce DILIGENT, an ontology engineering process for
decentralized cases of knowledge sharing. It identifies several key roles involved in col-
laboratively building the same ontology. The process entails different users in the cre-
ation of a shared ontology and adaptation to local needs and a control board in charge
of deciding how the shared ontology will be changed based on the user requests. DILI-
GENT also considers the provision of arguments for the requested changes and design
decisions in a semi-formal way (similar to [15]).

A related work – DOGMA-MESS – is presented in [1] (and [7]). The authors propose
a generic model for understanding the interorganisational ontology engineering process
where the knowledge moves in an upward spiral starting at the individual level, moving
up to the organisational level, and finally up to the interorganisational level.

In [10] the authors present the Change and Annotation Ontology (CHAO) to rep-
resent changes between two versions of an ontology and user annotations related to
these changes, and two Protégé plugins: The Change-management plugin that provides
access to a list of changes (i.e. instances of CHAO) and enables users to add annota-
tions to changes and the PROMPT plugin (also introduced in [11]) that provides com-
parisons between two versions of an ontology, allowing to examine the list of users
who performed changes and to accept and reject changes. Finally they introduce the
client/server mode in Protégé for synchronous editing by multiple users.

Another similar tool support is presented in [17]. The authors introduce an extension
of the existing Protégé system that supports collaborative ontology development (i.e.
Collaborative Protégé). The extension enables (1) the annotation of ontology compo-
nents and ontology changes and (2) the searching and filtering of user annotations based
on simple or complex criteria. The authors also propose two types of mechanisms for
voting change proposals (i.e. a 5-star voting or a Agree/Disagree type of voting).

Although [16] and [1] consider the collaborative development of ontologies in a dis-
tributed setting, it is not clear how change requests are represented, there is no explicit
tracking of the change operations in the shared ontology that would be useful for local
users to identify the approved changes or compare it with the local copy and there is
no history of the rejected changes. Moreover, local users are not notified automatically
of changes and consequently they could be working with different versions of the on-
tology which might hamper the interoperability. Also, [1] does not consider how users
interact in the process depending on their role.

240 R. Palma et al.

A main difference in [10] and [17] with respect to our solution is that the track-
ing of changes and curator actions (i.e. accept/reject changes) is done in a centralized
manner i.e. either in a local copy or in a centralized server. Additionally, although the
approaches consider the reviewing of changes (e.g. acceptance/rejection of changes),
it is not clear what kind of roles (and related permissions) are considered, how those
actions are traced or how is the process flow for the reviewing.

In our solution, we rely on a formal representation of changes which provides the
basis for the creation of change logs that support e.g. the comparison of ontologies or
the synchronization of distributed copies of the ontology. Moreover, we identify dif-
ferent user roles involved in the process of the ontology development and propose to
formalize the reviewing process in a machine-understandable format such that all taken
actions can be tracked and exchanged. In our solution, users are able to use the same
version of the ontology (i.e. a local copy) and work in a decentralized manner given that
changes and curator actions are maintained in a distributed registry which is in charge
of synchronizing the information automatically.

5 Discussion

The need for a systematic approach to ontology development in a highly distributed
environment has been emphasized many times in the past in the ontology engineering
community. As a result, different solutions have been proposed ranging from informal
or lightweight strategies (e.g. [4]) to semi-formal approaches like in the Gene Ontology
project to formal methodologies (e.g. [16]). In this paper we have presented our so-
lution to support the collaborative ontology development in distributed environments.
It consists of a formal strategy where the ontology development process is explicitly
represented. The criteria for choosing this strategy was based on the analysis of the
requirements of large organisations using as test case the FAO scenario.

Hence, we proposed two generic workflows specialised at different levels of abstrac-
tion (i.e. ontology element level and ontology level). Our proposal includes the defi-
nition of a workflow ontology for the formal representation of the workflow process.
Additionally, we introduced the role of the workflow in the infrastructure required for
the management and control of ontology changes and describe its relationships with
other components and activities (i.e. change representation, versioning, etc.). We il-
lustrated in a simple scenario how the workflow ontology supports the collaborative
ontology development and its tight relationship with the ontology for the representation
of changes. Finally, we introduced our implementation to support the proposed model.

Although we are already evaluating individual components of our approach, our next
step is the complete evaluation of our approach within FAO and other scenarios. In the
future, we plan to provide additional features to the NeOn toolkit such as a Change
View to shows the changes (diff) between two versions of an ontology according to the
change ontology or a full undo/redo support. Further, we are working on the integration
of our work with other threads of related work, such as argumentation support.

Acknowledgments. Research reported in this paper was partially supported by the EU
in the IST project NeOn (IST-2006-027595,http://www.neon-project.org/.

http://www.neon-project.org/

An Editorial Workflow Approach 241

References

1. de Moor, A., De Leenheer, P., Meersman, R.: DOGMA-MESS: A meaning evolution sup-
port system for interorganizational ontology engineering. In: Proc. of the International Con-
ference on Conceptual Structures (ICCS 2006), Aalborg, Denmark. Springer, Heidelberg
(2006)

2. Gangemi, A., Lehmann, J., Presutti, V., Nissim, M., Catenacci, C.: C-ODO: an OWL meta-
model for collaborative ontology design. In: Workshop on Social and Collaborative Con-
struction of Structured Knowledge (CKC 2007) at WWW 2007, Banff, Canada (2007)

3. Hartmann, J., Palma, R.: OMV - Ontology Metadata Vocabulary for the Semantic Web,
vol. 1.0 (2005), http://omv.ontoware.org/

4. Hepp, M., Bachlechner, D., Siorpaes, K.: Ontowiki: Community-driven ontology engineer-
ing and ontology usage based on wikis (2005)

5. Klein, M.: Change Management for Distributed Ontologies. PhD thesis, Vrije Universiteit,
Amsterdam (2004)

6. Kozaki, K., Sunagawa, E., Kitamura, Y., Mizoguchi, R.: A framework for cooperative on-
tology construction based on dependency management of modules. In: Proceedings of the
International Workshop on Emergent Semantics and Ontology Evolution (ESOE2007) at
ISWC/ASWC2007, Busan, South Korea (November 2007)

7. De Leenheer, P., Mens, T.: Ontology Evolution. State-of-the-art and Future Directions. In:
Ontology Management. Semantic Web, Semantic Web Services, and Business Applications.
Springer, Heidelberg (2007)

8. Muñoz-Garcı́a, Ó., Gómez-Pérez, A., Iglesias-Sucasas, M., Kim, S.: A workflow for the net-
worked ontologies lifecycle. A case study in FAO of the UN. In: Proceedings of the CAEPIA-
TTIA 2007, Spain. Springer, Heidelberg (2007)

9. Muñoz-Garcı́a, O., Kim, S., Iglesias Sucasas, M., Caracciolo, C., Bagdanov, A., Wang, Y.,
Haase, P., Suarez-Figueroa, M., Gomez-Perez, A.: Software architecture for managing the
fisheries ontologies lifecycle. Technical Report D7.4.1, NeOn Consortium (October 2007)

10. Noy, N., Chugh, A., Liu, W., Musen, M.: A framework for ontology evolution in collaborative
environments. In: International Semantic Web Conference, pp. 544–558 (2006)

11. Noy, N., Kunnatur, S., Klein, M., Musen, M.: Tracking changes during ontology evolution.
In: International Semantic Web Conference (2004)

12. Palma, R., Haase, P.: Oyster - sharing and re-using ontologies in a peer-to-peer community.
In: International Semantic Web Conference, pp. 1059–1062 (2005)

13. Palma, R., Haase, P., Wang, Y., d’Aquin, M.: D1.3.1 propagation models and strategies.
Technical Report D1.3.1, UPM; NeOn Deliverable, November (2007)

14. Pinto, S.: Ontoedit empowering swap: a case study in supporting distributed, loosely-
controlled and evolving engineering of ontologies (diligent) (2004)

15. Stojanovic, L.: Methods and Tools for Ontology Evolution. PhD thesis, University of Karl-
sruhe (TH), Germany (August 2004)

16. Tempich, C.: Ontology Engineering and Routing in Distributed Knowledge Management
Applications. PhD thesis, University of Karlsruhe (TH), Germany (2006)

17. Tudorache, T., Noy, N.: Collaborative protege. In: Workshop on Social and Collaborative
Construction of Structured Knowledge (CKC 2007) at WWW 2007, Banff, Canada (2007)

http://omv.ontoware.org/

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 242–256, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Identifying Key Concepts in an Ontology, through the
Integration of Cognitive Principles with Statistical and

Topological Measures

Silvio Peroni, Enrico Motta, and Mathieu d’Aquin

Knowledge Media Institute
The Open University

Milton Keynes, United Kingdom
{s.peroni,e.motta,m.daquin}@open.ac.uk

Abstract. In this paper we address the issue of identifying the concepts in an
ontology, which best summarize what the ontology is about. Our approach
combines a number of criteria, drawn from cognitive science, network topol-
ogy, and lexical statistics. In the paper we show two versions of our algorithm,
which have been evaluated against the results produced by human experts. We
report that the latest version of the algorithm performs very well, exhibiting an
excellent degree of correlation with the choices of the experts. While the gen-
eration of automatic methods for ontology summarization is an interesting re-
search issue in itself, the work described here also provides a basis for novel
approaches to a variety of ontology engineering tasks, including ontology
matching, automatic classification, ontology modularization, and ontology
evaluation.

Keywords: Ontology, semantic web, key concepts, ontology summarization,
natural categories, cognitive science.

1 Introduction

The Semantic Web is growing fast and already contains a large amount of data, meas-
ured in millions of semantic documents and billions of triples. According to our own
estimates, which are based on our experience with the Watson ontology search engine
[1], at least seven thousand1 ontologies2 exist on the Semantic Web, providing an
unprecedented set of resources for developers of semantic applications. Thus, consis-
tently with Mark Stefik’s vision of a knowledge medium [2], the Semantic Web is
rapidly emerging as a large scale platform for publishing and sharing formalized
knowledge models. Given this context, for the past two years we have been working
on a new generation of knowledge-based applications, which are able to exploit the

1 This number refers only to ontologies which are formalised in either OWL, RDFS, or

DAML+OIL and are also publicly available on the web.
2 In this context we use the term ‘ontology’ to refer to a semantic web document, which con-

tains class and relation specifications, rather than simply data about individuals.

 Identifying Key Concepts in an Ontology 243

Semantic Web as a source of background knowledge, e.g., to provide new solutions to
tasks such as ontology matching, or to add semantics to tag spaces [3].

In addition, we have also developed tools, such as the Watson Plug-in, which ex-
poses the functionalities provided by Watson within ontology engineering editors,
such as Protégé (http://protege.stanford.edu) and the NeOn Toolkit (http://neon-
toolkit.org), thus making it possible for ontology developers to locate relevant seman-
tic web entities, and integrate them with the ontology under construction.

While the vision of a large scale reuse of semantic resources available on the web
is in principle very exciting, in reality the current level of tool support for the process
of ontology development by reuse is rather limited. For example, while the aforemen-
tioned Watson Plug-in makes it possible to locate entities on the Semantic Web and
import them into an ontology, it actually provides only limited support for navigating
and making sense of the ontologies in which these entities reside. Indeed, a key prob-
lem faced by an ontology engineer when considering the reuse of an ontology is on-
tology understanding: how to make sense speedily of the content and organization of
an ontology, in order to make decisions about the suitability of the ontology in ques-
tion for the current ontology engineering development project.

A number of people have partially tackled this problem from different angles. For
example, the ontology engineering environments available today, such as Protégé,
TopBraid Composer (http://www.topbraidcomposer.com/), or The NeOn Toolkit, all
provide functionalities for exploring and visualizing an ontology, to facilitate ontol-
ogy understanding. Nevertheless, formal evaluations of these tools [4] indicate that
these environments do not actually do a particularly good job in helping a user to deal
with multiple ontologies, to make sense of an ontology, or in general to develop on-
tologies by reuse. In particular the aforementioned study reported on the lack of ab-
straction mechanisms in these tools, both at the micro-level (notation) and at the
macro-level (providing high level ontology summaries).

In this paper we focus on the latter problem and we present an approach to identi-
fying the key concepts in an ontology, to generate a meaningful snapshot of an ontol-
ogy and facilitate the process of ontology understanding. In contrast with other
approaches to ontology summarization [5, 6] our work integrates criteria from both
cognitive science, lexical statistics, and graph analysis, to try and come up with the
same kind of summaries as human experts.

We will start the discussion in the next section by illustrating both the high-level
criteria, which inform our approach, and their initial computational realization. We
will then discuss the results obtained from an empirical evaluation of this initial
version of our method, which unfortunately showed a low degree of correlation with
the choices made by human experts. This negative result led to a revision of our algo-
rithm, which is described in section 3. Among other things, this new version intro-
duces an additional criterion, which attempts to estimate the popularity, determined
using lexical statistics, of a concept in the ontology. As discussed in section 3.3, the
revised version of the algorithm shows an excellent degree of correlation with human
experts. Finally, in sections 4-6, we discuss related work, reiterate the key contribu-
tions of this work, and outline a number of new opportunities for research and devel-
opment made possible by it.

244 S. Peroni, E. Motta, and M. d’Aquin

2 Our Approach

Our aim is to design a method that, given an ontology and an integer n, extracts the n
concepts, which can be considered as ‘best descriptors’ of the ontology: the key con-
cepts. Obviously there is no formal definition of what is a key concept and, especially
if we take a task-independent stance, it is unlikely that such a formal definition can be
produced. For this reason, our work is empirically grounded and specifically our goal
is to define a method able to generate results that match as closely as possible those
produced by human experts. Support for such empirical stance is given by some ini-
tial evidence in the literature, indicating that some degree of convergence exists when
multiple experts are asked to identify the ‘important’ concepts in an ontology [6].

Consistently with the stated empirical grounding of our work, we consider both
criteria drawn from cognitive science as well as others based on the topological struc-
ture of the ontology. Specifically, in the initial version of our method we used both
the notion of natural categories [7], which aims to identify concepts that are informa-
tion-rich in a psycho-linguistic sense, and the notion of density, which highlights con-
cepts which are information-rich in an ontological sense. In addition we also used a
coverage criterion, to ensure that no important part of the ontology is ignored in the
resulting selection. In what follows we define these criteria more precisely and
present the first implementation of these ideas.

2.1 Natural Categories

Let’s consider as an example the AKT Reference Ontology (AKT-RO)3, which has
been extensively analysed in a number of applications – e.g., see [5]. This ontology
has been defined primarily to characterise computer science departments in academia,
and would be briefly summarized by its main designer (who happens to be also one of
the authors of this paper) by stating that it provides concepts to describe projects,
categories of staff and students, organizations, events (in particular, academic events),
technologies, publications, etc. Now, if we look at the analysis presented in [5], we
can see that it indicates that, out of about 70K queries which had been posted to the
AKT-RO, all but twelve focused on only four classes: Technology, Organization, Re-
search-Area and Person. An interesting feature that links these four classes to the
informal summary of the AKT-RO given by its designer is that both selections of con-
cepts appear to be pitched at a level of abstraction akin to what Eleanor Rosch termed
natural categories [7]. Specifically, in her seminal work, Rosch showed that people
characterise the world primarily in terms of basic objects, such as chair or car, rather
than more abstract concepts, such as furniture or vehicle, or more specific ones, such
as sportscar or kitchen chair. Hence, an initial hypothesis underlying our approach
was that this notion of natural categories could provide a useful basis to identify good
descriptors of an ontology4.

3 http://www.aktors.org/publications/ontology/
4 It is important to emphasise that we are by no means the first researchers to highlight the

value of natural categories in identifying good descriptors of an ontology. In particular, the
advantages of a middle-out approach to ontology design, where basic concepts are identified
first and used to drive the ontology development process, have long been recognized in on-
tology engineering [8].

 Identifying Key Concepts in an Ontology 245

Fig. 1. Basic levels of nodes in a taxonomy – please note that measures are not normalised

Unfortunately, to our knowledge there is no available repository of natural catego-
ries and for this reason we had to approximate this notion by devising mechanisms
which operationalize it for our scenario. Specifically we have devised two measures,
which we use to try and identify concepts that may play the role of ‘natural catego-
ries’ in ontologies.

Name simplicity. The name simplicity, NS(C) ∈ [0..1], of a concept C fa-
vours concepts that are labelled with simple names, while penalizing com-
pounds. The rationale for this criterion is that natural categories normally
have relatively simple labels, such as chair or dog. In other words, they are
unlikely to be compound terms. Accordingly, the name simplicity of a con-
cept is 1 if its label is made of only one word. It decreases following the
number of compounds in the label, in accordance with the following for-
mula: NS(C) = 1 - c(nc-1), nc being the number of compounds in the label
and c a constant —in our experiments, we use c = 0.3. For example, the
name simplicity of the concept Artist is 1, while that of MusicalArtist is 0.7.

Basic level. The Basic Level, BL(C), of a concept C is a measure between 0
and 1, which indicates how ‘central’ C is in the taxonomy of the ontology. It
is computed by counting, for each branch of the ontology containing C, how
many times C can be found in the middle of a path from the root to a leaf of
the branch (see Figure 1) and then normalising the value.

Given these two measures, there are two steps needed to decide the set of concepts
corresponding to natural categories in a given ontology. First, the basic level and
name simplicity scores are used to generate a set of candidate concepts, by choosing
the ones for which wBL*BL(C) + wNS*NS(C) is greater than a given threshold Tnc —in
our experiments, we used Tnc = 0.5, wBL= 0.8, wNS = 0.2. Then, this set of candidates is
filtered, by giving priority to the concepts which are neither roots or leaves of the
branch, and also by assuming that only one natural category exists on a given branch
of the hierarchy. If a branch contains more than one candidate concept, the one which
maximizes wBL*BL(C) + wNS*NS(C) is chosen. The output is a set of concepts, NC(O),
which are considered as corresponding to natural categories in the context of the
ontology O.

246 S. Peroni, E. Motta, and M. d’Aquin

As shown by the above definitions, while natural categories in Rosch have a
universal connotation, our operationalization takes into account the design of the on-
tology and therefore somewhat contextualises this notion with respect to the granular-
ity of the ontology.

2.2 Topology-Based Criteria: Density and Coverage

While natural categories provide a criterion to decide what type of concepts ought to
be part of an ontology summary, such a criterion is not sufficient on its own as a basis
for an algorithm. We also need structuring criteria, which take into account the overall
organization of the ontology. These criteria are meant to ensure that the chosen con-
cepts embed enough information and that no important part of the ontology is left out
in the ‘summary’. To this purpose we also use two criteria defined on the basis of the
structure of an ontology, density and coverage.

2.2.1 Density
The density(C) ∈ [0..1] of a concept C is a measure of how richly described the concept
is in the ontology and is computed on the basis of its number of direct sub-concepts,
properties and instances. When computing the overall density of a concept, we use two
sub-measures, global and local density. The former measures density in relation to the
entire ontology, the latter only considers the neighborhood of a concept.

The global density, globalDensity(C) ∈ [0..1], of a concept C is computed by a
simple, weighted aggregation on the number of direct sub-concepts, properties and in-
stances of C:

In our experiments, we used wS = 0.8, wP = 0.1, wI = 0.1.
The local density, localDensity(C) ∈ [0..1], of a concept C refers to a density value

which is relative to those of the surrounding concepts. The rationale for this measure
is that, even within the same ontology, the richness of the description of concepts can
vary dramatically: some areas of an ontology may contain many dense concepts,
which will all be picked-up by the global density measure, while some other areas
may only contain shallow concepts. For instance, the ‘triangle’ concept in Figure 2 is
locally dense, but has a low global density, at least compared to some of the other
concepts in the ontology. Hence, the local density criterion favours the densest con-
cept in a local area, for being potentially the most important for this particular part of
the ontology. It is computed using the formula below, where by “nearest concepts” to
C, we refer to the set which includes sub- and super-concepts reachable through a
path of maximum length 2 in the hierarchy from C, as well as C itself.

 Identifying Key Concepts in an Ontology 247

Finally, the overall density is computed by combining the local and global densi-
ties, each of these sub-measures being associated with a particular weight:

In our experiments, we used wG = 0.2, wL = 0.8.

Fig. 2. Example of a locally dense concept

2.2.2 Coverage
The coverage criterion states that the set of key concepts identified by our algorithm
should maximise the coverage of the ontology with respect to its is-a hierarchy. More
precisely, if C = {C1,…..Cn} is the set of concepts returned by the algorithm and Di is
a concept in the ontology, there should be a Ck ∈ C such that either Di ⊆ Ck or Ck ⊆ Di

holds. The rationale for this criterion is that not only we want the right type of con-
cepts to be returned by our method, but also the right spread of concepts must be
achieved, to provide the best possible illustration of the ontology.

Let Covered(C) be the set of concepts covered by a concept C, i.e., Covered(C) =
C ∪ allSubClasses(C) ∪ allSuperClasses(C). We define Coverage(S) as the measure
of the level of coverage of a set of concepts S in a given ontology. Specifically, Cov-
erage({C1,…,Cn}) is computed using the following formula (with |O| being the size of
the ontology O given as the number of concepts included in O):

Another useful measure related to coverage indicates how balanced a set of con-
cepts is, i.e., the degree to which each concept contributes to the overall coverage of
the set. This measure, called Balance(S), where S is a set of concepts, is equal to the
standard deviation of the elements in S, computed with respect to the cardinality of
Covered(Ck), for each Ck ∈ S.

The algorithm presented in the next section requires a procedure able to complete a
set of concepts according to coverage. That is, considering a set S of concepts of size

248 S. Peroni, E. Motta, and M. d’Aquin

m<n, we want to complete this set with additional concepts such that the resulting set
is of size n, while maximizing coverage. This is realized by first computing the set S’
of all the concepts not covered by S, and then generating all the possible sets, with
cardinality equal to n, obtained by merging S with concepts in S’.

2.3 Key Concepts Extraction: First Version

Our algorithm takes as input an ontology, O and an integer n, with n ≤ |O|, and returns
as output n concepts in O, which best summarize it. Below we describe the algorithm
in detail:

1. Using the procedure described in section 2.1, compute the set NC(O) of natural
categories in O.

2. If the size m of NC(O) is

• equal to n, then return NC(O) and stop.
• greater than n, then generate the set CandidateSets of all the possible subsets

of NC(O) of size n.
• smaller than n, then generate the set CandidateSets of all the completed sets

of concepts from NC(O), according to the procedure described in section
2.2.2.

3. Select the set of key concepts to return in CandidateSets by applying succes-
sively the following criteria, until only one candidate set is left:

a. Restrict CandidateSets to the sets of concepts S ∈ CandidateSets, which
maximise Coverage(S)

b. Restrict CandidateSets to the sets of concepts S ∈ CandidateSets, which
minimise Balance(S)

c. Restrict CandidateSets to the sets of concepts S ∈ CandidateSets, which
maximise the average of wBL*BL(Ck) + wNS*NS(Ck), where Ck ∈ S

d. Restrict CandidateSets to the sets of concepts S ∈ CandidateSets, which
maximise the average of density(Ck), where Ck ∈ S

e. Randomly choose one set S in CandidateSets and return it.

Essentially, this algorithm returns a set of size n of concepts from O, which is
computed by selecting concepts that appear to be ‘natural categories’, then taking into
account how this set of concepts covers the ontology, and finally using the density of
the concepts to discriminate between possible alternatives.

2.4 Evaluation of the First Version of the Algorithm

In order to evaluate the level of similarity between the output produced by our method
and human experts, we performed an evaluation using four different ontologies: bio-
sphere5, music6, financial7, aktors portal8.

5 http://sweet.jpl.nasa.gov/ontology/biosphere.owl
6 http://pingthesemanticweb.com/ontology/mo/musicontology.rdfs
7 http://www.larflast.bas.bg/ontology
8 http://www.aktors.org/ontology/portal

 Identifying Key Concepts in an Ontology 249

We asked eight people with good experience in ontology engineering to select up
to 20 concepts they considered the most representative for summarizing the contents
of the ontologies. We also told them that if possible they should try and achieve a
good coverage of the various parts of the ontology, rather than simply selecting all
concepts from one particular branch in a taxonomy and ignore the others. In other
words, we explained to them that achieving a good coverage was a desirable feature,
but of course we did not give any formal guidance on how to apply this criterion, nor
we mentioned the other criteria used by our approach.

Table 1. The concepts shared by more than half of the experts

Ontology Number of
concepts in O

Concepts shared by the experts

biosphere 87 Animal, Bird, Fungi, Insect, Mammal, MarineAnimal, Microbiota,
Plant, Reptile, Vegetation

music 91 Event, Genre, Instrument, Medium, MusicArtist, MusicGroup, Mu-
sicalExpression, Record, Sound

financial 188 Bank, Bond, Broker, Capital, Contract, Dealer, Financial_Market,
Order, Stock

aktors
portal

247 Computing-Technology, Geopolitical-Entity, Event, Organization,
Person, Publication, Publication-Reference, Software-Technology

Table 2. Average proportion of the concepts in Table 1 selected by each expert

Ontology mean agreement
among experts

biosphere 73.75%

music 76,39%

financial 75%

aktors portal 73,61%

Table 1 shows the concepts that were chosen by at least 50% of the experts, while
Table 2 measures the level of agreement on the concepts shown in Table 1. Hence, the
tables show that a consensus emerged on a number of concepts in each ontology and,
for these concepts, the level of agreement among experts was good, with a mean
value of 74.68%. Indeed, it is important to emphasise that the ontologies used in our
study are significantly larger than those used in [6], hence our experiments show that
not just in small ontologies but also in medium sized ones, a degree of consensus
emerges when experts are asked to identify key concepts.

250 S. Peroni, E. Motta, and M. d’Aquin

Unfortunately the results for our method were disappointing. As shown in Table 3,
our method only exhibits an average 42.56% level of agreement with the experts,
much lower than the measure of inter-expert agreement shown above.

Table 3. Correlation between the first version of our method and the experts

Ontology Common choices between the testers and the algorithm %

biosphere Animal, MarineAnimal, Plant 30

music Event, Genre, Instrument, MusicalExpression 44,44

financial Broker, Dealer, Order 33,33

aktors
portal

Computing-Technology, Event, Organization, Person, Publication-
Reference

62,5

3 Revised Approach

3.1 What Went Wrong? How Experts Select Key Concepts

The analysis of the results we obtained from the experts shows that while people may
employ the three criteria used by our algorithm, their application is different from the
way the algorithm combines them. Our subjects did not apply coverage as strictly as
our algorithm and moreover they seemed to use density ahead of natural categories. In
addition, our approximation of the notion of natural category, with its emphasis on
centrality and name simplicity, did not work well. Many concepts which are not natu-
ral categories may have a very simple label and, given that different ontologies have
different degrees of structure and depth, centrality turned out not to be crucial, espe-
cially when it did not correlate with density. In other words, we did not find any
evidence that contextualizing the notion of natural categories to the granularity of a
specific ontology correlates with expert choices. Let’s clarify this point with an
example. Figure 3 shows some of the subclasses of the class Animal in the biosphere
ontology. These have all very simple labels and have no children. However, several
experts selected Bird and Insect as key concepts, even though none of the criteria we
use is able to select them ahead of their siblings: they are neither dense nor central
and their labels is not lexically simpler than any of the other subclasses of Animal.

To deal with these cases we introduced a new criterion, called popularity, to try
and identify concepts that are particularly common, such as Bird and Insect. The ad-
vantage of this approach is that it allows us both to pick many natural categories (such
as Bird and Insect) and also to identify best exemplars of a concept, in those cases in
which we are not dealing with natural categories. Operationally, we measure the
popularity of a concept, C, as the number of results returned by querying Yahoo with

 Identifying Key Concepts in an Ontology 251

the name of C as keyword. Compound names are transformed to a sequence of lower
case keywords separated by a space. For instance, Marine-Animal, MarineAnimal,
marineAnimal, marine_animal are all transformed in “marine animal”.

Fig. 3. Subclasses of class Animal in the biosphere ontology

3.2 Revising the Algorithm

On the basis of the considerations discussed in the previous section, we revised our
method and implemented and tested two new versions of the algorithm for key con-
cept extraction, which include the popularity criterion as well as those used in the first
version of our method. For the sake of conciseness, in what follows we will focus on
the third and final version of our system, which is the one exhibiting the best overall
performance –i.e., the highest degree of correlation with the choices of the experts.

3.2.1 New Concepts and Formulas
In order to understand the new version of the algorithm, we need to introduce a num-
ber of new concepts and formulas. First of all, we want to improve the way we com-
pute local densities, to obtain a more continuous spread of values. This is achieved by
means of the following formula:

The function nearestk(C) returns the class C and its sub- and super-classes, which
are reachable through a path of maximum length k in the hierarchy. In our experi-
ments we used k = 2, ratioD = 0.1 and wGDL = 0.5.

The function weightedGD(C,N) is used to ensure a more continuous distribution of
the local density values, compared to the definition given in section 2.2.1. To this
purpose, when we calculate the maximum global density value of the set nearestk(C)
we take into consideration a weighted global density value for the classes N∈ near-
estk(C). In a nutshell, as the distance from N to C increases, the weighted global den-
sity of N with respect to C decreases.

As in the case of density, we also want to take into consideration both the global
and local popularity of a concept, and we compute these analogously to the way we
derive global and local densities:

252 S. Peroni, E. Motta, and M. d’Aquin

The function hits(C) returns the number of hits that we obtain querying Yahoo with
the name of C as keyword. In our experiments we used k = 1, ratioP = 0.1 and wGPL =
0.5.

The new version of the algorithm is based on the calculation, for each class C of an
ontology O, of its local and global density, local and global popularity and its natural
category value, NCValue, which is the normalized value of wBL*BL(C) + wNS*NS(C),
as described in section 2.1. All these measures are aggregated in a new overall value
associated with a concept, called score, which corresponds to a weighted sum of all
the above measures, as shown by the following formulas:

In our experiments we used wLD = 0.32, wGD = 0.08, wLP = 0.1, wGP = 0.2, wBL =
0.66, wNS = 0.33.

We also extended the coverage criterion with a new function called contribution,
which aims to measure the actual ‘contribution’ of a class Ci to the coverage of a set
of classes {C1,…, Ci, …, Cn} in O, by counting the classes of O covered only by Ci in
this set. This value is computed as follows:

contribution(Ci, {C1,…, Ci,…, Cn}) =⏐Covered(Ci) – ∪1≤k≤n∧k≠i Covered(Ck)⏐

Finally, we define the optimal coverage for an ontology O as a set S = {C1,…, Cn},
where Coverage(S) = 1, and each Ci ∈ S provides the same contribution with respect
to S as the other concepts in S.

3.2.2 Specification of the Revised Algorithm
As in the first version, our revised algorithm takes as input an ontology O and an inte-
ger n, with n ≤⏐O⏐, and returns as output n classes in O, which best summarize it. In
our experiments we used n = 20.

Below we describe the algorithm in detail:

1. For each class C in O we compute its global and local density, global and local
popularity and the natural category value.

2. For each class C in O we compute score(C), as described in section 3.2.1.

 Identifying Key Concepts in an Ontology 253

Table 4. Correlation between the final version of our algorithms and the experts. Concepts in
italic in the second column are the ones also picked by more than half of the experts.

Ontology Algorithm choices % matches with
experts’ choices

biosphere Animal, Bacteria, Bird, Crown, Fish, Fungi, FungyTaxonomy,
Human, Litter, LivingThing, Mammal, MarineAnimal, Marine-
Plant, Microbiota, MicrobiotaTaxonomy, Mold, Mushroom,
Plant, Vegetation, Yeast

80

music Agent, CorporateBody, Document, Event, Expression, Genre,
Group, Instrument, Item, Medium, MusicalExpression, Musi-
calManifestation, MusicalWork, OriginMap, Person, Record,
Show, Signal, TimeLine, Work

66.67

financial Agent, Bond, Capital, Card, Cost, Dealer, Financial_Asset, Fi-
nancial_Instrument, Financial_Market, Money, Order, Organi-
zation, Payment, Price, Quality, Security, Stock, Supplier,
Transaction, Value

66.67

aktors
portal

Educational-Organization-Unit, Employee, Event, Information-
Bearing-Object, Intangible-Thing, Integer, Legal-Agent, Loca-
tion, Message, Month, Number, Organization, Person, Publica-
tion, Publication-Reference, Set, Software-Technology, Tech-
nology, University, Working-Person

75

3. Given a number k ≤ n (in our experiments k = 15), let S be the set of k classes in

O with the best score and let T be the set of n-k classes in {O ⎯ S} with the
best score. If T is empty, we return S and we stop.

4. Otherwise, let c be the average of all the values obtained by invoking the func-
tion contribution(Ci, {S ∪ T}), for each Ci ∈ {S ∪ T}. And let a be the average of
all the values obtained by invoking the function overallScore(Ci, {S ∪ T}), again
for each Ci ∈ {S ∪ T}. The function overallScore is defined as follows.

In our experiments we have used wCO = 0.6 and wCR = 0.4.
5. Let W be the class in T with the worst overallScore(W, {S ∪ T}) of all the

classes in {S ∪ T}, and let R be the set {{S ∪ T} ⎯ {W}}. If there is a class B ∈
{O ⎯ {S ∪ T}}, such that

(a) the average a’ of all the values obtained by invoking overallScore(C,
{R ∪ {B}}), computed for each C ∈ {R ∪ {B}}, is greater than a,

(b) the average c’ of all the values obtained by invoking contribution(C,
{R ∪ {B}}), computed for each C ∈ {R ∪ {B}}, is greater than or
equal to c,

we swap W with B in {S ∪ T} and we go back to step 4. Otherwise we return {S
∪ T} and we stop.

254 S. Peroni, E. Motta, and M. d’Aquin

3.3 Evaluation of the Revised Version of the Method

The tests performed with the new version of the algorithm produced much better re-
sults than the previous version. In particular, as shown in table 4 the average measure
of agreement between our algorithm and the human experts is now 72.08%, only 1.5
points lesser than the inter-expert agreement (74.68%). In practice the final version of
our method, at least on the current benchmark, is indistinguishable in its output from
human experts.

4 Related Work

As already mentioned, a few papers have addressed the topic of ontology summariza-
tion. In particular, in [6] the authors describe a family of algorithms to select the sali-
ent RDF sentences from a RDF graph. These algorithms work primarily on the basis
of the topological structure of the graph. The paper shows that while there is a rela-
tively low correlation between experts at the sentence level, there is a much better
degree of agreement with respect to vocabulary overlap. In addition, they also show
that the results produced by their method exhibit a good degree of correlation with the
experts. However, the ontologies used in their case studies are much smaller than the
ones used here, so those results are potentially less significant than those presented
here, even though no firm conclusion can be stated without trying out both ap-
proaches on a common benchmark. The work described in [5] focus on winnowing an
ontology – i.e., reducing the size of an ontology to facilitate its reuse. Hence, in this
work the focus is on a different type of summarization, which aims to make the ontol-
ogy more easily reusable, rather than facilitating ontology understanding in a context
in which the user wishes to quickly get a snapshot of what an ontology is about. The
same consideration applies to work on ontology customization [9], which provides
mechanisms to enable particular views over an ontology. While this work can be seen
as a particular kind of ontology summarization, it differs from our work both with re-
spect to the output of these techniques (a particular cut over an ontology) and also
because it expects the user to specify which part of an ontology she is interested in.

5 Discussion

While the generation of automatic methods, able to extract ontology summaries in a
way which correlates with human experts, is an interesting research issue in itself, the
work described here also provides a potentially useful basis for a number of novel
contributions to ontology engineering and semantic web research. In section 1, we
have already pointed out that a key motivation for this work was to facilitate the proc-
ess of ontology understanding for users of the Watson ontology search engine and the
Watson Plug-in. In particular, by providing quick snapshots of an ontology as part of
the results returned by Watson, we hypothesise that it will be easier for users to
quickly home in on the ontology most relevant to her needs. We also plan to use this
work as the basis for a novel visualization algorithm, to complement and to address
the weaknesses of the traditional taxonomic-centric support for navigating ontologies,
which is provided by current ontology engineering editors. As discussed in [10],

 Identifying Key Concepts in an Ontology 255

classic hierarchical views of ontologies are not very helpful for supporting tasks re-
lated to understanding the general structure of an ontology. In particular, consistently
with the experiments carried out here, the concepts that experts select to describe an
ontology tend to be on different branches of the hierarchy at various levels of depth.
Hence, they cannot be easily identified with standard top-down taxonomy browsers.

Initial presentations of this work to a number of audiences have also elicited interest-
ing suggestions for applying the work described here to a number of ontology-centric
scenarios. In particular, colleagues have suggested the use of our summarization tech-
nique in scenarios where an ontology is used to support automatic data classification, but
it is too expensive to try and classify large quantities of data against a large number of
classes. In these scenarios, our method could be used to identify the most useful concepts
in an ontology, so that these can be tried first. Similar ideas have been suggested by col-
leagues working on ontology matching and evolution, where the ability to prioritize
which concepts the system ought to focus on could also be useful. Analogously, key con-
cept selection could also be used as the basis for a new family of ontology modulariza-
tion algorithms. For example, modules could be built around each key concept, so that
the resulting partitioning of the ontology would identify ‘key areas’ of the ontology, con-
sistently with the criteria presented in this paper. Finally, we also intend to use this
method in the context of the work on ‘cautious knowledge sharing’, which we are carry-
ing out in the OpenKnowledge project (http://www.openk.org). This work is concerned
with scenarios where the content of an ontology is proprietary or otherwise restricted, and
cannot be made publicly available. In these scenarios, automatic ontology summaries can
be useful as a way to advertise an ontology while disclosing as little content as possible.

6 Conclusions

In this paper we have introduced a user-independent approach to identifying auto-
matically the key concepts in an ontology. The approach integrates both topological
measures, such as density (both global and local) and coverage, as well as statistical
lexical measures (popularity), and cognitive criteria (natural categories). The
approach has been validated empirically, by showing that the revised version of our
implementation shows an excellent degree of correlation with human experts. How-
ever, we should stress that these results, although promising, are still preliminary. A
more extensive evaluation study will be needed, to determine more conclusively both
the extent to which experts are able to agree on what are the best concepts to describe
an ontology and also the extent to which this approach can emulate expert concept se-
lection in a variety of domains. It will also be interesting to extend the algorithm, so
to be able to add also ‘key properties’ and even ‘key individuals’ to the ontology sum-
maries. In particular, adding key properties introduces interesting issues, as some
degree of coherence needs to be ensured between the set of concepts and the set of
properties identified by the algorithm. Hence, a possible strategy could be to focus on
concepts first, using the approach presented in this paper, and then extend such selec-
tion by identifying the most important properties associated with the selected con-
cepts, rather than with the ontology as a whole.

256 S. Peroni, E. Motta, and M. d’Aquin

As already mentioned, we also intend to apply these ideas to a number of ontology
engineering tasks, e.g., to explore new approaches to ontology visualization and navi-
gation, ontology evolution, and ontology modularization. Finally, we plan to make
our system available as a resource for the ontology engineering and semantic web
communities, by exposing it as a web application.

Acknowledgments. This work has been partially funded by the OpenKnowledge IST-
FP6-027253 and NeOn IST- FP6-027595 projects. The authors would like to thank an
anonymous referee for his numerous insightful suggestions.

References

1. d’Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Sabou, M., Motta, E.: Charac-
terizing Knowledge on the Semantic Web with Watson. In: Workshop on Evaluation of
Ontologies and Ontology-based tools, 5th International EON Workshop, collocated with
the International Semantic Web Conference (ISWC 2007), Busan, Korea (2007)

2. Stefik, M.: The next knowledge medium. AI Magazine 7(1), 34–46 (1986)
3. d’Aquin, M., Motta, E., Sabou, M., Angeletou, S., Gridinoc, L., Lopez, V., Guidi, D.: To-

wards a New Generation of Semantic Web Applications. IEEE Intelligent Systems 23(3),
20–28 (2008)

4. Dzbor, M., Motta, E., Buil Aranda, C., Gomez, J.M., Goerlitz, O., Lewen, H.: Developing
ontologies in OWL: An observational study. In: Workshop on OWL: Experiences & Di-
rections, Georgia, US (November 2006)

5. Alani, H., Harris, S., O’Neil, B.: Winnowing ontologies based on application use. In: Sure,
Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 185–199. Springer, Heidelberg
(2006)

6. Xiang, Z., Cheng, G., Qu, Y.: Ontology Summarization Based on RDF Sentence Graph.
In: 16th International World Wide Web Conference (WWW2007), Banff, Alberta, Canada,
May 8-12 (2007)

7. Rosch, E.: Principles of Categorization, Cognition and Categorization. Lawrence Erlbaum,
Hillsdale, New Jersey, Mahwah (1978)

8. Uschold, M., Gruninger, M.: Ontologies: Principles, Methods and Applications. Knowl-
edge Engineering Review 11(2), 93–136 (1996)

9. Bercovici, N., Gröner, G., Schenk, S., Kubias, A., Dzbor, M.: Ontology customization and
module creation: query-based customization operators and model. NeOn Project Deliver-
able D4.2.2 (February 2008)

10. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology Visu-
alization Methods - A Survey. ACM Computing Surveys 39(4) (2007)

The Art of Tagging:
Measuring the Quality of Tags

R. Krestel and L. Chen

L3S Research Center
Universität Hannover, Germany
{krestel,lchen}@L3S.de

Abstract. Collaborative tagging, supported by many social networking
websites, is currently enjoying an increasing popularity. The usefulness
of this largely available tag data has been explored in many applica-
tions including web resources categorization,deriving emergent seman-
tics, web search etc. However, since tags are supplied by users freely, not
all of them are useful and reliable, especially when they are generated
by spammers with malicious intent. Therefore, identifying tags of high
quality is crucial in improving the performance of applications based on
tags. In this paper, we propose TRP-Rank (Tag-Resource Pair Rank),
an algorithm to measure the quality of tags by manually assessing a seed
set and propagating the quality through a graph. The three dimensional
relationship among users, tags and web resources is firstly represented
by a graph structure. A set of seed nodes, where each node represents a
tag annotating a resource, is then selected and their quality is assessed.
The quality of the remaining nodes is calculated by propagating the
known quality of the seeds through the graph structure. We evaluate our
approach on a public data set where tags generated by suspicious spam-
mers were manually labelled. The experimental results demonstrate the
effectiveness of this approach in measuring the quality of tags.

1 Introduction

With the recent rise of Web 2.0 technologies, many social media applications
like Flickr, Del.ici.ous, and Last.fm provide features which allow users to assign
tags [1] to a piece of information such as a picture, blog entry, video clip etc.
Web users from different backgrounds annotate (tag) resources on the Web at an
incredible speed, which results in a large volume of tag data obtainable from the
Web today. The hidden value of tag data has been explored in many applications.
For example, Tso-Sutter et al [2] incorporated tags into collaborative filtering
algorithms to enhance recommendation accuracy. In [3], the authors discussed
using tags to lighten the limitation of the amount and quality of anchor text
to improve enterprise search. The usage of tags in Web search has also been
investigated in Bao et al [4].

One notable reason which supports the increasing popularity of collaborative
tagging is that users are permitted to enter tags at will, without referring to

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 257–271, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

258 R. Krestel and L. Chen

any pre-specified taxonomy or ontology. On the one hand, this easy and flexi-
ble utility boosts the spreading of collaborative tagging systems. On the other
hand, allowing users to freely choose tags sometimes leads to poor quality of
the tag data. For example, ambiguity and synonymy are two frequently cited
problems. The tag “XP” is used to annotate both web pages about “Extreme
Programming” and pages about “Windows XP”. Synonymous tags, like “RnB”
and “R&B”, are also widely used. Such problems hamper the applications built
upon tags. Another problem which even damages the performance of applications
using tags is tag spam, which refers to misleading tags generated maliciously in
order to increase the visibility of some resources or simply to confuse users.
Therefore, measuring the quality of tags is an important issue and discrimi-
nating high quality from low quality tags improves the effectiveness of different
tag-based applications.

In [5], the authors discussed some properties a good tag combination (e.g., the
set of tags annotating a common resource) should possess. For example, a good
tag combination should cover multiple facets of the tagged resource; the set of
tags should be used by a large number of people; and the number of resources
identified by the tag combination should be small etc. They further proposed
a tag suggestion algorithm based on these properties. In contrast to suggesting
new tags to users based on existing tags so that a good tag combination can be
achieved, our objective here is to assess the quality of tags assigned by users.
Koutrika et al [6] proposed to combat tag spam by ranking the results returned
from a query tag, based on the co-occurrence frequency between the tag and
each resource. Thus, their approach is specially designed for tag based search.
Our research objective is more general so that the results can be used in various
applications of tags.

Note that, whether a tag is good or bad can only be assessed with respect
to a particular resource. Hence, our investigation is based on the unit of a tag-
resource pair. We aim to measure the quality of each individual pair of tag
and resource. For this purpose, we firstly construct a graph which models tag-
resource pairs as nodes and co-user relationship as edges. We then select a set of
seed nodes whose qualities are assessed manually. The qualities of the remaining
nodes are calculated by propagating the qualities of seed nodes through the
graph. In order to improve the performance of this approach, a set of various seed
selection strategies are employed. We evaluate the effectiveness of our approach
on a bibsonomy data set1 labelled manually.

The rest of this paper is organized as follows. We discuss the background
knowledge by reviewing related work in Section 2. In Section 3, we describe
the approach which propagates the quality of tag-resource pairs and discuss
improving the performance by employing different strategies to select a set of
seeds. The evaluation results conducted on a public data set are presented and
analyzed in Section 4. Finally, Section 5 concludes this paper with some summary
remarks and future work discussions.

1 http://www.kde.cs.uni-kassel.de/ws/rsdc08/dataset.html

The Art of Tagging:Measuring the Quality of Tags 259

2 Related Work

In this section, we review related work in two areas, collaborative tagging systems
and spam detection.

A collaborative tagging system allows users of a web site to freely attach to
a particular resource arbitrary tags which, in the opinion of the user, are some-
how associated with the resource in question. The commonly noted structure of
collaborative filtering systems is a tripartite model consisting of users, tags and
resources. This model is developed as a theoretical extension of the bipartite
structure of ontologies with an added “social dimension” in [7]. The dynamics of
collaborative systems are examined in [8] using the tag data at the bookmarking
site Del.ici.ous. According to this work, tag distributions tend to stabilize over
time. Halpin et al. confirm these results in [9] and show additionally that tags
follow a power law distribution. Considering the structure and stable dynamics
of collaborative tagging systems, it seems likely that tag data would be a reliable
source of semantic information reflecting the cultural consensus of a particular
system’s users. As a result, various applications of tag data have been researched.
Mika [7] investigates the automatic extraction of ontological relationships from
tag data and proposes the use of such emergent ontologies to improve currently
existing ontologies which are less capable of responding to ontological evolution.
Dmitriev et al. [3] explore the use of “annotations” for enterprise search to com-
pensate for the lack of sufficient anchor text in intranet environments. In [4],
tag data is exploited for the purpose of web search through the use of two tag
based algorithms: one exploiting similarity between tag data and search queries,
and the other utilizes tagging frequencies to determine the quality of web pages.
Tso et al [2] incorporate the tag data into the collaborative filtering systems.
Berendt and Hanser [10] demonstrate the benefits of using tag data for weblog
classification by treating it as content instead of meta data. For searching and
ranking within tagging systems, [11] proposes the exploitation of co-ocurrence
of users, resources, and tags. This is done using a graph model to represent the
folksonomy.

Everywhere in the internet where information is exchanged, malicious indi-
viduals try to take advantage of the information exchange structure and use it
for their own benefit. The largest amount of spam and historically the first field
where spam was generated is the electronic communication system (e-mail).
Afterwards, various internet applications were attacked by spammers such as
search engine spam, blog spam, wiki spam etc, which triggered numerous re-
search efforts in spam combating. For example, TrustRank [12] separates spam
pages from non-spam pages based on the intuition that trustworthy pages usu-
ally link to also trustworthy pages and so on. They select a seed set of highly
trusted pages first and then propagate the trust score of seed pages by following
the links from these pages through the Web. A survey of approaches fighting
spam on social web sites can be found in [13]. Comparing to spam detection
from other web applications, studies on detecting spam from collaborative tag-
ging systems are very limited. Koutrika et al [6] propose to combat spam in
the particular situation when users query for resources annotated with certain

260 R. Krestel and L. Chen

tags. Their method ranks a resource higher if more users annotated it with the
queried tags, based on the assumption that tag spam may not be used by the
majority. Our work is different in the way that our approach is not designed for
a particular application. Consequently, the output of our algorithm can be used
by any application based on tags. Xu et al [5] assign authority scores to users,
and measure the quality of each tag with respect to a resource by the sum of the
authority scores of all users who have tagged the resource with the tag. Then,
the authority scores of users are computed via an iterative algorithm similar to
HITs [14]. Their approach treats every tag-resource pair used by a user equally
even if a spam user may use good tag-resource pairs frequently and bad ones
occasionally. Our approach addresses this problem by measuring the quality of
a tag-resource pair more independently from a particular user.

3 Measure Tag Quality

The hidden value of tag data has been explored by a wide range of applications.
However, as mentioned before, since there is no limitation on the vocabulary
users are allowed to use for taggging, the quality of tags varies. In other words,
tags are not equally useful for a particular application. For example, recovery
and discovery of resources on the web is one of the main uses of tags. Although
tags describing the general topics of resources might be useful for search en-
gines, personal or subjective (see [15,16] for a taxonomy of tags) tags such as
“myFavorite”, “funny”, “home” do not seem to be promising for this task. Fur-
thermore, it is common that tags which describe one resource very well may not
be suitable for another resource. Consequently, measuring the quality of tags is
critical for applications to exploit the positive usage of tag data. The quality of
a tag should be measured with respect to the resource to which it is assigned.

In this section, we first formally define the problem we focus on in this paper.
Then, the data structure which models the relationship among tags, resources,
and users is described. Next, we illustrate our algorithm, called TRP-Rank (Tag-
Resource Pair Rank), which iteratively assesses the quality of each pair of tag-
resource in the data set. Finally, several strategies which select various sets of
seed nodes, serving as the input of TRP-Rank, are discussed.

3.1 Problem Specification

Let T be a set of tags, R be a set of resources, and U be a set of users. We denote
a tag assignment of a tag t ∈ T to a resource r ∈ R as a tag-resource pair tr.
All tag assignments in the data T × R is a set of tag-resource pairs denoted
as T R = {tr|t ∈ T , r ∈ R}. Each tag-resource pair is assigned by at least one
user u ∈ U . We define the function getU(tr) to retrieve the set of users who
assigned t to r. Note that, getU(tr) �= ∅. Then, given the complete set of tag-
resource pairs T R = {tr1, · · · , trn}, and associated users of each tag-resource
pair getU(tri) ⊆ U , our goal is to find a function Q(tri) which assigns a score
to each tag-resource pair tri such that the higher the value of Q(tri), the better

The Art of Tagging:Measuring the Quality of Tags 261

the quality of the pair tri. The value of Q(tri) ranges in [−1, 1] (the reason why
negative values are involved will be explained later in Section 3.3).

3.2 Tagging System Model

Given a set of data including tags T , resources R and users U , we model the
data as a bidirected weighted graph G = {V , E}, where V is a set of vertices with
each v ∈ V represents a tr ∈ T R. E is a set of edges such that each edge (vi, vj)
indicates that the two corresponding tag-resource pairs tri and trj are assigned
by at least one common user. That is, |getU(tri) ∩ getU(trj)| ≥ 1. Additionally,
we associate a weight to each edge so that the weight of an edge is the number
of common users who assigned the tag-resource pairs corresponding to the two
end nodes of this edge, W (vi, vj) = W (tri, trj) = |getU(tri) ∩ getU(trj)|.

In Figure 1 (a), we present a very simple tagging scenario: Suppose we have
three users U = {u1, u2, u3}, three different tags T = {t1, t2, t3} and two re-
sources R = {r1, r2}. Each user has annotated the resources with certain tags.
For example, the leftmost link in Figure 1 (a) indicates that both users u1
and u2 have supplied the tag t1 with the resource r1. Observing the tag as-
signments in this figure, we notice that there are a total 5 tag-resource pairs
T R = {t1r1, t2r1, t3r1, t1r2, t3r2}. Hence, as shown in Figure 1 (b), there are five
nodes involved in the data model where each node represents a particular tag-
resource pair. An edge connects two nodes if the two corresponding tag-resource
pairs are supplied by at least one common user. For example, there is an edge
between v1 : t1r1 and v3 : t3r1 because they are supplied by the common user
u2. Accordingly, the weight of this edge, as shown in the figure, is |{u2}| = 1.

Based on this graph model, we introduce a right stochastic transition matrix
T , which is defined as:

T (i, j) =

{
0 if (vi, vj) �∈ E

W (vi,vj)P
vk∈V W (vi,vk) if (vi, vj) ∈ E

r1 r2

t1 t2 t3

u1,u2

u1u2 u2

u1,u3
u3

t1r1

t1r2 t3r2

t2r1 t3r1

v1 v2 v3

v4 v5

W(v1,v3) = |{u2}| = 1

|{u3}| = 1

 |{u1}| = 1
 |{u1}| = 1

 |{u2}| = 1 |{u1,u2}| = 2

(a) A tagging scenario (b) A data model

Fig. 1. A tagging scenario and its data model

262 R. Krestel and L. Chen

Figure 2 shows the adjacency matrix and the transition matrix for the example
in Figure 1. Note that, the adjacency matrix is symmetric since the graph model
is bidirected, while the transition matrix is asymmetric.

v1 v2 v3 v4 v5

v1 2 1 1
v2 2 1 1

v3 1 1

v4 1 1 1
v5 1

T =

0
BBBBB@

0 1
2

1
4

1
4

0
1
2

0 1
4

1
4

0
1
2

1
2

0 0 0
1
3

1
3

0 0 1
3

0 0 0 1 0

1
CCCCCA

Fig. 2. Adjacency (left) and transition (right) matrixes of the example in Figure 1

3.3 Quality Propagation

Similar to TrustRank [12], which semi-automatically separates web pages from
spam, the basic idea of TRP-Rank is to manually assign quality scores to a
subset of T R first, and propagate these quality values through the graph. As
the TrustRank algorithm is based on the well-known PageRank [17] algorithm,
we briefly review PageRank and TrustRank in the following before illustrate
TRP-Rank.

PageRank. PageRank is an algorithm that assigns scores to web pages based on
link information. When important pages point to a particular page, this page
should also be considered important as well. Thus importance information is
propagated through the web graph via an iterative process:

p-ranki+1 = α · T · p-ranki + (1− α) · 1
N
· 1N . (1)

where α is a decay factor, T is the transition matrix and N is the number of
web pages. The transition matrix is not weighted and all web pages get the same
initial value of p-rank. The iteration process goes on until the difference between
two consecutive runs’ results is below a certain threshold.

TrustRank. TrustRank extends the Equation (1) to identify web spam. Therefore
the original PageRank algorithm was altered to be biased towards a seed set
of high quality sites, where each site x was manually assessed with an oracle
function O(x). Then, the column vector 1

N · 1N in Equation (1) is replaced with
a vector d, such that elements corresponding to manually assessed sites are set
as O(x) and the remaining elements are set as 0. d is then normalized, d = d/|d|,
and feed as t-rank0.

t-ranki+1 = α · T · t-ranki + (1− α) · d. (2)

The set of seed sites is selected using an inverse PageRank algorithm. Partic-
ularly, nodes from where lots of other nodes can be reached are identified and
ranked accordingly, similar to the idea of Hubs [14]. Then, the top-k nodes are

The Art of Tagging:Measuring the Quality of Tags 263

manually assigned values 1, or 0 in case of a spam web site, and these initial
values are stored in d.

TRP-Rank. For TRP-Rank, the quality of each tag-resource pair, Q(tr), is com-
puted similarly as the Equation (2) in TrustRank. That is, we propagate ini-
tial quality scores of seed tag-resource pairs through the graph. In addition to
TrustRank which propagates only trust information, we adopt the distrust prop-
agation idea described in [18] to allow the propagation of scores for not only good
tag assignments but also explicitly bad ones. Consequently, in TRP-Rank, we
extend the manual seed set assessment to include both tag-resource pairs of high
quality and those of low quality. We populate the initial vector d with:

d(tri) =

{
O(tri) if tri ∈ SEED

0 if tri �∈ SEED
(3)

where O(tri) ∈ {−1, 0, 1} is the oracle function which assigns initial quality score
1 to good tag-resource pairs, −1 to bad ones and 0 to the rest. SEED ⊆ T R is
a set of seed nodes, which will be defined in Section 3.4.

Consider the running example shown in Figures 1 and 2, the results of TRP-
Rank (i.e. quality of tag-resource pairs) after 10 iterations are shown in Figure 3,
where v3 and v4 are selected as seed nodes and the decay factor α is set as 0.85.

trp-ranki+1 = 0.85 ·

0
BBBBB@

0 1
2

1
4

1
4

0
1
2

0 1
4

1
4

0
1
2

1
2

0 0 0
1
3

1
3

0 0 1
3

0 0 0 1 0

1
CCCCCA
· trp-ranki + (1− 0.85) ·

0
BBBBB@

0
0
−1
1
0

1
CCCCCA

i = 10 v1 v2 v3 v4 v5

trp-rank(10) -0.03341879 -0.03341879 -0.16368952 0.180295 0.05023218

Fig. 3. TRP-Rank computation and results for the example in Figure 1

3.4 Seed Selection Strategies

In our approach, we experiment with three different seed selection strategies,
whose performance will be presented and discussed in Section 4.3. The two main
challenges for seed set selections are: 1) finding an appropriate size for the seed
set. A small seed set may not be enough to reach most nodes in the graph, while
a large seed set means an expensive manual assessment process; 2) picking the
right set of tag-resource pairs as seeds. On the one hand, the seed set should
contain not only good tag-resource pairs but also pairs of low quality, so that
explicit information of both good and bad quality can be propagated. On the
other hand, the seed set should contain nodes from which many of the remaining
nodes can be reached.

264 R. Krestel and L. Chen

Algorithm 1. Different Seed Selection Strategies
Input:

N : a set of graph nodes, K (K < |N |): the number of seeds
Output:

SEED: A set of selected seed nodes

1: order N as N̂ =< v1, v2, · · · , vn > such that PR(vi) ≥ PR(vi+1)
2: for each vi ∈ N̂ do
3: if Top-K Seed Selection then
4: if |SEED| < K then
5: SEED = SEED ∪ {vi}
6: end if
7: end if
8: if Exponential Base Seed Selection then

9: if i ∈ {an}; an = n + �bn�; b = e
ln (|N|−K−1)

K−1 ; ∀n ∈ {0, . . . , K − 1} then
10: SEED = SEED ∪ {xi}
11: end if
12: end if
13: if Constant Base Seed Selection then
14: if ∃n ∈ N | �an = i�; a = |N|

K then
15: SEED = SEED ∪ {xi}
16: end if
17: end if

18: end for

We first compute PageRank scores for each tag-resource node to examine
the connectivity of each node in the graph. The resulting list, with the nodes
ordered according to PageRank, is the starting point for the three strategies we
evaluated. Algorithm 1 shows the three seed selection processes.

1. Top-k seed set. TrustRank also employed the (inverse) top-k PageRank
selection to find highly connected nodes whose quality influences a lot of
neighboring nodes. However, since our data model is a bidirected graph, we
consider the top-k PageRank directly without computing the inverse PageR-
ank scores. This strategy can be easily adjusted to satisfy the first require-
ment of the seed set size, while it may not be able to select the right seed set
which includes both good and bad tag-resource nodes. The reason is that, as
will be shown in the next section, bad tag-resource nodes usually have lower
PageRank values.

2. Exponential base seed set. Motivated by the observation that the top-k
strategy mainly select the good tag-resource nodes, this strategy aims to
include more bad tag-resource nodes in the seed set. However, in order to
propagate quality scores through the graph as far as possible, nodes with
high PageRank values (i.e., high connectivity) are favored. Hence, after or-
dering nodes based on their PageRank scores, seed nodes are selected with
an increasing interval, such as {v1, v2, v4, v8, · · · }.

3. Constant base seed set. In contrast to exponential base seed selection
which favors nodes with high connectivity to those less connected, so that
more good tag-resource nodes are selected, this strategy selects good and
bad tag-resource nodes with equal chances. For example, let the constant
base be 10, then every 10th node will be selected. The inclusion of more bad

The Art of Tagging:Measuring the Quality of Tags 265

tag-resource nodes may be able to discover more tag-resource nodes with
inferior quality, while the propagation may not be as extensive as before.

4 Evaluation

Since there is no manually annotated corpus – of which we are aware of – that
could be used to compare our results for the quality of tags with a gold standard,
we have to resort to an indirect approach. Particularly, we use the tag data
compiled for a competition2 to detect spam users. In this section, we first describe
the data set. Then, an indirect approach to evaluate TRP-Rank is discussed.
Next, we evaluate the performance of TRP-Rank, with different seed selection
strategies. Finally, we examine the performance of our approach when applied
to a larger dataset.

4.1 Data Set

The data set used by us consists of 221, 354 tag assignments by 1, 328 users of
the BibSonomy3 system for publications. Out of these users, 118 were marked
manually as spammers and 1, 210 as non-spammers. The size of the set of unique
tag-resource pairs T R is 195, 198. We discarded tag-resource pairs which were
made by users having only one tag assignment (these tag-resource pairs would
be disconnected nodes in our data model). And we only picked the first 1000
tag assignments of users whose number of tag assignments exceed this threshold.
The remaining set has 132, 520 trs.

In order to show the connectivity of tag-resource nodes, Table 1 summarizes
the numbers of pairs of tag-resource nodes, {tri, trj}, and their associated com-
mon users. For example, the second column of the table indicates that there are
175, 619 pairs of trs that are used by only one common user. In other words,
in the adjacency matrix of our data model, there are 2 ∗ 175, 619 elements with
value 1. Although these numbers seem to imply that the graph is not highly
connected, as we will show in Section 4.3, a rather small seed set is sufficient to
reach most of the nodes in the graph.

Table 1. Number of pairs of trs assigned by common users

Number of pairs of trs 175619 15767 2664 641 197 115 55 41 24 75

Shared by # of Users 1 2 3 4 5 6 7 8 9 ≥10

Some necessary preprocessing has been done before using the data. For ex-
ample, since the data set consists of the raw BibSonomy data, we have to give
IDs to each individual tr. To identify the semantic relationship between certain
tags, we use stemming and ignore capital letters to assign one ID to a group of
tags (e.g. “Book”, “book”, or “Books”).
2 http://www.kde.cs.uni-kassel.de/ws/rsdc08/
3 http://www.bibsonomy.org

http://www.kde.cs.uni-kassel.de/ws/rsdc08/
http://www.bibsonomy.org

266 R. Krestel and L. Chen

4.2 Indirect Evaluation Method

The TRP-Rank algorithm aims to measure the quality of each tag-resource pair,
while the data set contains only the spammer information. Hence, an indirect
evaluation method needs to be used. Basically, we need to consider the following
two issues: 1) The input of TRP-Rank needs manually assessed quality scores
of a set of seed tag-resource nodes. How to assign the initial quality using the
spammer information in the data? 2) The output of TRP-Rank is the converged
quality scores of all tag-resource pairs. How to map the quality scores of tag-
resource pairs to some score which could reflect whether a user is a spammer or
not? We discuss the solutions of the two problems respectively as follows.

For assigning the initial quality scores to seed tag-resource nodes, we make
use of the available spammer information in the dataset by defining a function
notSpammer(u) ∈ {1,−1}. When a user u is not a spammer, the function
returns value 1; otherwise, it returns value −1. Thus, the oracle function O(tr)
assigns the scores to each tr ∈ SEED as:

O(tr) =

⎧⎪⎨
⎪⎩

1 if 1
|getU(tr)|

∑
u∈getU(tr) notSpammer(u) > 0

−1 if 1
|getU(tr)|

∑
u∈getU(tr) notSpammer(u) < 0

0 otherwise

(4)

That is, when a tag-resource pair is assigned by more normal users than
spammers, it is deemed as a good tag-resource node and assigned a positive
quality score. Otherwise, a negative score is given to reflect the inferior quality
of the tag-resource node.

For mapping the result quality scores Q(tr) of all tag-resource pairs, returned
by TRP-Rank, to the scores indicating whether a user is a spammer or not, we
aggregate the quality of all tag-resource pairs assigned by the user. Let getTR(u)
return the set of tag-resource pairs used by u, getTR(u) = {tr1, · · · , trn}. We
define the function isSpammer(u) as:

isSpammer(u) =

{
1 if 1

|getTR(u)|
∑

tri∈getTR(u) Q(tri) < 0

0 otherwise
(5)

4.3 TRP-Rank Performance

We first examine the maximum performance which can be achieved theoretically
with our approach. Namely, the performance generated when the complete set
of tag-resource nodes are used as seeds. As shown by the top confusion matrix
in Table 2, the accuracy is approximately 97.66% (1210/1239). It is actually
promising considering that our algorithm is not designed for spammer detec-
tion. We further investigate the theoretically achievable maximum by using all
nodes with positive initial quality scores and all nodes with negative initial qual-
ity scores as seeds respectively. The middle and bottom confusion matrixes in
Table 2 show the results. We notice that, compared with using only the nodes

The Art of Tagging:Measuring the Quality of Tags 267

Table 2. Confusion matrixes for theoretically achievable maximum using different
seeds

Positive and Negative spread information

True Positives: 1210 True Negatives 89
False Positives: 29 False Neagatives 0

Only positive spread information

True Positives: 1079 True Negatives 114
False Positives: 4 False Neagatives 131

Only negative spread information

True Positives: 1210 True Negatives 91
False Positives: 27 False Neagatives 0

with positive initial scores as seeds, using all nodes with negative initial quality
scores is able to detect more spammers correctly.

Then, we investigate the performance of TRP-Rank which uses a combination
of good and bad nodes as seeds. We conduct the experiments by varying the size
of seed sets. As discussed in Section 3.4, the PageRank of nodes is used as the
starting point to select seeds. Figure 4 shows the PageRank scores for all trs in
our data set. By examining the PageRank scores of nodes, we notice that nodes

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000 10000 100000

P
ag

eR
an

k
S

co
re

Tag-Resource-Tuple

Fig. 4. Log-log graph of PageRank scores for the whole data set

related to spammers usually have lower PageRank values. That observation im-
plies that the top-k method probably will not include as many negative nodes
related to spammers as seeds as the exponential base and constant base seed se-
lections do. The results for the different selection strategies are shown in Table 3,
which verify the previous hypothesis. The top-k approach is not comparable to
the other two seed selection approaches. It also could not outperform the method

268 R. Krestel and L. Chen

Table 3. Accuracy for different seed set selection strategies with seed set size
10000/20000

Accuracy
Strategy Seed Set Size

10000 20000
Top-k 91.11 % 91.11 %

ExponentialBase 94.58 % 96.39 %

ConstantBase 94.88 % 96.31 %

which uses all nodes with negative initial scores as seeds. In contrast, the other
two seed selection methods exhibit similar good performance.

We further investigate how the performance of TRP-Rank varies with respect
to the seed set size. The seed set size is a crucial factor for the algorithm. Since we
need an oracle function that gives us O(tr) ∀tr ∈ SEED, and the oracle function
usually invokes human assessing procedures, a large seed set could be expensive.
However, a smaller seed set may be not able to propagate the quality through
the graph wide enough. As shown in Table 4, which are the performance of
TRP-Rank with constant base seed selection running on seed sets with different
size, we notice that our approach can achieve an accuracy as good as 93.75%
even if only 3.7% (5000/132, 250) of the nodes are selected as seeds, which equals
roughly the manual assessment of 50 users.

Table 4. Results for different sized seed sets using constant base TP=true positives,
TN=true negatives, FP=false positives, FN=false negatives

Seed Set Size TP FP TN FN Accuracy
132520 1210 29 89 0 97.82 %

50000 1210 29 89 0 97.82 %
20000 1210 49 69 0 96.31 %

10000 1210 68 50 0 94.88 %

5000 1210 87 31 0 93,45 %

4.4 Data Reduction

For large data sets the matrix of our algorithm can become very large. To reduce
the amount of data to process, we examine the effect of considering only trs where
tags were used by at least x (x > 1) users. This seems to be justifiable at least
for the case of measuring the quality of a certain tag for a certain resource. For
detecting spam users, this filtering scheme is also an option. We examine the
performance by using the whole data set as seed set and setting the parameter
x as 3 and 10 respectively. The results are shown as below. We observe that the
performance drops by only 2.94 % when considering only tags that were used
by at least 10 users (compared with the performance where x = 1), while the
transition matrix size is reduced by more than 50%.

The Art of Tagging:Measuring the Quality of Tags 269

– Minimum 10 Users → Accuracy 94.80 %
– Minimum 3 Users → Accuracy 95.63 %

—————————————————–
– Minimum 1 Users → Accuracy 97.67 %

4.5 Discussion

The experimental results demonstrate that our algorithm performs quite well
on distinguishing spammers from normal users based on the quality of their
tag-resource pairs. After looking at the data into more detail, it seems that our
approach could perform even better when modifying the notion of “spammer”.
For example, users with only one “test” tag assignment are considered as non
spammers in the data set. Since they are not malicious users, this might be an
acceptable classification. Nevertheless, from the tag quality point of view, these
users would be considered unreliable because they use bad quality tag-resource
pairs.

As observed from the experiments, an appropriate seed set should be well rep-
resentative so that it contains not only good tag-resource pairs but also bad one.
However, in a real-world tagging system, the majority are usually good/non-
spam tags. Thus, the negative seeds are ranked rather low by PageRank which
makes them hard to be found. The constant base seed selection method is gen-
erally applicable and has shown to be effective.

Regarding the size of the whole data set, we saw that the accuracy drops
only little when putting some restrictions on the tags which are allowed for valid
tag-resource pairs. Filtering out tag-resource pairs with tags used by few users
is useful under the assumption that tags that are regarded valuable are used by
a lot of users.

5 Conclusions and Future Work

In this paper, we focus on the problem of measuring the quality of tags which
are supplied by users to annotate resources on the Web. Due to the intrinsic fea-
ture of existing collaborative tagging systems that users are allowed to supply
tags freely, the resulting tags can have great disparity in quality. Consequently,
measuring the quality of tags appropriately is important towards effectively ex-
ploiting the usefulness of tags in many applications. The main characteristics of
our algorithm are represented by the data model we adopt and the seed selection
functions we investigate. By decoupling the relationship between users and tag-
resource pairs, we model the tag-resource pairs as nodes and co-user relationship
as edges of a graph. Different from existing models, this structure allows every
two tag-resource pairs used by the same user to have different quality, which
complies with the practical situation better. Our algorithm, which propagates
quality scores iteratively through the graph, needs to be initialized with the
scores of a set of seed nodes. We investigate various seed selection strategies
with the aim to not only minimize the size of the seed set but also minimize
the error of the resulting quality scores. The effectiveness of our algorithm is

270 R. Krestel and L. Chen

evaluated on a manually labelled data set and demonstrated by the promising
experimental results.

For future work, we are interested in pursuing the following problems:

– We currently assign the three distinct values {−1, 0, 1} to the set of seeds.
However, finer initial quality scores such as 0.2, 0.5 might be able to dissect
the quality of tag assignments better.

– The manually assessment of the quality of seed nodes is expensive. How to
make use of Web 2.0 and let users generate the seed set is an interesting
issue which is worthwhile to consider.

– Since TRP-Rank demonstrated good performance of detecting spammers in
tagging systems, we are considering to revise our approach to specifically
address combatting tag spam. For example, our current model represents
tag-resource pairs as nodes in order to measure the quality of tag-resource
pairs. We can alternatively model users as nodes and common tag-resource
pairs as edges to directly find spam users.

Acknowledgements

This work is supported by the EU project IST 45035 - Platform for searcH of
Audiovisual Resources across Online Spaces (PHAROS).

References

1. Marlow, C., Naaman, M., Boyd, D., Davis, M.: Ht06, tagging paper, taxonomy,
flickr, academic article, to read. In: Wiil, U.K., Nürnberg, P.J., Rubart, J. (eds.)
Hypertext, pp. 31–40. ACM, New York (2006)

2. Tso-Sutter, K.H.L., Marinho, L.B., Schmidt-Thieme, L.: Tag-aware recommender
systems by fusion of collaborative filtering algorithms. In: Wainwright, R.L., Had-
dad, H. (eds.) SAC, pp. 1995–1999. ACM, New York (2008)

3. Dmitriev, P.A., Eiron, N., Fontoura, M., Shekita, E.J.: Using annotations in enter-
prise search. In: [19], pp. 811–817 (2006)

4. Bao, S., Xue, G.R., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing web search using
social annotations. In: [20], pp. 501–510 (2007)

5. Xu, Z., Fu, Y., Mao, J., Su, D.: Towards the semantic web: Collaborative tag sug-
gestions. In: WWW2006: Proceedings of the Collaborative Web Tagging Workshop,
Edinburgh, Scotland (2006)

6. Koutrika, G., Effendi, F., Gyöngyi, Z., Heymann, P., Garcia-Molina, H.: Combating
spam in tagging systems. In: AIRWeb (2007)

7. Mika, P.: Ontologies are us: A unified model of social networks and semantics.
In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,
vol. 3729, pp. 522–536. Springer, Heidelberg (2005)

8. Golder, S.A., Huberman, B.A.: The structure of collaborative tagging systems.
CoRR abs/cs/0508082 (2005)

9. Halpin, H., Robu, V., Shepherd, H.: The complex dynamics of collaborative tag-
ging. In: [20], pp. 211–220 (2007)

The Art of Tagging:Measuring the Quality of Tags 271

10. Berendt, B., Hanser, C.: Tags are not metadata, but just more content - to some
people. In: ICWSM (2007)

11. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folk-
sonomies: Search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,
vol. 4011, pp. 411–426. Springer, Heidelberg (2006)

12. Gyöngyi, Z., Garcia-Molina, H., Pedersen, J.O.: Combating web spam with
trustrank. In: Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley,
J.A., Schiefer, K.B. (eds.) VLDB, pp. 576–587. Morgan Kaufmann, San Francisco
(2004)

13. Heymann, P., Koutrika, G., Garcia-Molina, H.: Fighting spam on social web sites:
A survey of approaches and future challenges. IEEE Internet Computing 11(6),
36–45 (2007)

14. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J.
ACM 46(5), 604–632 (1999)

15. Sen, S., Lam, S.K., Rashid, A.M., Cosley, D., Frankowski, D., Osterhouse, J.,
Harper, F.M., Riedl, J.: Tagging, communities, vocabulary, evolution. In: Proceed-
ings CSCW, New York, NY, USA, pp. 181–190. ACM, New York (2006)

16. Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems.
Journal of Information Science 32, 198–208 (2006)

17. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. techreport (1998)

18. Wu, B., Goel, V., Davison, B.D.: Propagating trust and distrust to demote web
spam. In: Finin, T., Kagal, L., Olmedilla, D. (eds.) MTW of CEUR Workshop
Proceedings, vol. 190 (2006), CEUR-WS.org

19. Carr, L., Roure, D.D., Iyengar, A., Goble, C.A., Dahlin, M. (eds.): Proceedings of
the 15th international conference on World Wide Web. In: Carr, L., Roure, D.D.,
Iyengar, A., Goble, C.A., Dahlin, M. (eds.) WWW 2006, Edinburgh, Scotland, UK,
May 23-26, 2006. ACM Press, New York (2006)

20. Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.): Proceed-
ings of the 16th International Conference on World Wide Web, WWW 2007, Banff,
Alberta, Canada, May 8-12, 2007. ACM, New York (2007)

CEUR-WS.org

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 272–286, 2008.
© Springer-Verlag Berlin Heidelberg 2008

STAN: Social, Trusted Annotation Network

Hyun Namgoong1, Kyoung-Mo Yang2, Sung-Kwon Yang1,
Charles Borchert1, and Hong-Gee Kim1

1 Seoul National University, Biomedical Knowledge Engineering Lab,
Seoul, Republic of Korea

{ngh,sungkwon.yang,cborchert,hgkim}@snu.ac.kr
2 SunMoon University, Department of Computer Science Frank.Holzwarth, Asan,

Chungnam, Republic of Korea
{kyoungmo.yang}@sunmoon.ac.kr

Abstract. Annotated data play an important role in enhancing the usability of
information resources. Single users can be easily frustrated by the task of anno-
tating. Collaborative approaches to annotation have been applied to web re-
sources, but have not yet been applied to the task of local documents, due in
part to the lack of a uniform identification method. In this paper, we use hash-
based virtual URIs for identifying documents, and introduce the concept of a
STAN (Social, Trusted Annotation Network), which enables collaborative an-
notation of documents through their URIs. STAN also incorporates quantitative
trust rates between users in social networks based on their interactions with
each other. The STAN framework is described, demonstrating how these trust
networks are constructed through collaborative annotation. Finally, we evaluate
the usefulness of collaborative annotation and the feasibility of the resulting
trust rates through empirical experiment.

Keywords: Semantic Desktop, Social, Trusted Annotation Network, Trust
Network, Hash algorithm, Virtual URI.

1 Introduction

Annotated data play an important role in enhancing the usability of information re-
sources. Annotation with either plain-text tags or semantically richer RDF or OWL is
essential in Semantic Web and more specifically Semantic Desktop applications
[1][2]. It facilitates the information access and management by utilizing meaningfully
closer contingents of resources or documents. However, annotating every resource is
sometimes bothersome and time-consuming for individual users. Some recent works
have been committed to enable the collaborative annotation of web resources [6][7].
In spite of these works, it is still not a simple task to collaboratively annotate local
desktop resources, i.e. PDF documents, copies of which are difficult to uniquely iden-
tify due to lack of explicit URIs (universal resource identifiers).

In this paper we introduce STAN (Social, Trusted Annotation Network) which
enables collaborative annotation for local documents. Firstly, STAN provides hash-
based virtual URIs for local documents for the uniform identification. Secondly,

 STAN: Social, Trusted Annotation Network 273

STAN can identify annotators in a socially connected network, recognize others who
have the same copy of a document, and group them accordingly. Finally, it incorpo-
rates quantitative trust ratings measured through multiple users’ interactive annota-
tions for the effective collaboration. A social network represented in STAN can be
extended to a trust network since it comprises a group of connected annotators, whose
meta-data can be recommended and shared based on their quantified trust. The net-
work allows users to know and to collaborate with others who might have the same
interests and views through the use of quantitative trust rates.

After describing the concept of STAN, we describe framework of the implemented
prototype, which allows for the sharing of annotated data for documents, particularly
PDF files intended for distribution without manipulation of the content. Each user’s
annotation of local documents can be aided by the delivery of others’ annotated data,
perhaps filling in gaps a user has left in their annotations. Also, the framework defines
a specific algorithm for quantitative trust measuring based on their shared annotated
data. The framework mainly consists of individuals’ repositories (for publishing their
data), STAN applications (for collaborative annotation and searching), and the STAN
mediator (which manages communication through the network). These components
together demonstrate how a STAN can be used to improve cooperative annotation for
users.

2 State of the Art

Annotated data can enrich and add value to a document, to the benefit of understand-
ing and expanding its content. They can come in the form of plain text tags or seman-
tic annotations. This annotated data has the potential to be useful in many areas -not
only for the web, but also for semantic desktop and social semantic desktop applica-
tions [1][2]. Works like NEPOMUK and Haystack are devoted to using this potential
for enhancement of desktop resource usability [3][4]. SALT also provides techniques
for encapsulating this annotated data in a document for easy distribution as a mean-
ingful addition to the document [5]. These works show the potential that can be har-
nessed from the annotated data of local resources.

Obviously annotated data is meant for more than a single person's benefit, so col-
laborative annotating is an important aspect of annotation as a whole. Many sites and
research projects manage multiple users' annotated data on web resources for the
purpose of sharing. CiteULike is a web-based social bookmarking service for aca-
demic research papers, storing optionally 'tagged' references to papers in users' online
profiles [6]. Web Discussions is a tool for annotating parts of websites, which shares
annotated data among users connected to the same server [7]. However, the above
mentioned services focus on web resources which all implicitly have URLs or URIs
that provide universal identification. The sharing of annotated data for local resources
has still not seen significant consideration.

In the study of trust networks, determining quantitative trust rates and reputations
has become a big issue. These networks' focus can range from matters of taste, like
FilmTrust, to the source of claims of facts, like IWTrust [11][12]. The above imple-
mentations show human-driven rating approaches, however users' assignments are
difficult to formalize without explicit context or history of their neighbors, as Marsh

274 H. Namgoong et al.

addresses in [9]. According to Jennifer Golbeck’s definition of trust in [8], 'trust in a
person is a commitment to an action based on a belief that the future actions of that
person will lead to a good outcome', the quantitative trust rate gives many use-cases
for future behavior, e.g., email filtering [13].

Our research provides the concept of and framework for STAN, intended for ensur-
ing collaborative annotation, primarily by addressing the identification problem with
hash-based virtual URIs for each document, and further providing a network for us-
ers’ exchange of document annotations. Additionally, we believe that users’ annota-
tion sharing and selection behavior can be assessed for further benefit. To that end,
the framework delivers quantitative trust rates between users, giving an indication of
reliability of future annotation contributions based on their previous actions.

3 Grouping Users with Document Identification

Desktop users currently engage with the flow of information not only on the Internet,
but also on their desktops. Numerous documents clutter desktop computers, and can
number from the hundreds to even the thousands. Most of these are simply
downloaded from the Internet for browsing, e.g. research papers. In these cases, the
user is only the reader or carrier, rather than an author. Annotation and tagging of the
documents can be utilized to easily and effectively exploit their contents. Also, there
can be some benefit from knowing other users and their annotations, and searching
documents based on those annotations. Users could simply download and apply the
annotations of others to their documents, so they need not attach every semantic anno-
tation by themselves. The first task of this work is to group people who have the same
copy of a given document.

In order to group people for annotation sharing, local documents firstly require a
universal identification strategy, since local documents do not have a URI or URL
representing them. To enable such universal identification, we use a hash algorithm to
digest the whole content of the document as an array of codes [14]. The algorithm
was originally invented to guarantee security problems in file or data transmission.
The hash algorithm turns some series of data into a small set of integer codes, called
the hash value. The hash value is unique for each unique document copy, so that we
can detect duplicates [15].

In the proposed approach, hash values are employed both to test for equality of
copied documents and as part of a URI indicating a virtual document that represents
all copies of that document. As Figure 1 shows, the hash-based virtual URI also acts
as the URL of a web resource. When we share annotated data about a document, we
can treat every copy of the document as the same document through this URI. When
the algorithm is executed, only the actual content of the document is used to deter-
mine the hash value, since including the annotated meta-data would modify the hash
value of the whole document. This also means that any local annotation and addition
to meta-data do not modify the file’s identity as a copy of the original.

For the sharing of annotations, a social network based on FOAF [16] (the Friend of
a Friend ontology) is used, associating users with their ‘repository addresses.’ As a
basic who-knows network, it can allow users to find people around them and check
their repositories for annotated data on their shared documents.

 STAN: Social, Trusted Annotation Network 275

Fig. 1. The rule of hash based virtual URI

For publishing annotated data to the web, each user has a repository address de-
scribed in FOAF. For each user’s document annotated data, this address is combined
with the document’s hash value for publishing on the web. For example, suppose
there is a paper titled ‘Social Semantic Desktop’ by Stefan Decker. We can calculate
the hash value from the content of the paper, resulting in something like this:
‘bbf2e6a7ed78a2e3857f4e1a6aede12f9f712a4f.’ Then, the document URI for virtu-
ally indicating the document would be ‘http://stan-project.org/bbf2e6a7ed78a
2e3857f4e1a6aede12f9f712a4f.’ The URLs for each user’s annotated data are derived
from their designated repository address and the file’s hash value. If my FOAF has
‘http://blog.stan-project.org/nghyun’ as my private repository, the driven URL for my
annotated data for the paper would be ‘http://blog.stan-project.org/nghyun/bbf2e6a7e
d78a2e3857f4e1a6aede12f9f712a4f.rdf.’

Fig. 2. An example of an annotating group

The described approach enables user to gather separate annotated data, and store it
in generated URLs. Figure 2, a subset of a social network, shows a group of people
who have the same document. For each document, groups can be generated dynami-
cally, and used for data sharing. STAN and the STAN framework, the details of
which will be explained later, enable the sharing of annotated data through this social
network.

276 H. Namgoong et al.

4 Social, Trusted Annotation Network (STAN)

We define STAN as a derived trust network based on a social network that is con-
structed from users’ collaborative annotation behavior. Within a group of people, a
user can cooperate with those connected persons. Then, continuous acceptance and
rejection of annotated data suggested by others will inform a quantitative scaling of
trust. For example, If one accepted some person’s semantic annotations and tags
frequently, and frequently denied another person’s, the actions involving them will be
assessed as a measure of trust between that user and each of the others. Also, similari-
ties between a user’s own annotations and other users’ will be another basis for meas-
urement, as we can assume similar annotation behavior will carry on into the future.
The trust rates derived from those acceptances and comparisons will refine and extend
the social network as a STAN.

Fig. 3. Social, Trusted Annotation Network from social network and temporal annotating group

For a more clear explanation, see Figure 3. The central user’s social network gives
him connections to his friends, and friends of his friends. From this, an annotating
group can be derived, consisting of the subset of the social network’s users who have
copies of the same file. This temporal annotation group can publish and accept anno-
tated data amongst others in the group, which can lessen the annotating workload
between them. However from this group the central user will still selectively accept
only the annotated data that he judges useful. This acceptance frequency and the simi-
larity of his and other users’ annotated data will be used to measure his trust of other
users in the group. Based on all of such measured trust rates, a trust network, STAN,
will be constructed for the user.

We claim that this network is a kind of trust network, following Jennifer Golbeck’s
definition in [8]. The network includes people committed to a purposed action, in this
case annotating, and it includes the beliefs of users in each other for future actions.
The network is constructed with personalized actions, so the directions between users
can be distinct. Therefore, this network satisfies the properties of trust, asymmetry
and personalization. Also, we assume the trust can be transmitted and believed along
edges, which entails another property: transitivity.

In this proposed annotation network, the authorship of tags and semantic annotated
data are preserved during data sharing. Every instance of annotated data will include

 STAN: Social, Trusted Annotation Network 277

the first writer’s URI (or FOAF URL). When an annotation is ‘accepted’ by another
user, his network will be refined by discovering new relations with indirect people. At
the right-most network graph of Figure 3, originally the gray-colored man was out of
range of the central man’s social network, but after some transmission of trust, he can
eventually enter the central man’s network. This happens due to the gray man’s anno-
tations being made, then spread by other people, and finally reaching the central man
for acceptance. With further acceptance, the gray man will become a person in the
central man’s trust network. STAN does not remain simply a sub-set of the original
social network. Rather, it is extended by discovering new relations with previously
unfamiliar people.

In the STAN, person A’s rate of trust for person B is decided based on their simi-
larity and A’s acceptance frequency. Annotated data similarity means the shared an-
notations A and B have for the same document, while the acceptance frequency
means the number of annotations that A accepted from B’s data.

),(ba PPTr =),(ba PPSimilarity +),(ba PPAcceptRate

For xDI

∑
=

∩
=

z

x bx

bxax
ba Asn

AsAsn
PPSimilarity

1)(

)(
),(

∑
=

=
z

x bx

bx
ba Asn

AsiAccn
PPAcceptRate

1)(

),((
),(

When bax DDDI ∩=

=i person, =iD Documents of i , =ijAs Annotated data by Person i on Document j

(1)

The equation shows the trust measurement using acceptance rate and similarity. In the
equation i means a person,

iD means the set of document held by i, and
ijAs is all

annotated data sets attached by i to document j.
xDI is the intersected document set of

A and B. The trust rate is calculated from the summated values, B’s accepted fre-
quency and the number of the same data divided by the total number of the shared
data, where

bxAs is not empty. The function),(ijAsiAcc returns the total number of

accepted data by i in
ijAs .

5 STAN Framework

Here we introduce the STAN Framework, an infrastructure enabling users, and se-
mantic desktops to construct annotating groups, and build STANs through sharing
and collaboration in a social network. Figure 4 shows the architecture of the STAN
framework and its main components. It consists of STAN applications, the STAN
Mediator, and each user’s private repositories. Also, other social semantic desktop
applications can be incorporated.

278 H. Namgoong et al.

Fig. 4. STAN Framework as a bridge between social semantic desktop and STAN

To enable data sharing among grouped people, the STAN Mediator stores anno-
tated data into each person’s private repository. It deals with users’ requests for pub-
lishing, updating, and deleting of annotated data in their private repositories. Every
page storing the published data is provided to other users through driven URLs based
on the virtual document URIs. The STAN Mediator gathers the annotated data from
the given URL, and manages the data as a data source, enabling desktop applications,
including STAN applications, to access the annotated data.

Fig. 5. STAN RDF scheme for representation of Annotations

In this framework, the associated applications and components handling the anno-
tated data share a simple RDF scheme, as shown in Figure 5. As the figure shows, a
set of annotated data (stan:Annotation) has a publisher who is storing the annotations.
Each single annotation has a creator who initially created the annotation, an identify-
ing hash value for the document, and one of two values; a plain text tag or a semantic
annotation represented as an N-Triple. The set of annotated data is delivered and
stored in the STAN framework according to this scheme.

For the purpose of publishing users’ trust networks to the web, this framework uses
FOAF with some relationship properties added as shown in Figure 6. These published
values could also be used for reputation or TidalTrust matrix calculations [8]. As

 STAN: Social, Trusted Annotation Network 279

explained above, the user’s acceptance and similarity measures are used to calculate
an overall trust rate. These values are all incorporated as a new relationship, ‘Accep-
tance’. The defined properties for Acceptance include the user’s acceptance rate and
annotation similarity, and the derived trust rate. An agent (or user) can have an accep-
tance instance which defines an ‘acceptee’ (the target user of the acceptance), and the
agent’s trust rate, acceptance rate, and similarity associated with that acceptee.

Fig. 6. Extended FOAF properties for STAN

In the following subsections, we explain the components of the STAN Framework
in detail; STAN Mediator and individuals’ Private Repositories. STAN applications
will be described later.

5.1 STAN Mediator

The STAN Mediator takes the main role allowing a social semantic desktop to com-
municate with a STAN. Positioned between the network and the semantic desktop, it
delegates each application’s web communications with other networked nodes. The
responsibilities are listed below:

1) Annotation Publishing/Subscribing
The STAN Mediator manages annotated data publishing and subscribing proc-

esses. Publishing of annotated data is done by a call from a desktop application. For
example, an annotation tool can submit new data or an update. Then, the mediator
publishes this annotated data to the private repository. The mediator continually gath-
ers others’ annotated data using driven URIs and stores them into the local repository
for other applications.

2) Annotated data Storing & Management
Other users’ downloaded annotated data are stored and managed by the mediator as

files. When there are modifications and updates detected of other users’ annotated
data, the changes are applied to the stored data. It also performs the similarity calcula-
tion between the desktop user’s annotations and others in the network, and corre-
spondingly updates the user’s FOAF file. The desktop applications can obtain the
annotated data from the data storage, which has a shared XML scheme as described.

3) Social Network Handling

280 H. Namgoong et al.

The Mediator handles and updates the social network expressed in the FOAF file,
allowing the location of related persons, and storage of their corresponding trust rates.
It expands the original user’s FOAF to a limited depth and obtains each person’s
repository address for data acquisition. Upon a change in some values due to other
users’ actions, the mediator updates and republishes the FOAF with new values.

5.2 Private Repositories

As we described, the STAN Mediator publishes annotated data and user profiles to
the web. Therefore, to use the STAN, every user should have his own repository, e.g.,
web folder. This allows publishing and updating of annotated data, document lists,
and optionally a FOAF file, for other users to access. The FOAF file can be preserved
in another location, if it has a link to the user’s repository.

First, private repositories should contain a list of annotated data in RSS format. A
user agent, such as the STAN Mediator, can subscribe to that list and observe updates
by checking documents or publishing dates, as RSS typically is used. Second, the
documents’ annotated data that are created or accepted by the user have to be stored
in the proper location though the driven URL from the hash based virtual URI.

In our implementation, the private repositories are equipped with SVN and HTTP
technology to meet these requirements. SVN enables agents to access and publish
their data remotely without any server side implementation, and makes it easy to
handle the authorization for the server. HTTP allows us to provide a universal stan-
dard for accessing the data.

6 STAN Applications

In this chapter, we show two applications of STAN. The applications are imple-
mented to demonstrate our framework. The Collaborative Annotator provides an
environment for annotating desktop PDF files with collaborative features. Also, the
Collaborative Document Finder shows improved document searching approach using
tag sharing in the desktop environment.

6.1 Collaborative Annotator

The Collaborative Annotator is a tool for semantic annotating and tagging of PDF docu-
ments, and it also supports collaborative annotating as a STAN application. With this
tool, a user attaches plain-text tags or semantic annotations (referencing domain ontol-
ogy) while reading the document. The tool also provides view of multiple users’ annota-
tions for the purpose of collaboration. Each user can see the other users’ annotations in a
single file, and accept particular ones as his annotation. Then, the described annotated
data are encoded as metadata in the XMP (eXtensible Metadata Platform) standard, for
storage in the document file and publishing to the web. The published data is delivered to
the STAN mediator and uploaded to the user’s repository.

 STAN: Social, Trusted Annotation Network 281

Fig. 7. Screenshot of Collaborative Annotator

As shown in Figure 7 above, the annotator provides three main view frames, the
ontology view, document browser view, and annotation view frames. The ontology
view shows ontology resources for the semantic annotating, with several tabs like
class, individual, and properties. A user can browse the chosen ontology through this
view to make a semantic annotation or RDF triple expression. Also, the browser view
displays the content of the currently opened PDF document, so that users can select a
specific entity in the document as the target of the annotation. The Annotation view
part includes the PDF Description tab, PDF Annotation Information tab and Social-
Trusted Annotation Network (STAN) tab. The PDF Description tab shows the basic
meta-data of the opened PDF document, such as title, author, subject, and keywords.
Also, as shown in Figure 8, the PDF Annotation Information tab lists all of the entities
with annotations in the PDF document alongside their related ontology resources.

Fig. 8. Screenshot of PDF Annotation tab

282 H. Namgoong et al.

To support collaborative annotating, the annotation view is equipped with a STAN
tab. In this tab, a user can view the people in his social network and STAN, along
with their annotated data. Seeing others’ annotations, a user can select particular se-
mantic annotations or tags to be included in his PDF file. This selection, which we
call acceptance, will invoke the update of the FOAF information, the acceptance rate
for the annotation publisher, and the author.

Fig. 9. Screenshot of STAN tab

6.2 Collaborative Document Finder

The Collaborative Document Finder is another kind of STAN application for search-
ing desktop documents. The Finder uses gathered tags as criteria for document search-
ing. Even if a user did not attach any tags to a document, this tool performs tag based
searching through other users’ tags. Communicating through the STAN mediator, the
Finder can gather others’ tags for a desktop document. We expect this finder can
provide improved document search, particularly for files that a user has not read or
tagged yet.

Fig. 10. Screenshot of Collaborative Document Finder

 STAN: Social, Trusted Annotation Network 283

Figure 10 shows a screenshot of the Collaborative Document Finder. Similar to
other file finders, this tool has a text field for queries from a user. A user also can
choose the range of the search for the tag. The user can search the tags applied by
other users from their Social Network, or their STAN, or only those they have applied
themselves. In Figure 10, the Finder lists the files in the user’s desktop resulting from
a match between the user’s input text, ‘ISWC’ and the combination of tags in his
STAN.

7 Experimental Result

This chapter includes empirical experimental results to test the suggested framework:
how collaborative annotating can help users, and how feasible it is to measure trust
from this collaboration. For the experiment, eight semantic web researchers, assumed
as already trusting each other, were instructed to each separately use the Collaborative
Annotator. With it, they would attach annotations, semantic annotations, and tags to
two PDF documents. The papers, selected from the ISWC/ASWC 2007 proceeding,
were ‘DBpedia: A Nucleus for a Web of Open Data,’ and ‘SALT: Weaving the claim
web.’ For this semantic annotation, the SWRC (Semantic Web for Research Commu-
nities) Ontology [16] was used. For the second part of the experiment, the acceptance
process, the subjects accepted others’ annotations if they were judged useful or neces-
sary for inclusion in their file.

Fig. 11. Number of personally applied annotations (Before acceptance stage)

Figure 11 shows the resulting number of annotations applied personally by each
experimenter. As the graph shows, on average they attached 47 annotations between
the two papers. After the acceptance process, they had collected more annotations, as
shown in Figure 12. On average they had 83 annotations stored in their own docu-
ments in the end. The result shows that they attach a larger variety of acceptable an-
notations, upon accepting suggestions from other the experimenters.

284 H. Namgoong et al.

Fig. 12. Number of included annotations among users (After acceptance stage)

Also, the graphs in Figure 13 show the counts of the annotations with their usage
frequencies before and after the acceptance process. As we can see, before the accep-
tance, 130 annotations are used only once, but some of them appear more after the
acceptance. We can observe the tendency that some annotations become noticeably
more common than the others. We can additionally expect if the annotation is shared
in the network over a long time, more acceptable annotations in general will be more
frequently used, through selection and transmission.

Fig. 13. Number of counted annotations by their use frequencies

Finally, Table 1 below shows the measured trust rates of experimenter 4, the ex-
perimenter who most actively accepted others’ annotated data. The trust rate is calcu-
lated from the similarity frequency and the acceptance frequency divided by the total
shared number, using the proposed algorithm. Because every experimenter annotated
and selected at the same time, the authorship was not preserved. Instead, the accep-
tance increased the acceptance frequency of every experimenter who had the same
annotation.

Because the number of experimenters was too small, it is difficult to determine the
entire significance of the resulting trust rate. However, these trust rates correspond
with a qualitative comparison of the experimenter’s trust in the others, and also corre-
sponds to other experimenters’ trust rates for the same people. Therefore, we can
accept that these rates signify beliefs in other person for the purposes of future anno-
tation activity.

 STAN: Social, Trusted Annotation Network 285

Table 1. Trust rates of experimenter 4

User # Similarity
Frequency

Acceptance
Frequency

Trust
Rate

1 9 7 0.67
2 20 21 0.38

3 6 8 0.41
5 22 6 0.90
6 24 13 0.63
7 23 15 0.68
8 9 3 0.24

8 Future Work and Conclusion

In this paper, we defined STAN (Social, Trusted Annotation Network) as a trust net-
work derived from a social network and users’ collaborative annotation behavior.
With the accompanying framework enabling collaborative annotation, quantitative
measures of trust can be delivered. We expect that this kind of trust network can be
adapted to other areas that can benefit from measured trust in others.

Additionally, to overcome the weaknesses in this trust measurement, we need more
sophisticated assessment methods and validations of our trust network in future work.
Also, since the comparison of semantic annotations is an important aspect of our
approach, work will be devoted to study the handling of annotations which reference
multiple or different ontologies.

Acknowledgement. This work was supported in part by MKE & IITA through IT
Leading R&D Support Project.

References

1. Decker, S., Frank, M.: The social semantic desktop. In: DERI Technical Report 2004-05-
02 (2004)

2. Sheth, A., et al.: Semantic Content Management for Enterprises and the Web. IEEE Inter-
net Computing, 80–87 (July/August 2002)

3. Quan, D., Huynh, D., Karger, D.R.: Haystack: A Platform for Authoring End User Seman-
tic Web Applications. In: Proceedings of the Twelfth World Wide Web Conference (2003)

4. Groza, T., et al.: The NEPOMUK Project - On the way to the Social Semantic Desktop. In:
Proceedings of I-Semantics 2007, pp. 201–211 (2007)

5. Groza, T., Möller, K., Handschuh, S., Trif, D., Decker, S.: SALT: Weaving the claim web.
In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J.,
Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC
2007 and ISWC 2007. LNCS, vol. 4825, pp. 197–210. Springer, Heidelberg (2007)

6. CiteULike: A free online service to organise your academic papers,
 http://www.citeulike.org/

7. Cadiz, J.J., Gupta, A., Grudin, J.: Using Web Annotations for Asynchronous Collaboration
Around Documents. In: Proceedings of CSCW 2000 (2000)

286 H. Namgoong et al.

8. Golbeck, J., Hendler, J.: Inferring binary trust relationships in Web-based social networks.
ACM Transactions on Internet Technology 6(4), 497–529 (2006)

9. Stephen, P.M.: Formalising trust as a computational concept. PhD thesis, Department of
Mathematics and Computer Science, University of Stirling (1994)

10. Golbeck, J., Hendler, J.: Computing and applying trust in web-based social networks. Uni-
versity of Maryland at College Park, College Park (2005)

11. Golbeck, J., Hendler, J.: FilmTrust: Movie recommendations using trust in Web-based so-
cial networks. In: Proceedings of the IEEE Consumer Communications and Networking
Conference, Las Vegas, NV (2006)

12. Zaihrayeu, I., Silva, P.P., McGuinness, D.L.: IWTrust: Improving user trust in answers
from the web. In: Proceedings of 3rd International Conference on Trust Management
(2005)

13. Golbeck, J., Hendler, J.: Reputation Network Analysis for Email Filtering. In: Proc. of the
Conference on Email and Anti-Spam (CEAS), Mountain View, CA, USA (2004)

14. Secure Hash Standard Technical Report FIPS PUB 180-1 US Department of Com-
merce/National Institute of Standards and Technology (1995)

15. Arms, W.Y.: Digital libraries. MIT Press, Cambridge (2000)
16. Brickley, D., Miller, L.: FOAF vocabulary specification (2005)
17. Sure, Y., et al.: The SWRC Ontology - Semantic Web for Research Communities. In:

Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS, vol. 3808, pp. 218–231.
Springer, Heidelberg (2005)

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 287–301, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Consolidating User-Defined Concepts with StYLiD

Aman Shakya1, Hideaki Takeda1, and Vilas Wuwongse2

1 National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430

2 Asian Institute of Technology
Klong Luang, Pathumthani, Thailand 12120

{shakya_aman,takeda}@nii.ac.jp, vw@cs.ait.ac.th

Abstract. Information sharing can be effective with structured data. However,
there are several challenges for having structured data on the web. Creating
structured concept definitions is difficult and multiple conceptualizations may
exist due to different user requirements and preferences. We propose consoli-
dating multiple concept definitions into a unified virtual concept and formalize
our approach. We have implemented a system called StYLiD to realize this.
StYLiD is a social software for sharing a wide variety of structured data. Users
can freely define their own structured concepts. The system consolidates multi-
ple definitions for the same concept by different users. Attributes of the multi-
ple concept versions are aligned semi-automatically to provide a unified view.
It provides a flexible interface for easy concept definition and data contribution.
Popular concepts gradually emerge from the cloud of concepts while concepts
evolve incrementally. StYLiD supports linked data by interlinking data in-
stances including external resources like Wikipedia.

Keywords: Structured data, concept consolidation, multiple conceptualizations,
social Semantic Web, linked data, information sharing.

1 Introduction

People want to share a wide variety of information on the web which is evident from
the rapid rise of user generated contents on the social web. Different types of data can
be modeled by structuring them. Structured data has many benefits as follows.

• It becomes easy to define the semantics of data for automated processing.
• Information sharing becomes effective with common conventions.
• Search and browsing become more effective with structured data.
• Structured data from various sources can be easily mixed and integrated.
• Interoperability between systems is possible with standard formats or map-

ping different formats.

However, there are several challenges for sharing structured data on the web. There
is a long tail of information domains for which people have information to share [1].
There are separate solutions for dealing with few popular information types but avail-
ability of software is rare for the long tail. There are not many ontologies to cover the

288 A. Shakya, H. Takeda, and V. Wuwongse

wide variety of information we may want to share [2, 3]. Developing individual solu-
tions every time is infeasible because creating new ontologies or new information
systems is difficult. It is not easy to define concepts adequately. Usually, we can only
have vague partial descriptions. Moreover, we conceptualize the same thing in differ-
ent ways based on different contexts, requirements or preferences. Hence, multiple
heterogeneous or overlapping conceptualizations always exist.

Creating ontologies should be a widely collaborative and incremental process [2].
However, to have mass participation, systems should be easy to understand and use. It
is difficult for general users to understand and use ontologies. On the other hand,
social software has proven to be very successful in drawing mass user participation
because they are easy to understand and use. Thus, the combination of social software
with Semantic Web technologies has been gaining significant attention [4, 5, 6].

This paper attempts to address the following problems for sharing a wide variety of
structured data on the web

• Difficulty of creating concept definitions adequate to satisfy the evolving re-
quirements of many people.

• Need for multiple conceptualizations for different people and contexts.

We propose the use of social software to enable general users to freely define their
own conceptualizations and share structured information based on that. The original
contribution of the paper is that we propose allowing multiple conceptualizations to
satisfy individual requirements of different people and, at the same time, consolidat-
ing them into a single collaborative conceptualization as a virtual concept. The con-
solidation of multiple user-defined concepts serves as a new way to build up more
complete definitions by merging separately defined concepts. We also present a
formalization of the approach. We have implemented a system called StYLiD (an
acronym for Structure Your own Linked Data) to integrate several aspects of social
software and Semantic Web technologies into a synergetic whole. Multiple definitions
are consolidated by semi-automatic alignment of concept attributes. Popular concepts
can gradually emerge out and converge to stability by usage. Besides, StYLiD also
supports linked data[7] by interlinking internal and external data resources.

The paper is organized as follows. We will present some motivating use case sce-
narios in Section 2. Section 3 contains some formalization of the consolidation of
multiple conceptualizations. The details of the StYLiD platform implementing the
approach are given in Section 4. Related works are discussed in Section 5. We con-
clude and point out some ongoing and future work in Section 6.

2 User Requirements

We discuss some use cases which identify the general requirements of users and their
motivations to use the proposed system.

Sharing Structured Data with User-defined Concepts. Suppose a user wants to
share some structured information, let’s say details of a talk program. However, he
cannot find a system for sharing such data. He may register an account on StYLiD
and easily define his own “talk” concept on the fly with a list of attributes like topic,
speaker, date, time, venue, etc. If a similar concept already existed in the system, he

 Consolidating User-Defined Concepts with StYLiD 289

may have chosen to use that directly or to modify it to create his own version. Differ-
ent users may define multiple versions of the same concept to meet their own re-
quirements. He may update the concept anytime and add more attributes whenever
needed. Once a concept has been defined, he may easily start posting data instances.
He may also link attribute values to other data instances or external resources. He may
easily share the post in his community using social software features. Other users may
also contribute data easily using his concept. This can be used as a way of collecting
data from the community. By posting data instances and having others post to the
system he also maintains a useful collection of information in a structured way.

Browsing and Querying Structured Data. The user would be able to browse differ-
ent types of data using the concepts defined by him and others. He can also navigate
through linked data entries. Moreover, he may search data instances in a structured
way. For instance, he may search all the talks by “Peter” held at “Tokyo”.

Consolidated View of Multiple Concepts. The user may want to browse all in-
stances of a concept regardless of the concept version. This would be possible with a
consolidated concept which groups the multiple definitions. He may want to have all
instances in a uniform table view so that he can process them uniformly. For that, the
corresponding attributes of the individual concepts have to be aligned first. The sys-
tem should help in this by automatically suggesting the alignment. He may verify and
complete the alignment. This is also useful if he wants to search data over the multi-
ple definitions. If he searches over a consolidated concept all aligned attributes would
be searched. For instance, if he searches using the “venue” attribute of the talk, the
“location” attribute aligned in a different version would also be searched.

Exploiting the Structured Data. The user may be offered useful features exploiting
the structured data. For example, a “conference” concept may allow an operation to
help in booking a hotel at the conference “venue” from “start date” to “end date”.
Moreover, developers may import the structured data into various useful applications.

3 Concept Consolidation

Different users may have multiple definitions for the same concept. As illustrated in
Fig. 1, the same “Hotel” concept may be defined by 3 users in different ways. Even
the same user may have multiple versions for the concept. The system groups them
and consolidates them into a single virtual “Hotel” concept combining all the features
of the individual definitions. In this section, we formalize our approach of consolidat-
ing multiple concept definitions. Our approach for consolidation is based on the
Global-as-View (GaV) approach for a data integration system where a global schema
is defined in terms of the source schemas[8]. The approach is simplified in our case
because a concept schema does not have multiple relations and integrity constraints as
in relational database schemas. The implication of our formalism for concept consoli-
dation is described with the implementation in Sections 4.2 and 4.4.

Definition 1. Concept and Instances. A concept C is an entity characterized by a set
of attributes given by the function att(C) = {a1, a2 ,….. ar}

290 A. Shakya, H. Takeda, and V. Wuwongse

Fig. 1. Concept consolidation

The fact that x is an instance of C is denoted by the relation instanceof(x, C). C
may have a set of instances I. The value for an attribute a of an instance k of C is
given by the function v(k, a).

Definition 2. Concept Consolidation. A concept consolidation C is defined as a triple

< C , S, A> where

• C is called the consolidated concept
• S is the set of constituent concepts {C1,C2 ,…..Cn}, n is the number of con-

stituent concepts

• A is the alignment between C and S.

Let the set of attributes of Ci ∈ S be att(Ci) = { 1
ia , 2

ia , … in
ia }where ni is the

number of attributes of Ci . Let the set of attributes of C be att(C) = { 1a , 2a ,…..

ma }, called consolidated attributes, where m is the number of attributes of C .

Definition 3. Alignment between Attributes. For each concept Ci ∈ S, if attribute
k
ib ∈ att(Ci) is aligned to ld ∈ att(C), we denote it as

aligned(ld , k
ib)

for l = 1, 2, … r (r ≤ m). All ld are different. The mapping between C and Ci is

defined as a set of ordered pairs

iM = {(ld , k
ib) | ∀ ld ∈ att(C) aligned(ld , k

ib) ∧ k
ib ∈ att(Ci)}

aligned represents a correspondence between the aligned attributes. Some relation
may hold between the aligned attributes asserted by the correspondence.

 Consolidating User-Defined Concepts with StYLiD 291

Then, alignment A(C) between C and concepts in S is defined as the set of

mappings { 1M (C), 2M (C) ,….. nM (C)}.

Definition 4. Mapped Concepts in a Concept Consolidation. A concept Ci ∈ S in

the concept consolidation < C , S, A> is said to be mapped if and only if

∃ x ∈ att(Ci) ∃ y ∈ att(C) aligned(y, x)

i.e., at least one of its attributes is aligned to a consolidated attribute.

Definition 5. Grounded Consolidated Concept. The consolidated concept C in

< C , S, A> is said to be grounded if and only if

∀ z ∈ att(C) ∃ x ∈U
n

i iCatt
1

)(
=

 aligned(z, x)

i.e., all the consolidated attributes are aligned to some attribute of the constituent
concepts.

Definition 6. View of an attribute in a consolidated concept. The view of an attrib-

ute b∈ att(Ci) of concept Ci in the consolidated concept C for C is given by the
following function.

ρ (b, Ci, C) = a if ∃ a ∈ att(C) (a, b) ∈ iM (C)∈A (C)

 ɸ otherwise

Definition 7. Image of a consolidated attribute. The image of an attribute a ∈

att(C) of the consolidated concept C for a constituent concept Ci in C is given by
the following function which is the inverse function of ρ.

σ (a, Ci, C) = b if ∃ b∈ att(Ci) (a, b) ∈ iM (C)∈A (C)

 ɸ otherwise

Definition 8. Consolidated views of instances. The view of an instance k of concept
Ci in the concept consolidation C is given by the following function

k = w(k, Ci , C)

where instanceof(k , C) and the value of each attribute ja ∈ att(C) (j = 1, 2,

… m) for k is given by

v(k , ja) = v(k, σ (ja , Ci, C)) if σ (ja , Ci, C) ≠ ɸ

 ɸ otherwise

The value v(k, a) of each attribute a of Ci is known. The set of instances of C is
exactly

I = { k : k = w(k, Ci , C) ∧ instanceof(k, Ci) ∧ Ci ∈ S}

I is disjoint from the set of instances Is of the constituent concepts in S.

292 A. Shakya, H. Takeda, and V. Wuwongse

Theorem 1. Translation of instances. The translation of an instance k of concept Ci
to another concept Cj in the concept consolidation C, denoted by the function

k’ = γ(k , Ci ,Cj, C)

can be obtained as follows. If k = w(k, Ci , C) is the consolidated view of instance k,

the value of each attribute l
ja ∈ att(Cj) (l = 1, 2, … nj) for k’ is given by

v(k’, l
ja) = v(k , ρ (l

ja , Cj, C)) (from def. 6)

 = v(k, σ (ρ (l
ja , Cj, C), Ci, C)) (from def. 8)

Attributes of k’ are exactly att(Cj). However, k’ ∉Is .

Theorem 2. Lossless Translation. Instances of concept Ci can be translated to in-
stances of Cj without any loss of information iff the following conditions hold.

∀ a ∈ att(Ci)
ρ (a, Ci, C) ≠ ɸ and
 σ (ρ (a, Ci, C), Cj, C) ≠ ɸ

| att(Ci)| ≤ | att(Cj)| is a necessary condition for the lossless translation of an in-
stance from Ci to Cj . If kj = γ(ki , Ci ,Cj, C) is lossless, ki = γ(kj, Cj, Ci ,C).

The proofs have been avoided as they are quite intuitive.

Query over a Concept. The main advantage of GaV in data integration is that queries
on the global schema can simply be unfolded to the sources. The same advantage
applies in our case too. Thus, we have the following theorems for unfolding and trans-
lating queries. The proofs follow from the literature for the GaV approach [8].

Theorem 3. Unfolding Queries over C in C. Any query Q(C) over C can be un-
folded into the union of queries Q1(C1) ∪ Q2(C2) ∪ … ∪ Qn(Cn), where Ci ∈ S (i =
1, 2, … n). Let the queries be defined over the concept attributes as follows

Q(C) = Q’(1a , 2a ,….. ra) where ja ∈ att(C) (j = 1, 2, … r)

Qi(Ci) = Qi’(
1
ia , 2

ia , …
r

ia) where j
ia ∈ att(Ci)

Each Qi can be obtained by unfolding the attributes in Q using C

Qi’(
1
ia , 2

ia , …
r

ia) = Q’(σ i (1a),σ i (2a), … σ i (ra))

where σ i (a) is the short form of σ (a, Ci, C).

Theorem 4. Query Translation. The query Qi’(
1
ia , 2

ia , …
r

ia) , k
ia ∈ att(Ci) (k =

1, 2, … r) over Ci can be translated into a query Qj’(
1
ja , 2

ja , …
r

ja) , k
ja ∈ att(Cj)

over Cj in the concept consolidation C as following

Qj’(
1
ja , 2

ja , …
r

ja) = Qi’ (σ j (ρi (
1
ia)), σ j (ρi (

2
ia)), … σ j (ρi (

r

ia)))

where ρ i (a) and σ j (b) are short forms of ρ (a, Ci, C) and σ (b, Cj, C) respectively.

 Consolidating User-Defined Concepts with StYLiD 293

4 Implementation

StYLiD has been implemented to realize the use cases described in Section 2 using
the approach of concept consolidation described in Section 3. StYLiD is available
online1 and undergoing further development.

4.1 Sharing Structured Data with User-Defined Concepts

The main interface of StYLiD is shown in Fig. 2. The users may freely define their
own concepts by specifying the concept name, some description (optional) and a set
of attributes. Each attribute is defined by the attribute name, description (optional)
and a set of concepts as the suggested value range (optional) as shown in Fig. 3. Any
user may enter instance data using system generated online forms as shown in Fig. 4.

Users do not need to define concepts from scratch. The user can modify an existing
concept defined by another user to make his own version. The system creates a copy
of the concept and makes modifications on it. It keeps record of the source from
which the concept was derived using the dc:source property. Users can update their
own concept definitions to add new attributes when needed. Thus, concepts can
evolve incrementally along with different versions.

Fig. 2. StYLiD interface

1 http://www.stylid.org/

294 A. Shakya, H. Takeda, and V. Wuwongse

Fig. 3. Interface to create a new concept

Fig. 4. Interface to enter instance data

 Consolidating User-Defined Concepts with StYLiD 295

Flexible Definitions and Relaxed Data Entry. It is difficult to think of all attributes
and all possible value ranges. Further, while defining a concept A, if an attribute takes
a resource of type B, we need to ensure that concept B has already been defined. If
concept B has an attribute which takes values of type C, then concept C must be de-
fined first, and so on. Moreover, we may not always have perfect data at the time of
data entry. The system tries to avoid these difficulties by allowing flexible and re-
laxed definitions. The range of values defined for attributes, as seen in Fig. 3 and 4, is
only suggestive and does not impose strict constraints. Rather the system assists the
user to pick instances from the suggested range. The system accepts both literal val-
ues and resource URIs for any attribute. Users may input single or multiple values for
any attribute. Users generally enter appropriate or sensible data as has been evidenced
by systems like tagging and wiki which accumulate plenty of good data in spite of
having completely relaxed interface.

The system also offers a personal structured data space. It provides a Concept Col-
lection for each user, as seen in Fig. 5. Concepts created or adopted by the user are
automatically added to this collection. Users can also add any other useful concepts to
their collection. The concepts actually created by the user are shown in a separate tab.

4.2 Consolidation of User Defined Concepts

Concepts defined by different users with the same name are grouped together by the
system forming a single virtual concept. The grouped concepts are the constituent
concepts and the virtual concept is the consolidated concept as defined in Section 3
(def. 2). We are also working on consolidating similar concepts with different names.
On the other hand, ambiguous concepts have to be sub-grouped by intended meaning.
However, for now, we shall focus on consolidating concepts with same name only.

Fig. 5. Concept cloud

296 A. Shakya, H. Takeda, and V. Wuwongse

Consolidated Concept Cloud. All the concepts are visualized in a Concept Cloud as
shown in Fig. 5. Clicking on a concept shows all its instances. Hovering on a concept
shows its details. Popular concepts appear bigger in the cloud. Stable definitions
gradually emerge out from the cloud as more data instances are contributed.

A consolidated concept can be expanded into a sub-cloud showing all the versions
defined by different users, labeled with the creator name and version number. In the
sub-cloud, multiple versions defined by the same user are subgrouped together. In
Fig. 5, the “Faculty” concept has been expanded to show two versions by the user
“god” and one version by “aman”. The sizes of all versions in the sub-cloud add up to
form the size of the consolidated concept. Clicking on the consolidated concept shows
all instances of all its versions. We can also list instances of the multiple versions of a
concept defined by a single user by clicking on the user name.

Semi-Automatic Concept Alignment. Different concepts in a consolidated group
can be aligned to produce a uniform and integrated view. When the instances of a
consolidated group of concepts are viewed as a single table, the system automatically
suggests alignments between the attributes, as shown in Fig. 6. Matching attributes
are automatically selected in the form-based interface. The Alignment API2 [9] with
its WordNet extension has been used for the purpose. It utilizes a WordNet based
similarity measure between attribute labels to find alignments. However, more sophis-
ticated alignment methods may be used in the future.

Fig. 6. Aligning the attributes of multiple concepts

It is not possible to make the alignment fully automatic and accurate. So it is nec-
essary to have the user in loop to complete the process by adding or modifying map-
pings not correctly suggested by the system. The alignments are represented using the
alignment ontology3 and saved by the system. This forms the alignment A defined in
Section 3 (def. 2, 3). Once a user completes the alignment others need not do it again.
Thus, both machine intelligence and human intelligence are used in getting the con-
cepts aligned. The alignment can be incrementally updated as more concepts may be
added to the consolidated group of concepts.

2 http://alignapi.gforge.inria.fr/
3 http://www.atl.lmco.com/projects/ontology/

 Consolidating User-Defined Concepts with StYLiD 297

A Unified View. Each set of aligned attributes is mapped to a single consolidated
attribute. This consolidated attribute (def. 2) is the view of a corresponding attribute
(def. 6) from each constituent concept as defined in Section 3. The system automati-
cally fills a name for each consolidated attribute, as shown in Fig. 6, though the user
may rename it as desired. The user may even remove attributes from the unified view,
if not required. Thus, the user can create a unified view, customized according to his
need, and view heterogeneous data in a uniform table. This table corresponds to the
consolidated view of instances described in Section 3 (def. 8). The table can be sorted
by any field. To have all instances of all the concepts listed, all the concepts should be
mapped (def. 4). The consolidated concept should be grounded (def. 5) to have no
empty attributes in the unified table. The user is notified if all concepts are not
mapped or the consolidated concept is not grounded.

4.3 Creating Linked Data

The system helps in creating linked data using URIs. It generates unique dereference-
able URIs for each concept, attribute and instance. Each concept is uniquely identified
by the concept name, its creator and the version number. An example URI for a con-
cept “car”, version 2, defined by the user with ID 1 would be http:// www.stylid.org/
concept_detail/rdf/concept_name/car_ver2_1#car

An attribute is uniquely identified by the concept and the attribute name. For
example, the URI for the price attribute of the car concept would be http://
www.stylid.org/ concept_detail/rdf/concept name/car_ver2_1#price

The hash URI for a concept retrieves the RDF document describing the concept
and dereferences to the concept description. The attribute URIs are handled similarly.

An instance is uniquely identified by the system generated ID. For example, the
URI for an instance with ID 623 would be http://www.stylid.org/story/rdf/id/623. The
URI dereferences to the RDF description of the instance by an HTTP 303 redirect.
For both types of URI, content negotiation is used to return the RDF description in
case of ‘application/rdf+xml’ request and HTML otherwise [10].

Data instances can be linked to each other directly by entering resource URIs as at-
tribute values (see Fig. 4). The system provides support for this by suggesting range
of values for the attributes. The user may easily pick up instances from this range. The
data appears as simple hyperlinked entries for the user (see Fig. 2). However, the
linked data can be crawled by machines to enable powerful applications.

Linking to Wikipedia and External Resources. The user may directly enter any
external URI as an attribute value. The system provides some support to link to
Wikipedia contents. The familiar Wikipedia icon is seen next to the URI field (see
Fig. 4). When the user clicks on the icon it searches for the Wikipedia page about the
text attribute value typed by the user and displays it as a pop-up. The user may copy
the Wikipedia page URL as the URI. Transparent to the user, the system converts it
into the corresponding DBpedia URI. DBpedia[11] exposes the structured data in
Wikipedia on the Semantic Web like a database. Unlike DBpedia, Wikipedia is well
understood by general people and user-friendly. So the users would be motivated to
link to Wikipedia pages to make their data more informative, interesting and useful.

298 A. Shakya, H. Takeda, and V. Wuwongse

4.4 Querying Structured Data

The system provides a structured search interface, as shown in Fig. 7, to retrieve in-
stances of a concept by specifying attribute, value pairs as criteria. The search can be
done over a consolidated concept. In that case, the query terms are unfolded to
aligned attributes of all versions of the concept as described in Section 3 (theorem 3).
The system also provides a SPARQL query interface for open external access.

Fig. 7. Advanced search interface

4.5 Embedding Machine Readable Data

Besides serving RDF when URIs are dereferenced, the system also embeds machine
understandable data in the HTML posts using RDFa. Many useful RDFa tools and
plug-ins are available4 and we may expect more powerful tools to be available in the
future. Users with some programming knowledge may code small scripts with the
Operator5 browser extension to create useful operations for different types of data.

4.6 Technologies Used

StYLiD has been built upon Pligg6, a popular Web 2.0 content management system. It
is an open source social software with a long list of useful features and a strong com-
munity support. It uses PHP and MySQL. The structured concepts and data are stored
as RDF triples in a MySQL database. We used the RDF API for PHP (RAP) as the
Semantic Web framework.

4 http://esw.w3.org/topic/RDFa
5 http://www.kaply.com/weblog/operator/
6 http://www.pligg.com/

 Consolidating User-Defined Concepts with StYLiD 299

5 Related Work

There are several related works if we consider various aspects of the proposed ap-
proach separately. However, none of the works cover all these aspects together.

There are systems that enable general users to create and share a wide variety of
structured data on the web. Works like Freebase7, Google Base8 and Exhibit [1] allow
the users to define their own schemas to model different types of data. However, the
structured types defined by different users are kept separate and not consolidated or
related in any way. So it is difficult to fully utilize the structured concepts defined by
the mass. With Freebase, it is difficult for casual users to create their own types be-
cause of strict constraint requirements. All attributes must have strict types within the
ones already defined in the system. It may also be difficult to enter instance data be-
cause of strict constraints. If an attribute takes a resource value of some type, the
resource must be entered first. Moreover, it is difficult to link to external resources
and other systems to link to Freebase data. Exhibit is a lightweight framework which
enables ordinary users to publish web pages with structured data. However, authoring
such structured data pages would be cumbersome to the users. Revyu[12] allows
sharing a wide variety of data by reviewing and rating anything. Things are identified
and interlinked using URIs. However, most concepts are modeled simply as things
without modeling the detailed structure of the information. There had been a lot of
works on semantic blogging [13, 14, 15] which exploit the easy publishing paradigm
of blogs and enhance blog items with semantic structure. However, they deal with
limited types of metadata and the schemas do not evolve.

Semantic wikis make the collaborative knowledge contributed by users more ex-
plicit and formal. Buffa et al. [16] have reported on the state-of-art of semantic wikis.
Semantic wikis facilitate collaborative creation of resources, many of them supporting
the building of ontologies. The myOntology[2] project also uses wikis for collabora-
tive and community-driven building of horizontal lightweight ontologies by enabling
general users to contribute. However, they do not consider sharing structured data in
the community based on schemas. Freebase, myOntology and other semantic wikis
are all based on wiki technology. With wikis, each concept or resource can only have
a single prominent version which everyone is assumed to settle with. However, in
practice, multiple conceptualizations may exist. Moreover, unlike a wiki, StYLiD is a
dynamic information sharing platform like a community blog.

Takeda et al.[17] had discussed the significance of multiple conceptualizations and
modeled heterogeneous system of ontologies using aspects. A category aspect is a
collection of different conceptualizations and a combination aspect integrates various
aspects. They had proposed muti-agent communication by translating messages across
different aspects. This would also be possible in our case as shown in Section 3 (theo-
rem 1, 2, 4). Some works have been done for deriving ontologies from folksonomies[3,
18]. The basic ideas include grouping similar tags, forming emergent concepts from
them, making the semantics more explicit and utilizing external knowledge resources
to find semantic relations. Folksonomies serve collaborative organization of objects
using tags. However, the objects are still left unstructured.

7 http://www.freebase.com/
8 http://base.google.com/

300 A. Shakya, H. Takeda, and V. Wuwongse

There is a large body of research about schema matching [19] and ontology align-
ment [20] and we do not intend to develop new methods for this. Rather we propose
the utilization of these techniques to align and consolidate user-defined schemas.
There are also some tools for casual users like Potluck[21] which provides a user-
friendly interface to align, mix and clean structured data from Exhibit-powered pages.
The schema alignment is manual. We propose to have some automation in schema
alignment and, moreover, saving the alignments in Semantic Web format.

6 Conclusions and Future Work

In this paper, we proposed a new approach for community-driven definition of con-
cepts by consolidating multiple user-defined conceptualizations. Rich definitions can
be formed by combining concepts created by different users facilitating collaborative
knowledge formation while satisfying individual requirements. Alignments can rec-
oncile different definitions. We proposed StYLiD, a social software for sharing any
type of structured data. It combines various aspects of social semantic software into a
more effective whole than the sum of the separate parts. By allowing users to define
their own concepts and providing a relaxed interface, it motivates free contribution.
Concepts can evolve incrementally and emerge by popularity. Ontologies can be a by-
product of usual information sharing activities and even with informal social software
formal linked data can be produced.

We are currently working on grouping similar concepts and computing relations
between concepts. This can be done by considering the structure definitions, and
utilizing lexical resources like WordNet. Ideas from works on deriving ontologies
from folksonomies[3, 18] may also be adapted. Better alignment techniques and more
complex alignments may be employed. Consolidation of instance data is another issue
which needs to be addressed in the future. We should also reuse existing vocabularies
and map concept definitions to them. Other useful features like mash-ups may be
introduced to exploit the structured data. We can facilitate users to contribute plugins
for handling different types of data. Scrapers may be associated to concepts for col-
lecting data from web pages easily. We may enable users to create and share such
scrapers too. Besides providing linked data and SPARQL interface, structured data
may also be exposed through an API or extended RSS.

References

1. Huynh, D., Karger, D., Miller, R.: Exhibit: lightweight structured data publishing. In: Pro-
ceedings of the 16th international conference on World Wide Web, pp. 737–746. ACM
Press, New York (2007)

2. Siorpaes, K., Hepp, M.: myOntology: The marriage of ontology engineering and collective
intelligence. In: Bridging the Gap between Semantic Web and Web 2.0 (SemNet 2007),
pp. 127–138 (2007)

3. Van Damme, C., Hepp, M., Siorpaes, K.: FolksOntology: An integrated approach for turn-
ing folksonomies into ontologies. In: Bridging the Gap between Semantic Web and Web
2.0 (SemNet 2007), pp. 57–70 (2007)

 Consolidating User-Defined Concepts with StYLiD 301

4. Ankolekar, A., Krötzsch, M., Tran, T., Vrandečić, D.: The two cultures: Mashing up web
2.0 and the Semantic Web. In: Proceedings of the 16th International World Wide Web Con-
ference (WWW 2007), Banff, Alberta, Canada, pp. 825–834. ACM Press, New York (2007)

5. Gruber, T.: Collective knowledge systems:Where the social web meets the Semantic Web.
Journal of Web Semantics 6(1), 4–13 (2008)

6. Schaffert, S.: Semantic social software: Semantically enabled social software or socially
enabled Semantic Web? In: Proceedings of the SEMANTICS 2006 conference, Vienna,
Austria, OCG, pp. 99–112 (2006)

7. Berners-Lee, T.: Linked data. World Wide Web design issues (July 2006)
 http://www.w3.org/DesignIssues/LinkedData.html

8. Lenzerini, M.: Data integration: A theoretical perspective. In: Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp.
233–246 (2002)

9. Euzenat, J.: An API for ontology alignment. In: McIlraith, S.A., Plexousakis, D., van Har-
melen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Heidelberg (2004)

10. Bizer, C., Cyganiak, R., Heath, T.: How to Publish Linked Data on the Web (2007),
 http://www4.wiwiss.fu- berlin.de/
 bizer/pub/LinkedDataTutorial/

11. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A nu-
cleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-
I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735.
Springer, Heidelberg (2007)

12. Heath, T., Motta, E.: Revyu.com: A reviewing and rating site for the web of data. In:
Aberer, K., Choi, K.-S., Noy, N.F., Allemang, D., Lee, K.I., Nixon, L.J.B., Golbeck, J.,
Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
ISWC/ASWC 2007. LNCS, vol. 4825, pp. 895–902. Springer, Heidelberg (2007)

13. Cayzer, S.: Semantic blogging and decentralized knowledge management. Communica-
tions of the ACM 47(12), 48–52 (2004)

14. Möller, K., Bojārs, U., Breslin, J.G.: Using semantics to enhance the blogging experience.
In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 679–696. Springer,
Heidelberg (2006)

15. Karger, D.R., Quan, D.: What would it mean to blog on the Semantic Web? Journal of
Web Semantics 3(2), 147–157 (2005)

16. Buffa, M., Gandon, F., Ereteo, G., Sander, P., Faron, C.: A Semantic Wiki. Journal of Web
Semantics 6(1), 84–97 (2008)

17. Takeda, H., Iino, K., Nishida, T.: Agent organization and communication with multiple on-
tologies. International Journal of Cooperative Information Systems 4(4), 321–337 (1995)

18. Specia, L., Motta, E.: Integrating folksonomies with the Semantic Web. In: Franconi, E., Kifer,
M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639. Springer, Heidelberg (2007)

19. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. The
VLDB Journal The International Journal on Very Large Data Bases 10(4), 334–350 (2001)

20. Euzenat, J., Le Bach, T., Barasa, J., et al.: State of the art on ontology alignment. Knowl-
edge Web Deliverable D2.2.3 (2004)

21. Huynh, D.F., Miller, R.C., Karger, D.R.: Potluck: Data mash-up tool for casual users. In:
Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika,
P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and
ISWC 2007. LNCS, vol. 4825, pp. 239–252. Springer, Heidelberg (2007)

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 302–314, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Integrated Approach for Automatic Construction of
Bilingual Chinese-English WordNet

Renjie Xu1, Zhiqiang Gao1, Yingji Pan1, Yuzhong Qu1, and Zhisheng Huang2

1 School of Computer Science and Engineering, Southeast University, China
dustin.xu@gmail.com, zqgao@seu.edu.cn,

jennifer-pyj@hotmail.com, yzqu@seu.edu.cn
2 Department of Computer Science, Vrije Universiteit Amsterdam. The Netherlands

huang@cs.vu.nl

Abstract. This paper compares various approaches for constructing Chi-
nese-English bilingual WordNet. First, we implement three independent ap-
proaches that translate English WordNet to Chinese WordNet automatically,
including Minimum Distance (MDA), Intersection (IA) and Words
Co-occurrence (WCA). Minimum Distance compares the gloss of synset with the
explanations of words from dictionaries. Intersection chooses the intersection
part of Chinese in a synset. Words Co-occurrence counts the results of Chinese
and English words from Google. Then, we integrate these three approaches into
an integrated one, which is named MIWA. Experimental results show that the
integrated approach MIWA has better performance: F-measure reaches 0.615,
which is higher than that of each independent one.

Keywords: WordNet, Chinese WordNet, Co-occurrence.

1 Introduction

We aim to construct Chinese-English WordNet, a bilingual lexical database with
wordnets for Simplified Chinese and English. Its semantic hierarchy is originated from
Princeton WordNet [1-5], which consists of more than 115, 000 synsets, over 200, 000
words. We try to translate the original English WordNet into Chinese one according to
automatic translation approaches. The first one is Minimum Distance Approach
(MDA), which compares the gloss of synset with the explanations of words from dic-
tionaries by Levenshtein Distance. The second is Intersection Approach (IA), which
chooses the same or similar Chinese words of different English words, which are in the
same synset. The third is Words Co-occurrence Approach (WCA), which counts the
results of Chinese and English words from Google. Several linguistic resources have
been used for building Chinese-English WordNet, such as American Heritage Dic-
tionary (Chinese&English edition), X-Dict Dictionary (English-Chinese). According to
the performance of each approach, we describe a new one (MIWA), which integrates
these three approaches following some rules, to complete the automatic translation
work. After this step, some experts check the results and make some proper modifica-
tions. Now, Chinese-English WordNet has more than 150, 000 Chinese words, besides
the original English part.

 An Integrated Approach for Automatic Construction 303

Mapping between Chinese part and English part in Chinese-English WordNet is
established on the basis of synsets. A Chinese synset is corresponding to an English
synset, but the words inside these two synsets do not have any specific mapping rela-
tions. The connections among English synsets perform as bridges among Chinese ones,
because Chinese synsets do not have any direct contact with each other. This is illus-
trated in Figure 1. {car, auto, automobile, machine, motorcar} is translated into 【汽车
】, 【救护车】acts as the hyponym of 【汽车】, because its corresponding English synset
{ambulance} is the hyponym of {car, auto, automobile, machine, motorcar}. 【门锁】
is a part of 【车门】 since {doorlock} is a part of {car door}.

Fig. 1. Synsets related to car in its first sense in Chinese-English WordNet

We design some experiments to evaluate the performance of these approaches, it
shows that IA has the highest precision, WCA has the highest recall except for MIWA,
and MDA performs not bad in F-measure evaluation. From an over perspective, MIWA
shows an obvious improvement than using each of the three approaches respectively,
and it has been proved helpful in construction of Chinese-English WordNet.

Chinese-English WordNet is stored in a lexical database system, and each Chinese
synset is linked to an English synset, and each relation is saved in an individual table.
Such a bilingual database is useful for cross-language information retrieval, and it is
also suitable to add more specific language wordnet in future.

This paper is structured as follows: Section 2 describes background and some related
work of WordNet; Section 3 and 4 describe the approaches and their evaluation, and
Section 5 presents the conclusions and future work.

2 Background

Semantic information analysis is one of the most difficult problems in Natural Lan-
guage Processing (NLP). Without a large and computable semantic resource, machines
cannot understand the information in natural language just as people do. As a signifi-
cant part that composes semantic resources, Machine-Readable Dictionary (MRD)’s

304 R. Xu et al.

quality directly affect the development of NLP. WordNet is the representative of MRD,
so its value is self-evident.

Under this background, many organizations have developed their native language
wordnet, or some other electronic lexical databases for words. EuroWordNet, CoreNet
and HowNet are three exotic flowers in this area.

EuroWordNet [6] is a multilingual lexical database with wordnets for several Euro-
pean languages, including Dutch, Italian, Spanish, English, German, French, Estonian
and Czech. It is structured along the same lines as the Princeton WordNet. Mainly there
are two ways to construct EuroWordNet: one is to do classification of the language
internally into synsets and then link them to English as an interlingual "spine", such as
Dutch part; the other is to translate the English wordnet into other languages, such as
Italian part. Inter-Lingual-Index (ILI) maintains the language specific structures and to
allow for the separate development of independent resources, each synset in the
monolingual wordnets have at least one equivalence relation with a record in this ILI.
ILI acts as the bridge to connect different synsets in specific language wordnets. The
project of EuroWordNet started in March 1996, and finished in June 1999, more than
ten universities and institutions have participated into this project.

CoreNet [8] is a Korean-Chinese-Japanese wordnet, it has been developed using a
shared semantic hierarchy, originated in NTT Goidaikei-a Japanese Lexicon. Devel-
opers used an information retrieval technique to construct Korean wordnet. Based on
the results, developers translated all of the Japanese words under NTT Goidaikei into
Korean words using a Japanese-Korean electronic dictionary. Experts correct the result
of automatic translation. They manually correct the erroneous assignments between
two languages. Then they assign semantic categories by matching the Korean words
with the translated word list under the NTT Goidaikei’s semantic category. In
post-processing, word sense disambiguation was done manually to assign proper se-
mantic categories to each sense of the word and the translation errors were also re-
moved. Two people performed independently the same post-processing. A third party
examined the different parts of the results and chose the proper ones [9-10]. CoreNet
has taken nearly ten years to finish it.

HowNet [11] is an electronic lexical database for words, which are mostly in Chi-
nese. Unlike WordNet, synsets are not explicitly defined in HowNet. HowNet takes a
constructive approach to build a lexical hierarchy, and the focus of it is the relations
among concepts and their attributes. At the most atomic level is a set of almost 1500
basic definitions or sememes. HowNet has finished on the basis of large corpus, some
programs extract language fragment between empty words [12], and then some experts
make artificial amendment. It is also nearly ten years since the initial development.

From three lexical databases introduced above, we find that some automatic ap-
proaches have been used during processing, for example, CoreNet used electronic
dictionary for automatic translation from Japanese to Korean. However, nearly all the
mapping jobs between different language resources have been done by people. That is
why they spent a lot of time and human resources on the projects.

 An Integrated Approach for Automatic Construction 305

3 Our Approaches

Because of the significant value of WordNet, we decide to construct a Chinese and
English Bilingual WordNet. It is supposed to be useful for cross-language information
retrieval, ontology learning and NLP, especially in Chinese. However, there is no doubt
that if all construction jobs are done by people, it would take either too many people or
too much time or both. Even though many language resources for translation, such as
electronic dictionaries are available, there are quite a few algorithms that can finish the
translation job effectively. That is why we put forward these language independent
approaches as follows.

3.1 Minimum Distance Approach

Minimum Distance Approach (MDA) calculates the Levenshtein Distance [13] between
gloss of synset and explanations in American Heritage Dictionary (Chinese&English
edition). The explanation has the minimum LD with gloss seems to be the proper one
for this synset, and then analyze the corresponding Chinese explanation to get the key
words as the members of Chinese synset.

American Heritage Dictionary is one of the most authoritative dictionaries in
America. The difference between AHD (Chinese&English edition) and most of other
Chinese-English electronic dictionaries is that the former has not only translated the
words, but also provided a small section of text to explain each meaning in two lan-
guages. It is likely that WordNet’s developers have referred to the definitions when
they define the glosses of synsets, because plenty of the glosses in WordNet look
similar to some explanations in AHD, and even some of them are the same.

3.1.1 Description of MDA
1) Load the American Heritage Dictionary (Chinese&English edition) to an open

source electronic dictionary program, searching for the English words in Word-
Net, and save the returned explanations, both English and Chinese, in database.

2) Set a synset as the processing unit; calculate Levenshtein Distance between gloss
and each explanation corresponding to words in this synset. After some experi-
ments, we found when the cost of MODIFY operation is 1, 0.6 is proper for that of
ADD and DELETE. Because most of the glosses are a bit succinct than the ex-
planations, if the cost of ADD and DELETE is more than 0.6, the total cost of
correct explanation is more than the cost of very short but incorrect explanation;
but if that is less than 0.6, many incorrect explanations will also be chosen in
experiments.

3) Analyze Chinese explanation corresponding to the English one which has the
minimum Levenshtein Distance with gloss; get the key words as members of
Chinese synset.

4) Repeat 2-3), until all the synsets have been processed.

306 R. Xu et al.

3.1.2 Example
“sailing” is in four synsets of WordNet, they are: (1) the work of a sailor,(2) riding in a
sailboat;(3) the departure of a vessel from a port;(4) the activity of flying a glider, and it has
three explanations in American Heritage Dictionary, they are illustrated in Table 1.

Fig. 2. Flow graph of MDA

Table 1. “sailing” in American Heritage Dictionary

English Chinese
The skill required to operate

and navigate a vessel; navigation.
航海术：驾驶和航行一条船所需的技巧；
航行术

The sport of operating
or riding in a sailboat.

帆船运动：驾驶或航行帆船的一项体育运动

Departure or time of departure
from a port.

启航：离开港口；离开港口的时间

 An Integrated Approach for Automatic Construction 307

From Table 1 and four glosses in WordNet we can see that the third gloss in
WordNet looks like the third explanation in dictionary, so using MDA, the result is
showed in Table 2 that the third is the best explanation that matching gloss of this
synset, then analyze the third Chinese explanation, set”启航” as the member of this
Chinese synset.

Table 2. Example of MDA

explanation Levenshtein Distance
the skill required to operate

and navigate a vessel navigation
0.666

the sport of operating or riding in a sailboat 0.622
departure or time of departure from a port 0.475

3.2 Intersection Approach

Because synset is a set that words inside it have the same meaning, it is language in-
dependent, so when words in the same synset are translated into other languages, there
should be an intersection among the translated results, they are the members of new
synset, this is the principle of IA. Moreover, based on the construction of used elec-
tronic dictionaries, IA can also find a proper translation even synset contains only one
word.

3.2.1 Description of IA
1) Load X-Dict Dictionary to an open source electronic dictionary program,

searching for the English words in WordNet, and save returned translated Chinese
words in database.

2) Set a synset as the processing unit:
a) If this synset has only one word and this word has one translated Chinese

word, set this Chinese word as the member of new Chinese synset.
b) If this synset has more than one word, comparing them in two:

i. If both of the English words have same translated Chinese words, they
are set as the members of new Chinese synset.

ii. If the English words have similar translated Chinese words, and these
translations meet the Levenshtein Distance requirement set by us, they
also set as the members of new Chinese synset.

a) If none of above be met, this synset cannot translated by this approach.
3) Repeat 2), until all the synsets have been processed.

3.2.2 Example
“stop” and “halt” are in the same synset, the gloss of its is “the event of something
ending; "it came to a stop at the bottom of the hill”, and the pos is noun. In X-Dict Dic-
tionary, the results of “stop” and “halt” are as follows:

308 R. Xu et al.

Fig. 3. Flow graph of IA

Table 4. “Stop” in X-Dict Dictionary

stop

n. 停止, 车站, 逗留, 填塞, 障碍, (风琴的)音栓
vi. 停止, 被塞住
vt. 塞住, 堵塞, 阻止, 击落, 停止, 终止, 断绝

Table 5. “Halt” in X-Dict Dictionary

halt

n. 停止, 立定, 休息
vt. 使停止, 使立定
vi. 立定, 停止, 蹒跚, 踌躇, 有缺点

 An Integrated Approach for Automatic Construction 309

Table 4, 5 shows that: as noun, both of “stop” and “halt” have the Chinese ”停止”, so
this is the intersection of these words, it is the proper member of new Chinese synset.

3.3 Words Co-occurrence Approach

Words Co-occurrence Approach (WCA) follows the principle that the frequency of two
words’ co-occurrence refers to the relation between these two words, in other words,
two words have more connection with each other, and they appear more at the same
time. For example, “country” and “国家” are supposed to appear together more than
“country” and “天空”. Therefore, WCA sets an English word and a Chinese word as a
group, get the result from Google, based on these results, the program automatically
choose the best translations for Chinese synsets.

Size of Synset
>1=1

Query for direct-hyponym
and direct-hypernym

in database

Save the words with
the biggest result

Start

Get a synset from database

End

No

Yes

Search each Chinese word
with every English word

found before, sum the
results

Search each Chinese word
with the other English
words, sum the results

Has next synset?

Fig. 4. Flow graph of WCA

310 R. Xu et al.

3.3.1 Description of WCA
1) Using the backup Chinese translation saved in step 1 of IA
2) Set a synset as the processing unit:

a) If this synset has only one word, find out all the hypernym and hyponym
words if there exist, searching them with every backup Chinese word of
this synset, and aggregate results for each Chinese word.

b) If this synset has more than one words, searching each backup Chinese
word with English members of this synset except for the one directly
translated to it, aggregate results for each Chinese word.

c) The Chinese word with the biggest result is set to be the member of new
Chinese synset.

3) Repeat 2), until all the synsets have been processed

3.3.2 Example
For a synset has one word: {dashboard} is a synset, its gloss is {instrument panel on an
automobile or airplane containing dials and controls}, X-Dict Dictionary returns three
Chinese words for dashboard{挡泥板 ,遮水板 ,仪表板 }, {dashboard}’s di-
rect-hypernym synset is {control-panel, instrument-panel, control-board, board,
panel}, and there is no hyponym. Set a Chinese word and an English word as a group,
searching is in Google, and the results are illustrated as follows:

Table 6. Google results for {dashboard}

 仪表板 挡泥板 遮水板
control-panel 3380 631 59

instrument-panel 2590 701 745
control-board 709 127 89

board 47000 13000 15900
panel 29300 3910 4090

OVERALL 82979 18369 20824

From Table 6, we can see that total result for “仪表盘” is 82,979, higher than that of
“挡泥板” and “遮水板”, so “仪表盘” is the best choice for the new Chinese synset
corresponding to {dashboard}.

For a synset has more than one word: {discomposure, discomfiture, disconcertion,
disconcertment} is a synset, its gloss is {anxious embarrassment}, the translation for
words of this synset are:

Table 7. Translations for “discomposure“, “discomfiture“, “disconcertion“, “disconcertment“

Word Translation in X-Dict Dictionary
discomposure 不安, 心乱, 狼狈
discomfiture 失败, 妨害计划
disconcertion (not found in X-Dict Dictionary)

disconcertment 不平, 不满

 An Integrated Approach for Automatic Construction 311

Table 8. Google results for {discomposure, discomfiture, disconcertion, disconcertment}

 失败 妨害计划 不安 心乱 狼狈 不平 不满

discomposure 126 48 -- -- -- 64 140
discomfiture -- -- 436 104 211 160 180
disconcertion 8 3 15 5 5 3 4
disconcertment 18 4 46 8 10 -- --
OVERALL 152 55 497 117 226 227 324

In Table 7, we can see that “disconcertion” is not found in X-Dict Dictionary, but it
does not affect the translation work. Table 8 shows that “不安” has the highest
OVERALL result, so it is the best translation for this synset.

3.4 MIW Approach

MIWA is an approach that integrates three approaches described above. Based on
precision of theirs, we arrange three of them in the descending order, and use them one
by one. We use the approach with the highest Precision first; the rest synsets that cannot
be processed in the first step, we choose the approach with the second highest Precision
to deal with; finally, the third approach is to be used to dispose the rest synsets after step
one and step two. Given the precision of IA > MDA’s > WCA’s, according to MIWA,
we will choose IA firstly to process the whole English WordNet, obviously, only a part
of it can be successful translated, then MDA will be used to deal with the rest synsets of
WordNet, after that, WCA will be adopted for the rest. By following this order, we can
keep a high precision of translation and increase the number of synsets that can be
translated.

4 Experiments and Results

4.1 Experimental Materials

Based on the organization, quantity and quality of words, we choose American Heri-
tage Dictionary (Chinese&English edition) to implement to MDA, and X-Dict Dic-
tionary to achieve IA and WCA.

We randomly chose 35,000 synsets as the universal set for the experiment. The
manual translation finished by nearly ten experts, who are skilled in both Chinese and
English, seem to be the standard results. Levenshtein Distance [13] Algorithm has been
used for the automatic comparison between the results of automatic translation and
manual job. Recall, Precision and F-measure are three evaluation targets: Recall
represents how many synsets can be processed by using an approach; Precision means
according to comparing results of experts and those of the approaches, how many
synsets are correct; F-measure is the weighted harmonic mean of Precision and Recall.
We can also use the following formula to calculate the Precision and Recall of MIWA
according to those of the other three approaches’, Group (1-3) represent three proc-
essing groups described in Section3.4.

312 R. Xu et al.

Recall = Size(roup(i)) + Size (roup(N/A))

Size(roup (i))G

G G
(1)

=Precision (Precision(roup(j))G
Size(roup(j))G

Size(roup(j))G
)

(2)

4.2 Results

The results of experiments are illustrated as follows:

Table 9. Results of experiment

Approach Recall Precision F-measure
MDA 0.430 0.599 0. 501

IA 0.194 0.641 0. 298
WCA 0.572 0.386 0.461

MIWA 0.703 0.547 0.615

From the results, we can see that: in the first three approaches, IA has the highest
precision, but lowest recall, this is because one-synset-one-word situation takes up nearly
half of WordNet, this can be seen in Figure 5; WCA covers 57.2% synsets, it has the
widest processing ability, however, because results from Google contains many noises, it
also has the lowest precision, and since this program has to download web pages during
running, it takes much longer time than the other two programs. MDA has the median
recall and median precision, it performs the best in F-measure evaluation, this result
makes more sure of the fact that WordNet’s developers has referred to American Heri-
tage Dictionary while developing WordNet, and because of this, MDA can also translate
some words in specific areas, that even cannot found in X-Dict Dictionary.

Fig. 5. The amount of different size of synsets in WordNet

The MIWA which integrates three approaches does a good job in experiment: it
covers 70% of synsets. Even though precision is affected by that of WCA, its
F-measure still prove that from an overall perspective, MIWA is better than using any
of the approach respectively.

 An Integrated Approach for Automatic Construction 313

Table 10. Advantages and Disadvantages of MDA, IA and WCA

 MDA IA WCA
1.High Precision Advantage
2.Can handle words
in expertise field

Highest Precision Highest Recall

Disadvantage Organization of
dictionary is special

Lowest Recall 1.Lowest Precision
2.It takes a long time
to run the program

5 Conclusion and Future Work

We have described here a new procedure which integrated three approaches for
automatic translation from English WordNet to Chinese WordNet. Compared to other
similar approaches or using each approach respectively, it has the following im-
provements:

• Each of the approaches is greatly helpful and creative, and from an overall per-
spective, the procedure involved three approaches can process a great number of
synsets in WordNet and has a high precision. It can save a lot of time for manual
construction of WordNet.

• It is language independent; people can use it for any specified language WordNet
construction, if they can find enough multilingual language resources, such as the
electronic dictionaries used in this paper.

Concerning future work, we plan to use some other dictionaries for more experi-
ments, and we also think about how to improve WCA, for example, we concern about
the results of a single word in Google, it affects the results of two words. Because WCA
has the highest recall but lowest precision, in other words, it is the most potential ap-
proach in these three, and if we can improve its precision, it must be very helpful to
MIWA. First edition of Chinese-English WordNet has been published recently, and we
plan to involve manual correct to perfect it.

Acknowledgements

This work is supported by National Science Foundation of China under Grant
60773107, and National Key Basic Research and Development Program of China
under Grant 2003CB317004. We would like to thank Hui Xu for his contribution to
algorithms of this work.

References

1. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to WordNet:
An On-line Lexical Database. International Journal of Lexicography (1990)

2. George, A.: Miller.: Nouns in WordNet: A Lexical Inheritance System. International Journal
of Lexicography (1990)

314 R. Xu et al.

3. Gross, D., Miller, K.J.: Adjectives in WordNet. International Journal of Lexicography
(1990)

4. Fellbaum, C.: English Verbs as a Semantic Net. International Journal of Lexicography
(1990)

5. Beckwith, R., Miller, G.A., Tengi, R.: Design and Implementation of the WordNet Lexical
Database and Searching Software. International Journal of Lexicography (1990)

6. Vossen, P.: Introduction to EuroWordNet. In: Computers and the Humanities, vol. 32, pp.
73–89 (1998)

7. Vossen, P., Diez-Orzas, P., Peters, W.: Multilingual design of EuroWordNet. In:
Proceedings of the IJCAI 1997 workshop Multilingual Ontologies for NLP Applications
(1997)

8. Choi, K.-S., Bae, H.-S.: Procedures and Problems in Korean-Chinese-Japanese Wordnet
with Shared Semantic Hierarchy. In: GWC 2004, Proceedings (2004)

9. Choi, K.-S., Bae, H.-S., Kang, W., Lee, J., Kim, E., Kim, H., Kim, D., Song, Y., Shin, H.:
Korean-Chinese-Japanese Multilingual Wordnet with Shared Semantic Hierarchy. In:
Proceedings of LREC 2004, Portugal (2004)

10. Choi, K.-S.: CoreNet: Chinese-Japanese-Korean wordnet with shared semantic hierarchy.
In: Natural Language Processing and Knowledge Engineering (2003)

11. Zhendong, D.: Knowledge Description: What, How and Who? In: The Proceedings of the
International Symposium on Electronic Dictionaries, Tokyo, Japan

12. Dorr, B.J., Levow, G.-A., Lin, D.: Construction of Chinese-English Semantic Hierarchy for
Information Retrieval. In: Proceedings of the Workshop on English-Chinese Cross
Language Information Retrieval (2000)

13. Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and reversals:
Soviet Physics Doklady (1966)

14. Chen, H.-H., Lin, C.-C., Lin, W.-C.: Construction of a Chinese-English WordNet and Its
Application to CLIR. In: Proceedings of the 5th International Workshop Information
Retrieval with Asian Languages

15. Maedche, A., Staab, S.: Ontology Learning for the Semantic Web. IEEE Intelligenct
Systems 16(2), 72–79 (2001)

16. Alfonseca, E., Ruiz-Casado, M., Okumura, M., Castells, P.: Towards Large-scale
Non-taxonomic Relation Extraction: Estimating the Precision of Rote Extractors. In:
Proceedings of the 2nd Workshop on Ontology Learning and Population

17. Olsen, S.: Wordnet Wordsense Disambiguation using an Automatically Generated
Ontology. In: Proceedings of the Class of, Senior Conference (2003)

18. Church, K., Gale, W., Hanks, P., Hindle, D.: Bell Laboratories and Collins.: Parsing, Word
Associations and Typical Predicate-Argument Relations. In: International Workshop on
Parsing Technologies, CMU (1989)

19. Liu, Y., Yu, S., Yu, J.: In: Building a Bilingual WordNet-Like Lexicon: the New Approach
and Algorithms. In: Proceedings of the 19th international conference on Computational
linguistics

20. Yamaguchi, T.: Constructing Domain Ontologies Based on Concept Drift Analysis. In:
Proceedings of the IJCAI 1999 workshop on Ontologies and Problem-Solving
Methods(KRR5) Stockholm, Sweden, August 2 (1999)

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 315–329, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Predicting Category Additions in a Topic Hierarchy

Janez Brank, Marko Grobelnik, and Dunja Mladenić

Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
{janez.brank,marko.grobelnik,dunja.mladenic}@ijs.si

Abstract. This paper discusses the problem of predicting the structural changes
in an ontology. It addresses ontologies that contain instances in addition to con-
cepts. The focus is on an ontology where the instances are textual documents,
but the approach presented in this document is general enough to also work
with other kinds of instances, as long as a similarity measure can be defined
over them. We examine the changes in the Open Directory Project ontology of
Web pages over a period of several years and analyze the most common types
of structural changes that took place during that time. We then present an ap-
proach for predicting one of the more common types of structural changes,
namely the addition of a new concept that becomes the subconcept of an exist-
ing parent concept and adopts a few instances of this existing parent concept.
We describe how this task can be formulated as a machine-learning problem
and present an experimental evaluation of this approach that shows promising
results of the proposed approach.

Keywords: Ontologies, taxonomies, knowledge organization, semantic web, mod-
eling human expertise, machine learning, text mining, support vector machine.

1 Introduction

Many ontologies are not static objects. If an ontology is a shared conceptualization of
a domain, it is not surprising that it may have to change in response to changes in
either the domain itself, or in our understanding of it, or in the purposes with which
we are building a shared conceptualization of it. Thus it is natural to ask whether such
changes in an ontology can be predicted automatically as an aid to the people main-
taining the ontology.

In this paper we begin by discussing an example of a large real-world ontology
whose evolution over the course of several years can be readily observed, namely the
topic hierarchy of the Open Directory Project (ODP; see http://www.dmoz.org/). We
identify the most common types of structural changes occurring in this ontology and
analyze their frequency. Based on these observations, we decide to focus on trying to
predict one specific type of structural changes: the addition of a new subconcept as a
child of an existing parent concept, from which the new concept also takes a few
instances. This is one of the more common types of structural changes in the ODP,
and it is also amenable to an automatic prediction approach.

We then discuss how the problem of predicting this kind of subconcept additions
can be formulated as a machine learning task. The main challenge here is to describe
a concept by a set of features in such a way that a predictive model (obtained through

316 J. Brank, M. Grobelnik, and D. Mladenić

machine learning) will be able to predict, from these features, whether a new subcon-
cept should be added below the given concept or not. Our approach is based on the
assumption that the ontology contains not only concepts but also instances, and a new
subconcept should be added if there exists a subgroup of closely related instances in
the parent concept. We cluster the instances of the parent concept and compute sev-
eral statistical properties of the resulting partition of the instances into clusters. In the
case of the ODP, the instances are textual documents, so that techniques from infor-
mation retrieval can be used for the needs of cluster analysis.

We also present an experimental evaluation of the proposed approach. Experiments
on the ODP ontology show that this is feasible approach for predicting this type of
ontology changes.

Finally we will discuss a few ideas for future work, especially with a view to pre-
dicting other types of structural changes that are not addressed by the approach pre-
sented in this report.

Related work. Maedche et al. [14] and Stojanović [12] defined three types of change
discovery: structure-driven (where suggested changes are deduced from analyzing the
ontology structure itself), usage-driven (changes are recommended by observing the
usage patterns over time) and data-driven (which is based on changes in the underly-
ing data that describes the domain of interest). An example of work focusing on us-
age-driven change discovery is [9]. [8] discussed the incorporation of data-driven
change discovery into a framework for learning an ontology from a corpus of textual
documents. Some authors have also discussed ontology evolution from a more formal,
logical point of view, with an emphasis on the semantics of ontology evolution and
reasoning in the presence of an evolving ontology [10, 11].

For a recent overview of the area of ontology change, and its relationship with on-
tology evolution, merging, and integration, see the survey by Flouris et al. [15].

The topic of ontology change has also been discussed recently by Maynard et al.
[16], which defines a number of ontology change operations. The operations defined
there are relatively low-level, whereas the changes which we attempt to predict in the
work reported in this paper are somewhat higher-level, and can be seen as aggrega-
tions of several low-level operations in the sense of [16]. Our choice of the set of
operations is mainly due to two reasons: (1) Higher-level operations (e.g. “move a
category” instead of “insert/delete a parent-child link”) correspond more closely to the
way a human ODP editor (whose expertise we are in a way trying to model here)
would conceptualize his/her work. (2) We require operations that can be observed in
the available ODP data, and that can be modeled and predicted via a machine learning
approach; thus, some operations from [16] do not apply here (e.g. creating a category
without immediately attaching it to a parent).

2 Comparing Ontology Snapshots to Identify Structural Changes

2.1 The Open Directory Project Dataset

To investigate the issue of structural changes in an ontology, it is helpful to consider a
real-world ontology for which it is possible to observe the changes through a period

 Predicting Category Additions in a Topic Hierarchy 317

of time. Additionally, the ontology should be reasonably large, so as to provide a
sufficient amount of data for the training of predictive models. We decided to use the
topic ontology of the Open Directory Project (ODP, available from www.dmoz.org/).

In the ODP ontology, the concepts are actually topical categories; they are organ-
ized into a tree via the parent-child relationship. Each category has a name and a short
description (the latter not usually shown to the user but available in the data).

In addition the ODP ontology contains instances; these are actually links to exter-
nal web pages. Besides the link, each instance also contains a title and a short textual
description of the page. Thus we will regard each instance as a short document as
proposed in [17] for ontology population, and techniques from the area of text mining
will be used in dealing with the data.

Note that our approach for predicting structural changes is dependent on the fact
that the ontology is well populated with instances. It is not, however, dependent on
the fact that the instances are textual documents. As we will see later, the proposed
approach only assumes that the instances can be clustered; for that, the only thing one
really needs is a measure of similarity (or distance) between the instances.

The ODP ontology is interesting for our purposes because snapshots of the ontol-
ogy at different points in time are available. The ODP makes available approximately
one snapshot per month; more than 50 such snapshots are available on the dmoz.org
website, covering the period since July 2003.

One problem with the ODP dataset, from the point of view of predicting structural
changes, is that any two consequent snapshots are approximately a month apart and a
number of structural changes can take place during that time period. Sometimes sev-
eral of these structural changes affect the same part of the ontology, and it is not pos-
sible to uniquely determine the exact sequence of structural changes that took place.
We developed a set of heuristics to compare two snapshots of the ontology and output
a set of operations that could change the earlier snapshot into the later one. Of course,
there is no guarantee that this is exactly the same sequence of operations that was
actually performed by the human editors of the ODP ontology, as the same changes in
the ontology can be effected through several different sequences of operations. In
addition, the sequence of operations will depend on what set of elementary transfor-
mations one is willing to employ.

2.2 Low-Level Structural Changes

Changes in the ontology may be roughly divided into those that affect the categories
(i.e. concepts) and those that affect the documents (i.e. instances). The latter group
consists of the inclusion of new documents (links to external web pages), and removal
and rearrangement of existing ones. We will not attempt to predict these document-
level operations because, first of all, most of them cannot really be understood as
causing structural changes in the ontology, and secondly, because it would be difficult
to predict them without additional (and often unavailable) external data (e.g. to know
whether something was removed due to becoming a dead link). Similarly, predicting
the inclusion of new documents would require information about which web pages
were available at a certain point in the past, so that they could have been discovered
by the ODP editors and considered for inclusion in the ontology. However, we con-
sider such questions to be outside the scope of this paper.

318 J. Brank, M. Grobelnik, and D. Mladenić

Thus we will focus on changes involving categories instead. In principle, one snap-
shot of the ontology can always be transformed into another one by a sequence of two
elementary operations: addition and deletion of categories. By comparing the set of
categories in one snapshot with the set of categories in the previous month’s snapshot,
it is easy to see which categories are missing and which are new. For example, the
following list shows a subset of the changes that we may notice within the
Top/Computers subtree between April 3 and May 1, 2007. “DEL” indicates that a
category was deleted (i.e. it was present on April 3 but not on May 1) and “ADD”
indicates that it was added (i.e. it was present on May 1 but not on April 3).

DEL Top/Computers/Open_Source/Software/Games/FPS
DEL Top/Computers/Software/Internet/Servers/Directory/LDAP
DEL Top/Computers/Software/Internet/Servers/Directory/LDAP/Products
DEL Top/Computers/Software/Internet/Servers/Directory/LDAP/Standards_and_Organizations
DEL Top/Computers/Software/Internet/Servers/Directory/LDAP/Products/Related_Middleware
DEL Top/Computers/Software/Internet/Servers/Directory/LDAP/Products/Related_Client_Apps
ADD Top/Computers/Open_Source/Software/Games/Shooter
ADD Top/Computers/Programming/Languages/Smalltalk/Squeak/Croquet
ADD Top/Computers/Programming/Languages/Smalltalk/Squeak/Croquet/News_and_Media
ADD Top/Computers/Internet/Protocols/LDAP
ADD Top/Computers/Internet/Protocols/LDAP/Standards_and_Organizations
ADD Top/Computers/Internet/Protocols/LDAP/Software/Client
ADD Top/Computers/Internet/Protocols/LDAP/Software/Server
ADD Top/Computers/Internet/Protocols/LDAP/Software

As we can see from this list, it is unsatisfactory to describe the transformation of
one snapshot to another solely through these two types of low-level operations. Al-
though one can in principle transform the April snapshot to the May snapshot by
deleting the first six categories and then adding the next eight ones, it is clear that the
human editors working on the ontology must have really conceptualized their work as
a sequence of more abstract operations, each of which may then be manifested in one
or more low-level additions and deletions of the type from list above.

In our example, we can see that the removal of concept .../FPS and the addition of
concept .../Shooter are really two related operations: in other words. “FPS” has simply
been renamed “Shooter” (note that FPS is itself nothing but an acronym for “first-
person shooter”, a genre of computer games). Similarly, the deletions and additions
related to concept LDAP show us that the whole LDAP subtree has been moved
from.../Internet/Servers/Directory to.../Internet/Protocols. Additionally, the Products
subtree has been renamed into Software and rearranged somewhat.

Finally, the .../Squeak/Croquet, with its News_and_Media child, is a genuinely new
subtree; as it turns out, it also contains genuinely new documents that did not exist at
all in the previous snapshot of the ontology.

There also exist other types of structural changes not illustrated by the above ex-
ample. One typical ODP phenomenon, which accounts for many additions of new
categories, is the creation of new subcategories in advance, without populating them
immediately with documents. The human editors of the ODP sometimes create new
subcategories corresponding to all the letters of the alphabet to break down categories
containing long lists (e.g. of companies); similarly, they sometimes add a set of sub-
categories corresponding to U.S. states, or import whole subtrees of zoological
or botanical taxonomy; in all these cases, many of the newly created categories are
initially empty. Such changes depend too strongly on background knowledge and

 Predicting Category Additions in a Topic Hierarchy 319

high-level abstract decisions by a human editor to be predictable by a computer.
Therefore, our efforts to predict structural changes will focus on situations when a
new category has been added and some documents from previously existing catego-
ries transferred into it; this suggests that the structural change in question was genu-
inely an editor’s response to the available data, and it may therefore be predicted
automatically given the same data. An example may be that an editor decides that a
category has too many documents and is too diverse, and it may therefore be split into
several subcategories, with the documents then divided among these subcategories.

2.3 Heuristics for the Identification of Higher-Level Structural Changes

As we have seen in the previous section, low-level additions and deletions of catego-
ries can be easily observed by comparing two snapshots of the ontology, but the really
interesting operations are more abstract and each such operation can give rise to sev-
eral low-level additions and deletions. In addition, many such operations can take
place in the period of time (e.g. a whole month) between two snapshots, and where
several such operations affect the same part of the ontology, it can be difficult to iden-
tify the abstract operations given the set of low-level additions and deletions that can
be discerned from the data. Thus, it is helpful to develop reasonably robust heuristics
that can identify at least some of these higher-level operations, with the understanding
that we cannot expect them to correctly identify them in all situations.

As it turns out, the largest group of low-level additions and deletions are actually
due to the renaming of categories (e.g. FPS to Shooter in the example in the previous
section). If a category with many descendants is renamed, this may manifest itself as a
large number of low-level additions and deletions. Although this is a common opera-
tion, these are not really structural changes and so we want to recognize them and
exclude them from further consideration. For this purpose we use a heuristic based on
the notions of precision and recall from information retrieval. Given a category C
from the old snapshot that does not appear (under the exact same name) in the new
snapshot, we consider the set S of all documents from this category and its descen-
dants (in the old snapshot). For each category C' of the new snapshot, we can simi-
larly form a set S' of all documents of this category and its descendants. Then the
recall and precision of C' with respect to C can be defined as |S∩S'|/|S| and |S∩S'|/|S'|,
respectively. If C' is to be recognized as a new incarnation of C (under a new name),
it should ideally have high recall and high precision as well. In information retrieval,
precision and recall are traditionally combined into a value called the F1-measure,
which is simply the harmonic mean of precision and recall: F1 = (2 · precision · re-
call) / (precision + recall). As the harmonic mean, F1 is high only if both precision
and recall are high. Insisting on a high recall is obviously desirable, but a good argu-
ment can be made for requiring high precision as well.

Note that it is possible that new documents were introduced into the ontology in
the time between the old and the new snapshot, and some of these documents may
have ended up in C'; these would increase the size of S' but not of S∩S' (as they did
not appear in the old snapshot), whereby decreasing the precision. Thus, to prevent
such new documents from unfairly affecting the match between C and C', we take
into S' only those documents that have already existed in the old snapshot.

320 J. Brank, M. Grobelnik, and D. Mladenić

Thus, for each deleted category from the old snapshot, we find its best match (i.e.
the one with maximal F1) in the new snapshot. In principle, it is possible that there is
no really good match, e.g. if the category and its documents were really deleted from
the ontology, rather than simply renamed. In our experience, such deletions are rare;
however, since we often work with just a part of the whole ontology for reasons of
faster experimentation (e.g. just the subtree rooted in Top/Computers, etc.), it can
happen that a category is moved outside of the part of the ontology that is under con-
sideration, which is from our viewpoint the same as if it had been deleted entirely.

For the purposes of detecting the renaming and moving of categories, we consider
only matches with a recall of at least 90%. We will refer to these as “strong matches”.
(The purpose of using a 90% threshold is to enable us to still track the identity of a
category even if a small percentage of its documents were moved elsewhere or de-
leted. Whether a different percentage than 90% would lead to better performance
would be an interesting subject for future experimental work.) The next step is to
combine the matches on the level of categories into matches on the level of entire
subtrees. For example, if a deleted category Top/A/B/C, with children Top/A/B/C/D1
and Top/A/B/C/D2, is found to match strongly with a new category Top/E/C', and
furthermore its two children match strongly with two new categories Top/E/C'/D1'
and Top/E/C'/D2', then it is reasonable to refer to this as a move operation on the
entire subtree rooted in Top/A/B/C, rather than as a set of operations that happened
individually and separately to C, D1 and D2. In general, the subtree rooted in C may
be deeper (i.e. there may be grandchildren and other descendants in addition to just
children), so the heuristic we actually use is the following. We say that there is a
strong match between the subtree rooted by C (in the old snapshot) and the one rooted
by C' (in the new snapshot) if the following two conditions are met: (1) For each
descendant D of C (in the old snapshot), there must exist an strong match sm(D) (in
the subtree rooted by C' in the new snapshot); and (2) furthermore, for each such D
we require that parent(sm(D)) = sm(parent(D)). In other words, we consider a strong
match between subtrees to exist in cases when a strong match exists for each category
in the subtree and the matches preserve the parent-child relationships. At the same
time, our definition is robust in the sense that the addition of new categories into the
subtree rooted by C', or the merging of several old categories into a new one, does not
prevent us from recognizing the strong match between the subtrees.

The strong matches between entire subtrees, once they have been identified, are a
good first step towards the identification of higher-level structural changes:

1. Rename: If the subtree of C (in the old snapshot) strongly matches the subtree of
C' (in the new snapshot), and C' did not exist in the old snapshot, and C and C'
have the same parent, and no other subtree of the old snapshot strongly matches
that of C', then we say that C has been renamed into C'.

2. Move: If the same conditions are true except that C and C' do not share the same
parent, we say that C has been moved to become C'.

3. Merge: If, on the other hand, C' has already existed in the old snapshot or it is new
but some other subtree besides that of C has strongly matched the subtree of C',
then we say that C has merged into C'. Sometimes a category may merge into its
parent, for example if the editor has decided that the previous subdivision was
excessively fine-grained and the topics represented by the categories were too

 Predicting Category Additions in a Topic Hierarchy 321

narrow. On the other hand, sometimes a category merges into some more distant
relative rather than a parent. It can also happen that several categories merged.

As an example, the chart in Figure 1 shows the frequency of these various types of
higher-level ontology changes within the entire ODP ontology, over the last three
years. As described above, all the category deletions that have been observed as low-
level structural changes have now been explained as either renames, moves, or
merges, with merges further divided into many-to-one merges, merges into parent and
merges into other (nonparent) categories. What remains are the additions of genuinely
new categories, rather than categories which appear new but are included in a strong
subtree match with some formerly existing category (meaning that they are really the
result of a rename, move or merge). It can be seen that additions are by far the most
frequent structural changes, followed by renames and moves. Merges are compara-
tively rare. Since it is debatable to what extent a rename can be considered a truly
structural change, and since moves are already fairly rare relative to the additions, we
decided to concentrate on additions from now on as the most important and most
frequently occurring type of structural change in the ODP ontology.

0

5000

10000

15000

20000

25000

30000

5.
1.

20
04

5.
3.

20
04

5.
5.

20
04

5.
7.

20
04

5.
9.

20
04

5.
11

.2
00

4

5.
1.

20
05

5.
3.

20
05

5.
5.

20
05

5.
7.

20
05

5.
9.

20
05

5.
11

.2
00

5

5.
1.

20
06

5.
3.

20
06

5.
5.

20
06

5.
7.

20
06

5.
9.

20
06

5.
11

.2
00

6

5.
1.

20
07

5.
3.

20
07

Merge-into-parent Merge-into-existing-nonparent Move

Merge (many-to-one) Rename Add new category

Fig. 1. Frequency of various types of ontology changes

2.4 Different Types of Category Additions

As we saw on Figure 1, the addition of new categories is the most common type of
structural change, even after we exclude the categories that seem to be new but are
really just old categories that have been renamed, moved or merged. In this section
we will look at the additions of new categories in more detail. If we take the total over
the entire three-year period covered by Figure 1, we find that there were 65105 cate-
gory additions within the ODP hierarchy during this period. Figure 2 shows how these
additions can be divided into several kinds.

Sometimes what is added is not just a simple leaf node of the tree but a whole sub-
tree, consisting of a category and one or more children and possibly other descendants
as well. Thus it turns out that approx. 34% of the newly added categories had a parent
that was also newly added at the same time (or at least within the same snapshot). We
will not attempt to predict the addition of such categories, as it is challenging enough

322 J. Brank, M. Grobelnik, and D. Mladenić

to predict the addition of an individual category, much less of a whole subtree. Thus
the remaining groups of additions discussed in this subsection consist of new catego-
ries added to a previously existing parent.

Approximately 11% of the new categories were empty, i.e. they contained no
documents at all. As has been discussed in the previous section, these are mostly
caused by systematic additions of large groups of sibling categories, e.g. correspond-
ing to U.S. states or to letters of the alphabet. Approximately 19% of the new catego-
ries are not empty, but they contain only documents that did not exist in the ontology
at the previous point in time for which a snapshot is available. This suggests that the
category has been added on the basis of external web pages that were included in the
ontology (e.g. the Croquet example Section 2.2).

New category whose
parent is also new

34%

Empty new category
11%

All documents are new
19%

Mostly new documents
3%

Others
6%

Added by splitting the
parent
27%

Fig. 2. Frequency of various types of category additions

Approximately 27% of the new categories could reasonably be said to have been
obtained by splitting a previously existing parent category. This group of additions
was defined as follows: the new category (e.g. C) must be the child of a previously
existing parent (e.g. P); it must contain at least one document from the old snapshot of
the ontology (although it may also contain zero or more new documents), and of these
documents from the old snapshot, the majority must come from P or one of its de-
scendants, rather than from some other part of the ontology that does not lie below P.
In other words, to consider an addition to be a split of an existing category, we require
that the new child adopts more documents from the parent than from other parts of the
old ontology. Unfortunately most of the categories added in this way are fairly small;
less than a third of them contain at least five documents from P.

Finally, the remaining additions result in categories that contain some mixture of
old documents from P, old documents from other parts of the ontology, and entirely
new documents. In approx. a third of these (3% of all additions), the new documents
predominate; in the others most of the documents are from the old ontology, but with
those from P outnumbered by those from outside of P. These new categories are thus
obtained by a combination of new data (web pages newly included in the ODP direc-
tory) and of rearranging and moving of existing data (previously existing documents),
and it is not clear that they can be characterized in any unified way.

 Predicting Category Additions in a Topic Hierarchy 323

2.5 Prediction of Category Additions as a Learning Problem

One can treat the problem of predicting category additions as a machine learning
problem. Each example of the learning problem consists of a category and a point in
time; the question to be answered is whether a new subcategory should be created
below the given category at the given time. Thus, this is a binary (two-class) classifi-
cation problem, with the positive class consisting of those examples where the addi-
tion of a child category is necessary, and the negative class consisting of those where
it isn’t.

The main open question at this point is how to describe each example by a set of
features (or attributes) such that the resulting representation will be suitable as an
input for a machine learning algorithm. The features should contain information that
is relevant for making a decision whether a subcategory is needed or not. As dis-
cussed in Section 2.4, we ignore those additions of subcategories that are clearly
based on background knowledge external to the ontology itself; the remaining addi-
tions must therefore be based at least partly on the actual contents of the ontology, i.e.
the documents in the category below which a new subcategory is going to be added.
Our approach is based on the idea that the human editors of the ODP probably suggest
the addition of a new subcategory when they notice, within an existing category C, a
few documents dealing with a reasonably well-defined narrower subtopic of the gen-
eral topic of C. In this case a new subcategory would be added as a child of C, and the
documents dealing with the subtopic thus identified would be moved into the new
subcategory (whereas they had previously resided in C or possibly in one of its de-
scendants). Since these documents all deal with a relatively narrow subtopic, one
would hope that they are closely related to one another, use similar terminology, etc.
If we represent them as points in a multidimensional space, we would expect to find
them relatively closely together, closer than the average distance over all documents
from C (which, covering a somewhat wider topic, would be expected to be dispersed
more widely in space). To express this using data mining terminology: we would
expect the documents of the new subcategory to form a cluster within the set of all
documents of the parent category C. Thus, we turn to clustering as a technique that
will help us assess whether such subsets of tightly related documents actually exist.

First, we represent each document by a TF-IDF vector (normalized to unit length),
as is usually done in information retrieval and text mining. The cosine of the angle
between two such vectors can then be used as an approximate measure of similarity
between the two documents.

Now consider the set of all documents that have been assigned to a category C or
any of its descendants. This is the set within which we would like to find any tightly
coupled cluster; this would help us decide whether any new subcategories should be
introduced below C. We will use the well-known k-means clustering algorithm [7]
with k = 2 to split our set of documents into two clusters, then apply it recursively to
each cluster. (Using k = 2 is convenient because it avoids the issue of choosing the
number of clusters into which to split a particular cluster at a particular point.) We use
the following termination criteria: we stop when there are 10 clusters, we do not try to
split clusters containing less than 5 documents, nor do we split a cluster if it turns out
that one of its two resulting subclusters would contain just one document.

324 J. Brank, M. Grobelnik, and D. Mladenić

Let A be the initial set of documents in the category C (and its descendants), and let
P = {B1, ..., Bk} be the partition of A into k disjoint clusters obtained by the hierarchi-
cal 2-means algorithm. We will use the following features to describe this partition:

(1) One feature is the average cosine between each document and the cluster to
which it belongs: (1/|A|) ΣB ∈ P Σx ∈ P cos(x, centroid(B)). This is a measure of how
tight clusters we have obtained by partitioning the initial set A into k clusters.

(2) Find the cluster with minimum variance: B = arg minB' ∈ P var(B'), and use as
features the following properties of this cluster:

• The size of this cluster. Instead of using |B| directly, we use log |B|, to prevent
large clusters from having an excessive influence on the range of this feature.

• The relative size of this cluster, i.e. |B| / |A|.
• The variance of this cluster, var(B).
• The variance of this cluster, relative to that of the whole set: var(B) / var(A).

(3) Find the cluster with the maximum average intra-cluster similarity:
 B = arg maxB' ∈ P Σ x, y ∈ B'; x ≠ y cos(x, y) / (|B'|·(|B'| –1)).

For this cluster B, we use four features analogous to those described above in (2) for
the minimum-variance cluster. The idea here is that the average intra-cluster similar-
ity is another measure of cluster compactness, and these features may therefore help
the classifier identify categories with a compact subset of documents that would be a
suitable basis for creating a new subcategory.

In this way we have described the partition P by nine features. Every time that our
hierarchical clustering algorithm splits a cluster, the partition changes (one of its clus-
ters gets replaced by two smaller ones), and we add, to the feature vector for the cate-
gory under observation, the nine features describing the new partition. We let the
clustering continue until there are ten clusters, which means that in the end the cate-
gory is described by a 90-dimensional feature vector. (If the clustering algorithm
stops before ten clusters have been obtained, we repeat the features of the final parti-
tion as many times as necessary to bring the feature vector to the full 90-dimensions.)
The resulting feature vectors can be used as the input into a machine learning
algorithm; we used the support vector machine (SVM [4]), as it is a well-known and
state-of-the-art learning method that has been found to perform well in many areas,
including on tasks with a considerable number of features and training examples.
Since the feature space used in our representation is relatively modest (90 features, as
opposed to e.g. thousands of features as is commonly the case in text and image cate-
gorization settings), we decided to use the radial basis function (RBF) kernel rather
than a simple linear kernel.

3 Experimental Evaluation

3.1 The Dataset

In this section we describe our experimental evaluation of the proposed approach for
the prediction of category additions. We used the Computers subtree of the Open
Directory Project ontology. In the period under consideration, i.e. from January 2004

 Predicting Category Additions in a Topic Hierarchy 325

through October 2006 (there being no snapshots of the ODP from November and
December 2006), the Computers subtree grew from 7,732 categories to 8,309 catego-
ries, while the number of documents on average tended to decrease rather than in-
crease, eventually shrinking from 143,760 documents in January 2004 to 133,595
documents in October 2006.

During this period, there were 964 category additions, 198 category renames, 134
category moves, and 153 merges of various types. The relative frequency of different
types of structural changes was similar to that shown on Figures 1 and 2 for the entire
ODP ontology. Of the category additions, 482 were such that the new category is
added as the child of a previously existing parent category and more documents have
been moved into the new category from the parent (or its previously existing descen-
dants) than from other parts of the hierarchy. This, as described in Section 2.4, is the
type of additions that we will be trying to predict. However, it turns out that even in
these cases, the number of documents moved from the parent to the new child cate-
gory is often quite small. The hypothesis underlying our approach is that the human
editors of the ODP notice, in an existing category, a group of documents dealing with
some narrower subtopic and then decide to create a new subcategory and move those
documents into it. Thus our approach can not be reasonably expected to perform well
in situations where only e.g. one or two documents have been moved from the parent
to the new child, since in this case there is effectively no subgroup of closely related
documents that could have been detected in the old parent category (and then be used
to predict an addition). Therefore, for the purposes of defining our classification prob-
lem, we limit ourselves to the additions of categories in which at least five documents
were moved from the parent category into the new child category (in addition to
these, the new category may also contain documents that came from elsewhere). This
leaves us with 107 category additions as the basis for our prediction task.

The question that our predictive model will attempt to answer is this: “given a
category, should any new subcategories be added below it, as its children, during the
next month?” Since there are two possible answers to this question, yes or no, this
will be a binary (i.e. two-class) classification problem. A category at a given point in
time is a positive example if some children (matching the criteria described above)
have indeed been added to it between that point and the next point in time for which
an ontology snapshot is available (i.e. approximately one month later). According to
this definition, the above-mentioned 107 additions give rise to 98 positive examples
(this is less than the number of additions because sometimes several children are
added to the same parent in a certain month).

But when is a category a negative example? For example, suppose that a compari-
son of the snapshots for March 2005 and April 2005 shows that no suitable children
have been added to category C in the intervening period, but the comparison of the
snapshots for April 2005 and May 2005 shows one such addition. This suggests that
the category C such as it was in April 2005 is a positive example for the purposes of
our machine learning problem; but is it reasonable to say that C such as it was in
March 2005 is a negative example, just because no additions were made to it between
March and April? The category C has not necessarily changed much from March to
April; perhaps the ODP editors would have already made the addition to C in March
rather than in April, but they simply hadn’t yet noticed that there exists a compact
subgroup of documents that can become a new subcategory. Therefore, to avoid

326 J. Brank, M. Grobelnik, and D. Mladenić

having an excessively narrow definition of the negative set, we declare a category to
be negative at a certain point in time only if no suitable children have been added to it
at that point or in the preceding or following three months. Despite this constraint, the
vast majority of categories are treated as negative examples at any particular point in
time, since the category additions are rare relative to the total number of categories. In
total, we could obtain more than 168,000 negative examples from the Computers
subtree in the period 2004–2006. To speed up the experiments and to prevent the
positive examples from being completely overwhelmed by the negative ones during
the training process, we randomly selected three times as many negative examples as
there are positive examples. We then divided the resulting data into a training set (all
examples from the years 2004 and 2005) and a test set (all examples from the year
2006). Thus, we end up with a training set containing 74 positive and 222 negative
examples, and a test set containing 24 positive and 72 negative examples.

3.2 Experimental Setup

As has been discussed in Section 2.5, we will be using the SVM algorithm to train
classifiers. We use the SVMlight implementation of SVM by Thorsten Joachims [5].
Training an SVM requires one to set various parameters, in particular the error cost C.
For relatively unbalanced datasets, i.e. those where the positive examples are heavily
outnumbered by the negative ones, it is often beneficial to treat errors on positive
training examples as more problematic than those on negative training examples.
Thus, one effectively uses two different error costs: the baseline cost C on the nega-
tive and its multiple j·C on the positive examples.

Thus, C and j are two tunable parameters which we will select via five-fold cross-
validation on the training set. A third tunable parameter is γ, the width of the Gaussian
functions in the RBF kernel. We tested the following parameter values: C ∈ {0.1, 1,
10, 100, 1000}; j ∈ {1, 2, 3, 5, 10, 20, 50, 100}; and γ ∈ {0.0001, 0.0002, 0.0005,
0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5}. For most combinations of
these parameter settings, training a model cost less than a second; most of the proces-
sor time was actually spent on generating the features.

To evaluate the output of the classifiers, we use well-known evaluation measures
from the area of information retrieval [2]: the precision-recall breakeven point (BEP)
[3] and the area under the ROC curve (AuROC) [1]. Both measures yield values in
the range 0 to 1, with higher values indicating better performance. As a baseline, a
model that ranked the examples in random order would achieve a breakeven point
equal to the proportion of the positive examples relative to all examples (which is
0.25 for our dataset), and the area under its ROC curve would be 0.5. A perfect model
would achieve a score of 1 according to both measures.

3.3 Results

We used stratified 5-fold cross-validation (CV) on the training set to investigate the
influence of C, j, and γ parameters. As described in Section 3.2, we investigated 5
values of C, 8 values of j and 15 values of γ. This results in 600 combinations of pa-
rameter settings. We then select the combination that performed the best during cross-
validation on the training set; using this combination of parameter settings, we train

 Predicting Category Additions in a Topic Hierarchy 327

Table 1. Performance of models selected with various model selection criteria

Performance on
the validation set
during 5-fold CV

Performance on
the test set

Model description
BEP Au-

ROC
BEP Au-

ROC
Max. BEP during CV 0.5148 0.7796 0.7083 0.8893
Max. a.u.ROC during CV 0.5021 0.7850 0.6667 0.8738
Max. BEP on the test set 0.4717 0.7436 0.7500 0.9011
Max. auROC on the test set 0.4768 0.7495 0.7500 0.9155
Random ranking 0.2500 0.5000 0.2500 0.5000

the final model on the entire training set, and this model would then be evaluated on
the test set. The results are summarized in the following table:

The first row, “highest BEP during CV”, refers to the models having the greatest
breakeven point during cross-validation. There were three models (i.e. three different
combinations of parameter settings) with the maximum BEP here, so the other col-
umns of the table show average performance over these three models. The same ap-
proach has been used in the other rows.

The rows referring to the highest BEP/AuROC on test set indicate what the best
models among those tested here are capable of, with the caveat that we aren’t able to
identify these models without peeking at the test data. Comparing these results with
the results from the first two rows tells us how much room for improvement there is if
we can select our models using some better criterion than cross-validation on the
training set. We can see that the difference is not really very large here, and by select-
ing our models through cross-validation we obtain models that also perform quite
well on the test set.

For comparison, the last row of the table shows the performance of a hypothetical
model that doesn’t learn anything and instead just outputs random scores for all the
examples.

Parameter tuning. Until now we have been looking for the best combination of
parameter settings by allowing all three parameters to vary – C, j, as well as γ. But
what if we hold one of these parameters fixed at some specific value and then exam-
ine only the models obtained by varying the other two parameters? Fig. 4 shows the
results. For each value of each parameter, we select the other two parameters so as to
maximize the AuROC measure during cross-validation. We report this AuROC value,
as well as the AuROC achieved by the same combination of parameters on the test
set. Regarding the j parameter, the best results were achieved with j = 3, which is
intuitively reasonable: since there are three times as many negative examples as there
are positive ones, it makes sense to treat errors on the positive examples as three times
more serious than the errors on negative examples. Observations on C and γ are less
useful because the optimal values of these parameters depend strongly on the proper-
ties of the dataset and the kernel settings. In general, we can say that for both C and γ
there is actually a fairly broad range of parameter values where good performance can
be achieved. The results for C are somewhat surprising because there, CV appears to
mislead us: the larger values of C lead to poorer performance during cross-validation
but actually better performance on the test set.

328 J. Brank, M. Grobelnik, and D. Mladenić

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100

value of the j parameter

ar
ea

 u
nd

er
 th

e
R

O
C

 c
ur

ve

best a.u.ROC during CV a.u.ROC of the same model on the test set

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.0001 0.001 0.01 0.1 1 10

value of the γ parameter

ar
ea

 u
nd

er
 th

e
R

O
C

 c
ur

ve

best a.u.ROC during CV a.u.ROC of the same model on the test set

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.01 0.1 1 10 100 1000 10000

value of the C parameter

ar
ea

 u
nd

er
 th

e
R

O
C
 c

ur
ve

best a.u.ROC during CV a.u.ROC of the same model on the test set

Fig. 3. Classification performance as a function of one parameter (j, γ or C) if the other two
parameters are tuned using fivefold cross-validation

4 Conclusions and Future Work

In this paper we have described an approach for predicting a subset of structural
changes in an ontology. Our approach aims to predict the addition of categories
within a hierarchy of documents, under the assumption that the new category is a
child of an existing parent category and that it contains at least a few documents that
were formerly members of the parent category. We have described how this task can
be formulated as a machine learning problem and presented experiments that show
that the prediction of this type of changes is feasible.

There are several directions along which this work could be extended. A possible
next step is to try to devise more features for our current machine-learning task. Addi-
tionally, existing descendants of a category could be taken into account: if a cluster of
documents corresponds nicely to an existing descendant of a category C, it should not
be taken as evidence that C needs a new child.

Another interesting extension would be to try predicting not just whether the addi-
tion of a new category is warranted, but also which documents it should include, and
perhaps which keywords it should be described by. In addition to this, it would be
interesting to try suggesting other types of ontology changes: additions of categories
that contain mostly new documents (e.g. by trying to classify them into existing cate-
gories, and recommending a new category when this fails), and moving and merging

 Predicting Category Additions in a Topic Hierarchy 329

of existing categories (e.g. by comparing the centroids of categories to see if another
category is closer than the current parent).

It would be interesting to also address the operation of category renaming, since it
is so frequent. One might train a model that works on individual terms and predicts
how well they describe the category. If terms from the current name score poorly,
recommend a rename. It might be necessary to use WordNet to find the suitably ab-
stract terms for upper-level categories.

Acknowledgments

This work was supported by the Slovenian Research Agency and the IST Programme
of the European Community under NeOn Lifecycle Support for Networked Ontolo-
gies (IST-4-027595-IP) and PASCAL Network of Excellence (IST-2002-506778).
This publication only reflects the authors' views.

References

1. Provost, F., Fawcett, T.: Robust classification for imprecise environments. Machine Learn-
ing 42(3), 203–231 (2001)

2. van Rijsbergen, C.J.: Information Retrieval. Butterworth (1979)
3. Lewis, D.D.: Representation and Learning in Information Retrieval. Ph.D. Thesis, Univ. of

Mass, Amherst, USA (1991)
4. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20(3), 273–297 (1995)
5. Joachims, T.: Text categorization with support vector machines: Learning with many relevant

features. In: Proc. ECML 1998, Chemnitz, Germany, April 21-23, 1998, pp. 137–142 (1998)
6. Su, T., Dy, J.G.: In search of deterministic methods for initializing K-means and Gaussian

mixture clusterind. Intelligent Data Analysis 11(4), 319–338 (2007)
7. Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques.

In: Proc. KDD Text Mining Workshop (2000)
8. Cimiano, P., Völker, J.: Text2onto – a framework for ontology learning and data-driven

change discovery. In: Proc. NLDB 2005 (2005)
9. Haase, P., Sure, Y., Völker, J.: Management of dynamic knowledge. J. of Knowledge

Management 9(5), 97–107 (2005)
10. Haase, P., Stojanović, L.: Consistent evolution of OWL ontologies. In: Proc. ESWC (2002)
11. Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for

handling inconsistency in changing ontologies. In: Proc. ESWC (2005)
12. Stojanović, L.: Methods and Tools for Ontology Evolution. PhD thesis, University of

Karlsruhe (2004)
13. Völker, J., Sure, Y.: Data-driven change discovery. Deliverable 3.3.1, SEKT Project (EU

IST-2003-506826) (July 22, 2005)
14. Maedche, A., Motik, B., Stojanovic, L., Studer, R., Volz, R.: Ontologies for Enterprise

Knowledge Management. IEEE Intelligent Systems (January/February 2003)
15. Flouris, G., Plexousakis, D., Anto, G.: A Classification of Ontology Change. In: Proceed-

ings of SWAP 2006, the 3rd Italian Semantic Web Workshop, Pisa, Italy, Dec. 18-20 (2006)
16. Maynard, D., Peters, W., d’Aquin, M., Sabou, M., Aswani, N.: Dynamics of Metadata. De-

liverable 1.5.1, NeOn Project (EU IST-2005-027595). March 30 (2007)
17. Grobelnik, M., Mladenic, D.: Simple classification into large topic ontology of Web

documents. Journal of Computing and Inf. 13(4), 279–285 (2005)

Catriple: Extracting Triples from Wikipedia
Categories

Qiaoling Liu1, Kaifeng Xu1, Lei Zhang2, Haofen Wang1, and Yong Yu1,
and Yue Pan2

1 Apex Data and Knowledge Management Lab
Shanghai Jiao Tong University, Shanghai, 200240, China
{lql,kaifengxu,whfcarter,yyu}@apex.sjtu.edu.cn

2 IBM China Research Lab
Beijing, 100094, China

{lzhangl,panyue}@cn.ibm.com

Abstract. As an important step towards bootstrapping the Semantic
Web, many efforts have been made to extract triples from Wikipedia
because of its wide coverage, good organization and rich knowledge. One
kind of important triples is about Wikipedia articles and their non-isa
properties, e.g. (Beijing, country, China). Previous work has tried to ex-
tract such triples from Wikipedia infoboxes, article text and categories.
The infobox-based and text-based extraction methods depend on the in-
foboxes and suffer from a low article coverage. In contrast, the category-
based extraction methods exploit the widespread categories. However,
they rely on predefined properties, which is too effort-consuming and
explores only very limited knowledge in the categories. This paper auto-
matically extracts properties and triples from the less explored Wikipedia
categories so as to achieve a wider article coverage with less manual ef-
fort. We manage to realize this goal by utilizing the syntax and semantics
brought by super-sub category pairs in Wikipedia. Our prototype imple-
mentation outputs about 10M triples with a 12-level confidence ranging
from 47.0% to 96.4%, which cover 78.2% of Wikipedia articles. Among
them, 1.27M triples have confidence of 96.4%. Applications can on de-
mand use the triples with suitable confidence.

1 Introduction

Extracting as much semantic data as possible from the Web is an important
step towards bootstrapping the Semantic Web. Many efforts have been made
to extract triples from Wikipedia because of its wide coverage of domains and
good organization of contents. More importantly, Wikipedia embraces the power
of collaborative editing to harness collective intelligence, which results in rich
knowledge from its articles, categories and infoboxes. Table 1 shows the volume
of the rich knowledge contained in English Wikipedia1. One kind of important
triples is about Wikipedia articles and their non-isa properties, e.g. (Beijing,

1 The data used in this paper is from English Wikipedia database dump on 2008-1-3.

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 330–344, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Catriple: Extracting Triples from Wikipedia Categories 331

Table 1. Some Statistics of Wikipedia

Articles Articles with Infobox Articles with Category
2,390,513 1,057,563 (44.2%) 1,927,525 (80.6%)
Categories Category-Category Pairs Article-Category Pairs
312,422 577,579 6,136,876

country, China). As each article corresponds to an entity, such triples capture
the non-isa properties of entities, thus are quite useful to the Semantic Web.

Despite the rich knowledge contained in Wikipedia, difficulties exist in ex-
tracting such triples. The key challenge is to extract properties and values for
the articles. Previous work has tried to extract them from Wikipedia infoboxes,
article text and categories [4,11,12,14]. The infobox-based extraction method [4]
took advantage of user-edited properties and values in the Wikipedia infobox
templates. As an enhancement, the text-based extraction method [14] extracted
more values from the article text according to cleaned infobox properties. How-
ever, their problem is the low article coverage. As shown in Table 1, only 44.2%
articles have infoboxes. In contrast, the Wikipedia category system has a much
higher coverage of 80.6%. Therefore, triples extracted from the categories tend
to be more diverse concerning the entities. However, previous category-based ex-
traction methods [11,12] relied on manually specifying regular expressions cor-
responding to each predefined relation to match category names. This is too
effort-consuming, especially considering the large number of relation types. As
a result, a large portion of knowledge in the categories remains unexplored.

In this paper, we focus on automatically extracting properties and triples from
the less explored Wikipedia categories so as to achieve a wider article coverage
with less manual effort. The key challenge is then how to automatically extract
for a category the property and value shared by its articles. Given a single cat-
egory, e.g. “Category:Songs by Pat Ballard”, it is very difficult for machines to
understand that the songs in this category (e.g. “Mr. Sandman”) are written by
Pat Ballard, let alone to automatically extract any property. Fortunately, the
hierarchical structure of Wikipedia categories provides hints for this. Given that
“Category:Songs by Pat Ballard” has a supercategory “Category:Songs by song-
writer”, it is now much easier for machines to extract “songwriter” as property
and “Pat Ballard” as value for those songs. Then, triples can be created as (“Mr.
Sandman”, songwriter, “Pat Ballard”). The syntax and semantics brought by
super-sub category pairs makes it possible to automatically extract structured
data from the unstructured category names.

Based on this idea, we accomplish an automatic extraction of triples from
Wikipedia categories, which is beyond the ability of previous category-based ex-
traction. Besides, it complements methods extracting triples from other sources
such as infoboxes and text. Specifically, we make the following contributions:

– We originally observe the semantics of Wikipedia category pairs for extract-
ing properties and values of articles. Two kinds of helpful category pairs

332 Q. Liu et al.

are summarized: 1) category pairs containing both explicit property and ex-
plicit value, e.g. “Category:Songs by artist”-“Category:The Beatles songs”,
with “artist” as property and “The Beatles” as value; 2) category pairs
containing explicit value but implicit property, e.g. “Category:Rock songs”-
“Category:British rock songs”, with “British” as value yet no property.

– We propose methods to automatically extract triples based on the two kinds
of helpful category pairs. Natural Language Processing (NLP) technologies
are employed to extract the explicit properties and values from the category
names. To determine the implicit property in the latter case, we propose a
voting strategy that resorts to the semantics of articles in a category. Finally,
after reasoning out the complete articles belonging to a category using cat-
egory hierarchies, triples are created with articles in the category, the ex-
tracted properties, and the extracted values.

– Our prototype implementation, the Catriple system, outputs about 10M
triples with a 12-level confidence ranging from 47.0% to 96.4%, which cover
78.2% of Wikipedia articles. Among them, 1.27M triples have confidence of
96.4%. The extracted data can be used in many applications, e.g. realizing
faceted search for Wikipedia, enriching Wikipedia infobox data, and refining
the Wikipedia category system. Applications can on demand use the triples
with suitable confidence.

The rest of the paper is organized as follows. Section 2 discusses the related
work and Section 3 describes our extraction methods. Then, the experiment and
evaluation of our methods are presented in Section 4. Finally, we discuss the
pros and cons of our methods in Section 5 and conclude the paper in Section 6.

2 Related Work

There are several other systems extracting information about articles and rela-
tions from Wikipedia. Auer et al. initiated the DBpedia project that originally
extracted information from the infoboxes and encapsulated it in triples for ad-
vanced queries [5]. The project successfully extracted 18M infobox triples, after
being further developed [4]. However, the fact that only about 44.2% articles have
infoboxes results in that only a minor portion of articles are covered by these
infobox triples. Contrary to DBpedia, Catriple relies on categories that cover
about 80.6% articles to extract triples. Wu et al. described the Kylin system [14]
which enhanced the infobox data by extracting triples from article text. Different
from Catriple in which properties are extracted from categories, Kylin depends
on cleaned infobox schemata to determine the properties for triple extraction.
The authors also made further efforts to create a clean infobox ontology [15]
so as to better organize the extracted triples. Nguyen et al. extracted relations
from articles by utilizing the syntactic and semantic information [7]. However, it
only focused on a limited number of predefined relations between entities. Other
studies about extracting relations from article text include [13,6].

Suchanek et al. developed YAGO [11,12], a large ontology derived from the
categories, infoboxes of Wikipedia and the taxonomic relations of WordNet.

Catriple: Extracting Triples from Wikipedia Categories 333

Their work is the most similar to ours in respect of extracting triples from
Wikipedia categories. However, obvious distinctions exist. First, YAGO primar-
ily focuses on isa relations, while Catriple targets non-isa relations. Second,
YAGO requires much human effort to specify the relations (e.g., locatedIn) and
the corresponding patterns (e.g., “Mountains|Rivers in (.*)”), while Catriple
automatically extracts relations from the categories. Third, YAGO uses infor-
mation in individual categories for triple extraction, while Catriple additionally
utilizes the semantics of category pairs to enable an automatic triple extraction.

When property and value are extracted for a category, triples can be created
for the articles in the category with the same property and value. How about the
articles in the subcategories? If the category system is a taxonomy with fully-
fledged subsumption hierarchy, the property and value can also be applied to the
articles in the subcategories. Otherwise, there will be risk to do that. Ponzetto et
al. [8] found that Wikipedia categories actually do not form a fully-fledged sub-
sumption hierarchy, but only a thematically organized thesaurus. They proposed
methods to derive a large scale taxonomy from Wikipedia by distinguishing be-
tween isa and non-isa relations in Wikipedia’s category network. Based on this
Wikipedia Taxonomy, the authors further proposed an automatic method to
distinguish instances and classes [18]. We directly use their publicly available
results to create triples about articles in the subcategories.

Catriple utilizes the good features and rich semantics of the Wikipedia cat-
egory system to extract triples. There are many other interesting applications
of the category system. We list some representative ones here. Yu et al. [16] ar-
gued that the category system is equivalent to a simple ontology and conducted
ontology evaluation based on it. Ponzetto and Strube [9,10] computed seman-
tic relatedness by taking the category system as a semantic network. Zesch and
Gurevych [17] conducted a graph-theoretic analysis of the category system and
concluded that it can be used for NLP tasks.

3 Methods

To realize an automatic extraction of triples from Wikipedia categories, the key
challenge is how to automatically extract for a category the property and value
shared by its articles. Then triples can be easily created with articles in the
category, the extracted property, and the extracted value. Hereinafter, we call
such an extracted pair (property, value) a label of the category.

Inspired by the fact that people would learn a new category in Wikipedia
through its category system, we observed the syntax and semantics of category
pairs for automatically extracting labels for categories. We have discovered two
kinds of helpful category pairs: 1) category pairs containing both explicit prop-
erty and explicit value, e.g. “Category:Songs by artist”-“Category:The Beatles
songs”. It is easy to extract “artist” as property and “The Beatles” as value for
the subcategory; 2) category pairs containing explicit value but implicit property,
e.g. “Category:Rock songs”-“Category:British rock songs”. It is easy to extract
“British” as value for the subcategory, yet without property.

334 Q. Liu et al.

Helpful
Wikipedia
Category

Pairs

1. Songs by theme
- Songs about

divorce
1. (theme, divorce)

2. (artist, The Beatles)
2. Songs by artist -
The Beatles songs

3. Songs -
Songs from films

4. Rock songs -
British rock songs

3. (?, films)
4. (?, British)

1. (theme, divorce)
2. (artist, The Beatles)

3. (genre, films)
4. (country, British)

1. (D-I-V-O-R-C-E,
theme, divorce)
2. (Hey Jude,

 artist, The Beatles)
3. (Never Too Far,

genre, films)
4. (Hey Jude,

country, British)

rule-p
rule-v1

rule-p
rule-v2

rule-v1

rule-v2

voting
strategy

category
hierarchy

Step1 Step2 Step3 Step4

Songs by artist

The Beatles songs

Hey Jude

British rock songs

Rock songs

Hierarchy for Reasoning of e.g.4

Pattern1

Pattern2

Pattern3

Pattern4

Fig. 1. Workflow of Catriple

Based on this observation, we propose methods for an automatic category-
based extraction of triples. Fig. 1 shows the workflow. First, we analyze the
category names using NLP technologies and summarize some helpful patterns of
category pairs. Second, rules are proposed w.r.t. these name patterns to extract
the explicit properties and values for categories. Third, to determine the implicit
property given explicit value for a category, we propose a voting strategy that
resorts to the semantics of articles in the category. Finally, when creating triples
about articles given a category with the extracted property and value, we lever-
age category hierarchies to infer the complete articles belonging to the category.
In the following, we will describe each step in a subsection in more detail.

3.1 Step1: Recognizing Useful Name Patterns

To automatically identify the helpful category pairs, we analyze the category
names using NLP technologies and induce some useful name patterns.

First, we pick out property-contained category names (PCCN) and value-
contained category names (VCCN). By observing the Wikipedia category sys-
tem, we find that users tend to organize many category pairs using patterns “X
BY Z”-“Y X” (e.g. “Category:Songs by artist”-“Category:The Beatles songs”)
and “X BY Z”-“X PREP Y” (“Category:Songs by theme”-“Category:Songs
about divorce”). These patterns were also identified as expressing is-refined-by
relations between categories and were discarded for deriving the subsumption
hierarchy [8]. However, they have better structured the category system, thus
are very useful in our task. The by phrase can act as an indication of PCCN
(e.g. “Category:Songs by artist” and “Category:Songs by theme”, with “artist”
and “theme” as properties). The noun phrase or prepositional phrase can act as
an indication of VCCN (e.g. “Category:The Beatles songs” and “Category:Songs

Catriple: Extracting Triples from Wikipedia Categories 335

about divorce”, with “The Beatles” and “divorce” as values). Then, helpful cat-
egory pairs can be recognized using the following name patterns:

– Pattern1: by-prep, which means the supercategory is a PCCN with by phrase
and the subcategory is a VCCN with prepositional phrase, e.g. “Category:
Songs by theme”-“Category:Songs about divorce”;

– Pattern2: by-noun, which means the supercategory is a PCCN with by phrase
and the subcategory is a VCCN with noun phrase, e.g. “Category:Songs by
artist”-“Category:The Beatles songs”;

– Pattern3: *-prep except by-prep, which means the subcategory is a VCCN
with prepositional phrase and the supercategory is not a PCCN, e.g.
“Category:Songs”-“Category:Songs from films”;

– Pattern4: *-noun except by-noun, which means the subcategory is a VCCN
with noun phrase and the supercategory is not a PCCN, e.g. “Category:Rock
songs”-“Category:British rock songs”;

Note that the usefulness of these four patterns depends on the correctness of
the subsumption relationships between the category pairs. Yet, category pairs in
Wikipedia do not always have subsumption relationships, e.g. “Category:Songs”-
“Category:Song forms”. To guarantee the correctness, we restrict to pairs of
categories sharing the same lexical head. This restriction also plays an important
role in the value extraction for Pattern2 and Pattern4 in Step2.

To recognize the preposition for Pattern1 and Pattern3, we use OpenNLP [1]
to get the part-of-speech tags of the category names first. The tagged prepositions
are then checked by a list of creditable prepositions collected from Wikipedia.
We believe this would lead to a higher precision.

To parse the lexical head of category names, we use both Stanford Parser [3]
and OpenNLP [1] to provide a dual fail-safe result. Only noun head is accepted.
Whenever encountering a non-noun head, we remove it from the category name
and repeat the head finding process. Considering that a plural noun head may
be wrongly identified as a verb, we first get the stem of a category name using
Porter stemmer [2], and then feed it to Stanford Parser [3].

3.2 Step2: Extracting Explicit Properties and Values

According to the name patterns of category pairs in Step1, we propose the
following rules to extract the explicit properties and values for the subcategory.

– Rule-p: for Pattern1 and Pattern2, extract the by phrase in the supercate-
gory as property, e.g. “theme” in “Category:Songs by theme” and “artist”
in “Category:Songs by artist”;

– Rule-v1: for Pattern1 and Pattern3, extract the prepositional phrase in the
subcategory as value, e.g. “divorce” in “Category:Songs about divorce” and
“films” in “Category:Songs from films”;

– Rule-v2: for Pattern2 and Pattern4, extract the extra modifier of the head
in the noun phrase of the subcategory w.r.t. the supercategory as value,
e.g. “The Beatles” in “Category:The Beatles songs” and “British” in “Cat-
egory:British rock songs”;

336 Q. Liu et al.

The basic idea of the rules is simple, yet a special case needs to be considered.
In Rule-v1, the prepositional phrase in the subcategory may be a by phrase. Some
by phrases are useful for value extraction, e.g. “Category:Songs by songwriter”-
“ Category:Songs by Richard Adler”, while others are not, e.g. “Category:Songs
by genre”-“Category:Rock songs by subgenre”. It is easy for human to recognize
the two cases, by understanding that “subgenre” is a property instead of a value.
Yet it is much more difficult for machines. By looking into the content of the
subcategory, we find that there will be mostly subcategories instead of articles,
if the by phrase is a property. Besides, we can leverage existing properties in
infoboxes to do a double check. Thereby, our strategy for this case is that we
judge the by phrase useful for value extraction if two conditions are satisfied:
1) the number of its articles is larger than ten times of the number of its sub-
categories; 2) the by phrase is not contained in the properties collected from
DBpedia infobox triples. In this way, “Richard Adler” is extracted successfully
as a value (0 subcategories, 7 articles, and no such property in infobox), while
“subgenre” is eliminated (16 subcategories and 0 articles).

3.3 Step3: Voting Implicit Properties

Since category pairs of Pattern1-2 contain both explicit properties and values,
we can already derive labels for their subcategories after Step2. However, to
derive labels for subcategories in Pattern3-4, we face a problem of discovering
the implicit property given the explicit value for a category.

Considering that the implicit property and explicit value are shared by all
articles in the category, we try to solve the problem by gathering the semantics of
those articles through existing triples about them. We propose a voting strategy,
which elects the property with the maximum frequency in existing triples that
contain the given value and are about articles in the given category. Currently,
the DBpedia infobox triples are leveraged in this voting process, since the size
is very large and also rich properties and values are contained.

The best implementation for the voting strategy is to build a Local Value Pool,
which is a database where key=category+value, data=property+frequency. In
each data item, the frequency denotes the number of triples about articles in the
category that contain the property and the value. Then, given category c and
value v, we can easily get the property with the maximum frequency satisfying
key=c + v in the Local Value Pool.

However, this realization is too time- and space-consuming, so we use an
approximate implementation that builds a Global Value Pool and a Local Prop-
erty Pool. Literally, “Local” indicates the context of a certain category, while
“Global” means no restriction. The Global Value Pool is a database where
key=value, data=property+frequency. In each data item, the frequency denotes
the number of triples about any article that contain the property and the value.
The Local Property Pool is a database where key=category, data=property. Each
data item denotes that there are triples with the property and about articles in
the category. Then, given category c and value v, the frequency for a property
satisfying key=v in the Global Value Pool becomes the property’s votes. A vote

Catriple: Extracting Triples from Wikipedia Categories 337

is valid if the corresponding property exists in the Local Property Pool satisfying
key=c. We choose the property with the maximum valid votes as result.

For example, from “Category:Songs”-“Category:Video game songs”, we can
extract the explicit value “Video game” for the subcategory. Then by query-
ing the Global Value Pool with value “Video game”, we can get the properties
and the corresponding frequencies as S1={industry(39), products(32), genre(16),
type(14), ...}. By querying the Local Property Pool with “Category:Video game
songs”, we can get the properties as S2={type, genre, title, format, ...}. Finally,
“genre” is chosen as the result property because it has the maximum valid votes,
i.e. the maximum frequency in S1 among the properties in S2.

This can be seen as a narrow voting. We further propose a broad voting that
refines it by considering more contextual information. Note that in Pattern1-2,
all the subcategories of a supercategory share a property, only with different val-
ues. By inspecting category pairs of Pattern3-4, we observe similar phenomenon
in most cases. Therefore, we take this phenomenon as an assumption. Then, to
determine the implicit property shared by all the subcategories of a supercate-
gory, we first sum up for a property the valid votes from all the subcategories,
and then choose the property with the maximum valid votes. This broad voting
strategy would combine the valid votes from siblings to help discover the correct
property for a category. An example showing its contribution is as follows:

•“Education in China”-“Education in Macau” | country(18) | Macau;
•“Education in China”-“Education in Macau” | city(7) | Macau;
•“Education in China”-“Education in Nanjing” | city(9) | Nanjing;
•“Education in China”-“Education in Suzhou” | city(2) | Suzhou;
•“Education in China”-“Education in Hangzhou” | city(6) | Hangzhou;

By narrow voting, given category “Category:Education in Macau” and value
“Macau”, the wrong property “country” will be chosen since it has the maximum
valid votes of 18. However, by broad voting based on the assumption, the correct
property “city” will be elected since it has the maximum valid votes of 24.

3.4 Step4: Creating Triples about Articles

Until now, we have derived labels for the subcategories in all the four patterns.
Based on these labels, we can generate triples about articles. Yet a basic problem
is to get the articles belonging to a category. Although Wikipedia contains more
than 6M basic article-category pairs, different category hierarchies would lead
to different results after reasoning out the complete article-category pairs.

For this issue, we compare three different hierarchies: Null Hierarchy (NH),
Wikipedia Hierarchy (WH), and Wikipedia Taxonomy (WT). The Null Hier-
archy denotes no category pair at all. The Wikipedia Hierarchy denotes the
complete super-sub category pairs in Wikipedia. The Wikipedia Taxonomy de-
notes the category pairs with subsumption relationships produced by [8]. Table 2
shows their sizes.

Based on these hierarchies, we then infer the complete articles of a category.
However, it is too time-consuming to do reasoning about articles. So, we do

338 Q. Liu et al.

Table 2. Category Hierarchies: Null Hierarchy (NH), Wikipedia Hierarchy (WH), and
Wikipedia Taxonomy (WT)

NH WH WT
Categories 256,499 312,422 121,256

Category-Category Pairs 0 577,579 148,646

reasoning about labels instead. First, we build a Label Pool, which is a database
where key=category, data=property+value. Each data item denotes a label for
the category. Then, the Label Pool will be enlarged by propagating labels along
the category hierarchies. Finally, for each article, we get all the labels of its
categories from the enlarged Label Pool and generate triples.

For example (as shown in Fig. 1), the label (country, British) of “Cate-
gory:British rock songs” will be propagated to its subcategory “Category:The
Beatles songs” by WH. The article “Hey Jude” will then get this label and form
a triple (“Hey Jude”, country, British).

4 Experiments

4.1 Evaluation

Based on the different choices in Step1 and Step4, i.e. four patterns and three
category hierarchies, Catriple has actually produced 12 methods for final triple
extraction. To evaluate the precision of the triples extracted by our methods
(we call them Catriple triples), we use the manual evaluation method in [12]
as a reference. For each evaluation, we randomly select 500 Catriple triples and
manually judge whether they are correct. Note that Null Hierarchy is included
by Wikipedia Taxonomy, and Wikipedia Taxonomy is included by Wikipedia
Hierarchy. To get a more accurate investigation of their specific impacts on per-
formance, we did our evaluation on the extra labels and extra triples generated
by them, namely NH, WT−NH and WH−WT.

Table 3 shows the performance of each method. We can see that some methods
achieve very good results, while some get only poor results. First, when looking
horizontally, we can find that for all patterns, NH achieves the best performance,

Table 3. Evaluation Results

NH WT−NH WH−WT
Pattern1 precision 0.938±0.019 0.886±0.030 0.746±0.028

size 752,558 408,759 1,502,574
Pattern2 precision 0.964±0.023 0.864±0.017 0.638±0.029

size 1,265,782 395,381 1,057,697
Pattern3 precision 0.880±0.022 0.792±0.029 0.470±0.029

size 504,664 167,120 1,494,621
Pattern4 precision 0.794±0.024 0.692±0.027 0.594±0.024

size 800,328 344,821 1,652,848

Catriple: Extracting Triples from Wikipedia Categories 339

followed by WT−NH and then WH−WT. According to our analysis, errors in
Step4 are due to three reasons: 1) Wrong labels created in Step1-3 are propa-
gated to subcategories, e.g. a wrong label (country, science) created in Step3 by
Pattern3 for “Category:Historiography of science” is propagated to its 8 subcat-
egories and generates about 2000 incorrect triples by WH; 2) Correct labels are
propagated to wrong subcategories, e.g. a correct label (topic, science) created in
Step2 by Pattern1 for “Category:History of science” are propagated to its wrong
subcategory “Category:Living People” and generates more than 5000 incorrect
triples by WH; 3) Incorrect triples are created by wrong article-category pairs,
e.g. a wrong triple (‘Willow and Wind, director, Abbas Kiarostami) is created
as a result of the wrong categorization of article “Willow and Wind” into “Cat-
egory:Films directed by Abbas Kiarostami” (Abbas Kiarostami is actually its
writer but not its director). Since the number of errors produced by a category
hierarchy depends on its quality, this result indicates that NH has the best qual-
ity, followed by WT and then WH. The fact that Wikipedia leaf categories and
article-category pairs have a high quality is also observed in [12]. The fact that
WH reflects merely thematic structure of articles and not suitable for inference
is also discussed in [12,8]. Since WT is a subsumption hierarchy derived from
WH [8], its quality lies between NH and WH.

Next, when looking at Table 3 vertically, we can see that for all category sys-
tems, Pattern1-2 achieve better performance than Pattern3-4. The difference is
that in Step2 and Step3, Pattern1-2 extract the explicit property while Pattern3-
4 vote the implicit property. This indicates that voting implicit properties pro-
duces more incorrect triples than extracting explicit properties. By inspecting
the false positives in Pattern3-4, we found two causes for the errors: 1) the ap-
proximate implementation by the Global Value Pool and Local Property Pool
instead of the Local Value Pool, e.g. given category “Category:Cities in Ontario”
and value “Ontario”, property “birthplace(874)” is wrongly elected since it has
the maximum valid votes in the Global Value Pool, instead of “province(469)”.
However, in the Local Value Pool, “province” would have larger frequency than
“birthplace”. 2) the assumption that all the subcategories of a supercategory
share a property, e.g. a wrong label (country, science) is elected based on the
assumption in the following case:

•“Historiography”-“Historiography of the United States” | country(538) | the
United States

•“Historiography”-“Historiography of India” | country(1793) | India
•“Historiography”-“Historiography of science” | genre(44) | science

Compared to Pattern3-4,much fewer errors are produced by Pattern1-2, thanks
to the more well-formed structure owned by their category pairs. The few errors
mainly come from wrong article-categorypairs, and value extractions, e.g. a wrong
label (year, the 1999 cricket world cup) is extracted from “Category:World Cup
cricketers by year”-“Category:Cricketers at the 1999 Cricket World Cup”.

Besides, we can see that generally, Pattern1 gets higher precision than Pat-
tern2, while Pattern3 gets higher precision than Pattern4. The difference is that in
Step2, Pattern1 and Pattern3 extract value from the subcategory’s prepositional

340 Q. Liu et al.

Table 4. Other Statistics of the Methods

Cat Pair Coverage Labels for Categories Article Coverage
Candidate Workable NH WT−NH WH−WT NH WT−NH WH−WT

Pattern1 0.079 0.079 45,211 27,425 91,179 0.232 0.151 0.421
Pattern2 0.070 0.070 40,138 21,053 70,673 0.290 0.139 0.328
Pattern3 0.088 0.037 20,175 9,972 62,728 0.174 0.066 0.308
Pattern4 0.138 0.052 23,539 17,476 114,937 0.237 0.121 0.404

phrase while Pattern2 and Pattern4 from the subcategory’s noun phrase. This
indicates that the possibility of deriving correct triples is higher with value ex-
tracted from prepositional phrase than from noun phrase. The reason may be
that Wikipedia categories with prepositional phrases are trimmed and organized
better than those with noun phrases. Therefore, they better conform with the
assumption that all the subcategories of a supercategory share a property.

Yet, there is a major exception that Pattern3 with WH−WT has the worst
performance among all the methods. By inspecting its false positives, we found
the reason is that some particular errors created in the voting step of Pattern3 are
greatly enlarged by WH. From the 265 incorrect triples, we found 106 incorrect
triples are created by the wrong label (country, science).

As for the size of triples generated by each method, it depends on how many
category pairs are covered by the pattern, how many labels are successfully
extracted, how many labels are propagated along the category hierarchy, and
how many articles are covered by the categories with labels. Table 4 shows some
other statistics for each method, which gives an indication of the size of triples
generated. Note that it is possible that no property is elected in Pattern3-4
as a result of zero valid votes. Although Pattern3-4 cover more category pairs
than Pattern1-2, their workable category pairs are less (from which labels can
be successfully extracted). Therefore, they generate less triples.

4.2 Output

Triples extracted by our methods are tagged with the empirically estimated con-
fidence values in the above evaluation. Our prototype implementation outputs
about 10M triples concerning non-isa properties and covering 78.2% of Wikipedia
articles with a 12-level confidence ranging from 47.0% to 96.4%. Among them,
1.27M triples have confidence of 96.4%. Applications can on demand use the
triples with suitable confidence. The output triples and detailed experimental
results can be downloaded from our website2. Since it takes less than 12 hours
to complete all the methods, Catriple is efficient enough to run on a daily basis
for generating triples from Wikipedia categories.

It is interesting to compare Catriple triples with existing extracted triples.
When comparing with DBpedia infobox triples, two kinds of Catriple triples are
interesting: the shared triples and the new triples. For this goal, we introduce
correct equal-property triples and article-without-infobox triples in the following.

2 http://apex.sjtu.edu.cn/apex wiki/Demos/Catriple

Catriple: Extracting Triples from Wikipedia Categories 341

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Pattern4Pattern3Pattern2Pattern1

P
ro

po
rt

io
n

in
 C

at
rip

le
 T

rip
le

s
NH: correct equal-property triples
NH: article-without-infobox triples

WT-NH: correct equal-property triples
WT-NH: article-without-infobox triples
WH-WT: correct equal-property triples
WH-WT: article-without-infobox triples

Fig. 2. Comparison with Infobox Triples

A Catriple triple (a,p,v1) is defined as an “equal-property triple” if there exists
an infobox triple (a,p,v2). Note that all values are pre-normalized, e.g. we change
them to lowercase and delete non-alphanumeric characters. The equal-property
triple (a,p,v1) is judged correct, if match(v1,v2)=true, i.e. one condition below
is satisfied: i) v1=substring(v2) or v2=substring(v1); ii) stem(v1)=stem(v2);
iii) LevenshteinDistance(v1,v2)<3; iv) v1∼v2 by WordNet Synset; v) v1∼v2 by
Wikipedia Redirect; vi) match(wordInPhrase(v1), wordInPhrase(v2))=true.

A Catriple triple (a, p, v) is defined as an “article-without-infobox triple” if
there exists no infobox triples associated with article a.

Fig. 2 shows the proportions of these two kinds of triples in Catriple output.
We can see that Catriple triples and infobox triples have little overlap. Pattern3-4
have more overlap than Pattern1-2, as they have maximally reused the properties
in infobox triples during the voting process. More importantly, among all the
methods, about 40% of Catriple triples concern articles that have no infobox
triples. This indicates that our category-based extraction well complements the
infobox-based extraction by contributing triples covering more articles.

We also compare the properties of Catriple triples with infobox triples and
YAGO triples. Table 5 shows the properties with top 20 frequencies and the total
number of properties in each data set. We use Catriple triples with confidence of
top 9 levels to compute the statistics. It can be seen that most Catriple triples are
about location, human, genre and time. They are built based on the knowledge
contained in categories, thus reflect users’ interested characteristics of articles
and their request for navigation through Wikipedia. By contrast, the properties
of infobox triples are very diverse and even chaotic, since they are collected
from human edited key attributes and values in each article. Differently, YAGO

342 Q. Liu et al.

Table 5. Property Comparison

Catriple Triples Infobox Triples YAGO Triples
(573 properties) (28846 properties) (74 properties)

Property Frequency Property Frequency Property Frequency
1 country 1,387,797 name 644,862 isCalled 1,696,493
2 nationality 483,794 relatedinstance 339,896 hasWebsite 98,262
3 topic 386,528 coordmsproperty 246,773 created 95,447
4 city 324,215 coortitledmsproperty 228,934 bornOnDate 66,880
5 genre 290,378 coortitledmproperty 223,062 hasPopulation 61,290
6 state 269,695 genre 214,384 hasArea 55,992
7 status 246,344 title 153,602 hasSuccessor 50,556
8 location 216,948 type 148,984 hasUTCOffset 43,087
9 type 131,714 subdivisionname 141,985 locatedIn 42,845
10 year 121,483 released 127,950 actedIn 42,585
11 continent 119,209 starring 125,108 hasPopulationDensity 38,787
12 artist 86,818 label 124,627 isOfGenre 38,764
13 birthplace 84,977 location 119,229 produced 35,150
14 region 84,559 producer 112,123 hasProductionLanguage 32,079
15 industry 63,967 id 107,082 bornIn 30,352
16 medium 51,149 clubs 104,086 hasImdb 28,313
17 team 49,434 votes 103,516 hasDuration 26,424
18 university or college 47,207 years 102,691 diedOnDate 23,181
19 county 46,820 party 93,345 establishedOnDate 22,446
20 occupation 45,551 artist 92,704 directed 20,913

triples enjoy clear semantics since they are extracted by human specified patterns
according to each predefined relation. Yet, this results in only few properties.

5 Discussion and Future Work

The evaluation results show the strengths of our methods. We find that us-
ing super-sub category pairs for triple extraction is very important and effec-
tive, since it can largely leverage the valuable syntax and semantics within the
Wikipedia category system. Based on category pairs, general patterns can be in-
duced for automatic triple extraction, which require less manual effort and con-
cern more categories than specific patterns. The large number of the extracted
triples as well as the wide article coverage verify the effectiveness of our methods.
Also, patterns exploiting better structure of category pairs lead to better perfor-
mance. As Pattern1-2 (explicit properties and explicit values) leverage a more
well-formed structure than Pattern3-4 (implicit properties and explicit values),
they achieve better performance. Furthermore, our methods are expected to be
more effective to the future Wikipedia, since an analysis of different Wikipedia
versions (2007-7-16, 2007-10-23, 2008-1-3) shows that the coverage of category
pairs by our methods increases with time. Thanks to the anonymous editors, the
categories are being trimmed and organized better and better.

The evaluation results also reveal some deficiencies of our methods. We find
that few errors occur in Step1-2 and most errors occur in Step3 (for Pattern3-4)
and Step4 (for Pattern1-2). This indicates that Step3-4 become the bottleneck
for the accuracy of the extracted triples. Therefore, improvements in deriving the
correct implicit properties and subsumption hierarchy would be very important

Catriple: Extracting Triples from Wikipedia Categories 343

for improving the results. Besides, we currently summarize seven patterns and
rules in Step1-2 to enable the automatic triple extraction. Although it largely
increases the article coverage and reduces the manual effort w.r.t. previous work,
it is still limited to explore the full knowledge in Wikipedia categories. Machine
learning methods are prospective for automatic generation of patterns and rules.
We will make deeper investigations and try them to go further.

5.1 Applications

The data extracted by our methods complements existing semantic web data
which is the basis for advanced applications and realization of the Semantic Web.
It can be used in many applications, e.g. realizing faceted search for Wikipedia,
enhancing Wikipedia infobox and category system. Since not only explicit prop-
erties but also implicit properties are derived from Wikipedia categories, the
data can be used to explore invisible relationships between categories as well.

First, Catriple triples can be a good data set for faceted browsing and search.
This advantage comes from that they are generated from Wikipedia categories
which define characteristics and help users navigate through Wikipedia. An on-
line demo of faceted search for Wikipedia based on the data is available at our
website (as mentioned in Section 4.2). A friendly faceted search interface is pro-
vided for users to improve their access to the large Wikipedia knowledge base.
Starting with a keyword search, users can get both result articles and faceted
information (e.g. the properties and values for the result articles). This enables
users to stepwise refine their search results through different dimensions.

Besides, Catriple triples can also be used to enrich the infobox data. From the
correct equal-property triples, we can pick a set of trusted labels for categories.
Then, the trusted triples created can be directly used to enrich the infobox data
(37.7% of the 4M trusted triples are new to infobox data). Furthermore, with
the help of Catriple, we can possibly link categories to infobox attributes. For
example, through its label (year,2008),“Category:2008 films” can be linked to
infobox attribute “released” and value “2008”. In this way, Catriple can be used
to bridge infoboxes and categories. The integration of infobox-based properties
and category-based properties will produce better structure for Wikipedia.

6 Conclusion

This paper presents Catriple, a system which automatically extracts triples
about Wikipedia articles and non-isa properties from Wikipedia categories. By
employing a domain independent extraction based on widespread categories, the
extracted triples cover a wide range of articles. The extraction is also relation
independent, thus it requires no human efforts to predefine relations. In sum,
we make the following contributions: 1) We observe the semantics of Wikipedia
category pairs for extracting properties and values. Helpful category pairs are
discovered which contain explicit/implicit properties and explicit values. 2) We
propose methods enabling an automatic extraction of triples based on the helpful

344 Q. Liu et al.

category pairs. NLP technologies are employed to extract the explicit proper-
ties and values from the category names. A voting strategy resorting to the
semantics of articles in a category is used to decide the implicit property. 3) We
output about 10M triples with confidence of 12 levels from 47.0% to 96.4%, which
cover 78.2% of Wikipedia articles. Among them, 1.27M triples have confidence
of 96.4%. Applications can on demand use the triples with suitable confidence.

References

1. Opennlp, http://opennlp.sourceforge.net/
2. Porter stemmer, http://tartarus.org/martin/PorterStemmer/
3. Stanford parser, http://nlp.stanford.edu/software/lex-parser.shtml
4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia:

A nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
722–735. Springer, Heidelberg (2007)

5. Auer, S., Lehmann, J.: What have innsbruck and leipzig in common? Extracting
semantics from wiki content. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC
2007. LNCS, vol. 4519, pp. 503–517. Springer, Heidelberg (2007)

6. Herbelot, A., Copestake, A.: Acquiring ontological relationships from wikipedia
using RMRS. In: Proc.of the ISWC 2006 Workshop on Web Content Mining with
Human Language Technologies (2006)

7. Nguyen, D.P.T., Matsuo, Y., Ishizuka, M.: Exploiting Syntactic and Semantic In-
formation for Relation Extraction from Wikipedia. In: IJCAI Workshop on Text-
Mining & Link-Analysis, TextLink 2007 (2007)

8. Ponzetto, S.P., Strube, M.: Deriving a large-scale taxonomy from wikipedia. In:
AAAI 2007, pp. 1440–1445 (2007)

9. Ponzetto, S.P., Strube, M.: Knowledge derived from wikipedia for computing se-
mantic relatedness. Journal of Artificial Intelligence Research 30, 181–212 (2007)

10. Strube, M., Ponzetto, S.P.: Wikirelate! computing semantic relatedness using
wikipedia. In: AAAI (2006)

11. Suchanek, F., Kasneci, G., Weikum, G.: Yago: A large ontology from wikipedia and
wordnet. Research Report MPI-I-2007-5-003, Max-Planck-Institut für Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany (2007)

12. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
WWW (2007)

13. Wang, G., Yu, Y., Zhu, H.: Pore: Positive-only relation extraction from wikipedia
text. In: ISWC/ASWC, pp. 580–594 (2007)

14. Wu, F., Weld, D.S.: Autonomously semantifying wikipedia. In: CIKM (2007)
15. Wu, F., Weld, D.S.: Automatically refining the wikipedia infobox ontology. In:

WWW, pp. 635–644 (2008)
16. Yu, J., Thom, J.A., Tam, A.M.: Ontology evaluation using wikipedia categories for

browsing. In: CIKM, pp. 223–232 (2007)
17. Zesch, T., Gurevych, I.: Analysis of the wikipedia category graph for nlp applica-

tions. In: Proceedings of the TextGraphs-2 Workshop (NAACL-HLT) (2007)
18. Zirn, C., Nastase, V., Strube, M.: Distinguishing between instances and classes in the

wikipedia taxonomy. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M.
(eds.) ESWC 2008. LNCS, vol. 5021, pp. 376–387. Springer, Heidelberg (2008)

http://opennlp.sourceforge.net/
http://tartarus.org/martin/PorterStemmer/
http://nlp.stanford.edu/software/lex-parser.shtml

Semantically Conceptualizing
and Annotating Tables

Stephen Lynn and David W. Embley

Brigham Young University, Provo, Utah 84602, U.S.A.

Abstract. Enabling a system to automatically conceptualize and anno-
tate a human-readable table is one way to create interesting semantic-
web content. But exactly “how?” is not clear. With conceptualization
and annotation in mind, we investigate a semantic-enrichment proce-
dure as a way to turn syntactically observed table layout into semanti-
cally coherent ontological concepts, relationships, and constraints. Our
semantic-enrichment procedure shows how to make use of auxiliary world
knowledge to construct rich ontological structures and to populate these
ontological structures with instance data. The system uses auxiliary
knowledge (1) to recognize concepts and which data values belong to
which concepts, (2) to discover relationships among concepts and which
data-value combinations represent relationship instances, and (3) to dis-
cover constraints over the concepts and relationships that the data values
and data-value combinations should satisfy. Experimental evaluations
indicate that the automatic conceptualization and annotation processes
perform well, yielding F-measures of 90% for concept recognition, 77%
for relationship discovery, and 90% for constraint discovery in web tables
selected from the geopolitical domain.

1 Introduction

Ontology creation is a daunting task—manual creation is tedious and time con-
suming, and automatic creation is often disappointingly inaccurate. But for ap-
plications such as the semantic web or making web content directly queriable,
we must facilitate ontology creation, making it reasonable to produce the vast
number and variety of ontologies required for future web applications.

In this paper we focus on one aspect of this daunting task—semantic concep-
tualization and annotation of tables. Because tables meant for human readers
are data-rich and semi-structured, they are a prime target for automatic con-
ceptualization and annotation. We conceptualize a domain of interest when we
create an ontology for the domain, and we annotate documents with respect to
an ontology when we link document content with ontology components. To an-
notate, we identify objects within documents and link them to ontological object
sets (conceptual classes, concepts, or value sets), and we identify relationships
and link them to ontological relationship sets (conceptual properties for classes,
taxonomic structures, or associations among objects).
� Supported in part by the National Science Foundation under Grant #0414644.

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 345–359, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

346 S. Lynn and D.W. Embley

Our particular focus in this paper is on semantic enrichment of conceptual-
model instances automatically derived from given, syntactic table layout. Se-
mantically enriching ontologies has been the focus of some recent research efforts
(e.g., [3], [9]). These efforts aim mainly at enlarging the vocabulary of ontolo-
gies, and do not use tables as data and meta-data sources. Nevertheless, these
efforts show that semantic enrichment is desirable and also show how to use
the lexical resources available on the web to do semantic enrichment. Seman-
tic table enrichment has also been the focus of some recent work [4,5]. In this
work, researchers use established ontologies to enrich tables by adding columns
and instance data (rather than the other way around—use established tables
to enrich ontologies—as we do in this paper). In addition to using ontological
structure in their work, these researchers also identify data instances in columns
of tables based on the instance values. In our research, we follow the lead of
both ontology-enrichment researchers and table-enrichment researchers, relying
both on available lexical resources and on given instance-recognition semantics.
These two types of semantic resources form the foundation we use for semantic
enrichment.

Region and State Information

Population∗ Longitude† Latitude† Capital City
Location (2000)

Northeast 3.120
Maine 1.275 69◦14.0′W 45◦15.2′N Augusta
New Hampshire 1.236 71◦34.3′W 43◦59.0′N Concord
Vermont 0.609 72◦40.3′W 43◦55.6′N Montpelier

Northwest 9.315
Washington 5.894 120◦16.1′W 47◦20.0′N Olympia
Oregon 3.421 120◦58.7′W 43◦52.1′N Salem

∗Population in Millions
†Geographic Center

Fig. 1. Sample Table

To be specific about what we aim to do, we provide an example. Given a
table like the one in Figure 1, our semantic-enrichment algorithm generates a
conceptual-model instance that accurately represents the semantics of the table.
The algorithm has three main tasks: concept recognition, relationship discovery,
and constraint discovery. During the steps of the semantic-enrichment process,
the algorithm populates the conceptual-model instance with the data in the
original table. Figure 2 shows the conceptual-model instance, the algorithm gen-
erates from the table in Figure 1. The five United States states in Figure 1 are
members of the State object set in Figure 2. The two regions are in the Region
object set. Together the regions and states constitute the elements of the Loca-
tion object set. The states aggregated together constitute the different regions.
The values in the population, longitude, latitude, and capital city columns of the
table in Figure 1 are members of the Population, Longitude, Latitude, and Capital

Semantically Conceptualizing and Annotating Tables 347

Fig. 2. (a) Generated Enriched Conceptual-Model Instance for the Sample Table in
Figure 1 and (b) Legend for Conceptual-Model Components

City object sets respectively. Longitude and latitude values aggregated together
constitute the Geographic Coordinate object set. Each state has a population,
a geographic coordinate, and a capital city, and each region has a population
computed as the sum of the populations from the states in the region.

Automated “table understanding” has been the subject of research in the doc-
ument analysis community for several decades [11,14]. Most of these efforts end,
however, after only identifying table labels and table instance data. Some re-
searchers have described a semantic-enrichment step in the table-understanding
process, but as e Silva, et al. remark “no [one] has yet found a way of making
[this] general” [12]. In research most similar to our own, Pivk et al. [10] have
implemented a system that takes tabular data meant for human readers as input
and produces F-Logic frames as output. In their work, they include a semantic-
enrichment step, which has two components: (1) discovery of semantic labels
and (2) the mapping of their internal model into an F-Logic frame. F-Logic [7]
is a type of conceptual model, so Pivk, et al. have the same sort of output as we
produce. Further, their semantic-enrichment step uses lexical resources to dis-
cover semantic labels for table data (as does ours), and their mapping step adds
functional dependencies for table data (as does ours). Their semantic enrichment
step, however, does not use given instance recognizers (as does ours), nor does

348 S. Lynn and D.W. Embley

it attempt to discover table-implied generalization/specialization, aggregation,
non-table-data-specific functional dependencies, value augmentations, computed
table values, or mandatory/optional participation of objects in relationship sets
(as does ours).

This paper makes several contributions: (1) It describes a general, compre-
hensive algorithm for automatically enriching tables semantically (Section 2). (2)
It shows that a prototype implementation of this algorithm works well in the
geo-political domain with tables selected independently by a third-party subject
(Section 3). (3) It explains, by referencing other work, how to embed the semantic-
enrichment algorithm as a key component in automatically generating semantic-
web content from data-rich web pages (at the end of Section 4, which also discusses
points of interest and future work regarding the semantic-enrichment algorithm).
The paper thus sheds light on a way to automate the generation of semantically
rich web content from tables meant for human readers.

2 Semantic Enrichment Procedure

Figure 3 gives our semantic enrichment algorithm. Its input is a canonicalized
table: a table whose components have been syntactically recognized based on
the table’s layout. The components include the title (if any), the caption (if
any), the table’s labels structured as dimension trees, the data values in known
rows and columns, and the augmentations (footnotes and parenthetical remarks
attached to any of the other components). Figure 4 shows a pictorial view of
the canonicalized-table input for our running example—the table in Figure 1.
The algorithm’s output is a conceptual-model instance semantically enriched
according to the steps in the algorithm. In what follows, we explain and illustrate
each of these steps.

Before doing so, however, we describe the two semantic resources we use in
our approach to semantic enrichment: a natural-language lexicon and a data-
frame library. Without semantic resources no semantic enrichment can take
place—semantic enrichment, by definition, consists of establishing correspon-
dences between accepted semantic resources and the symbolic characterization
being enriched. A natural-language lexicon should provide support for term nor-
malization, and testing whether one word is a hypernym, hyponym, meronym, or
holonym of another word. Hypernym checking, for example, allows the system to
recursively check for term generalizations, which the semantic-enrichment algo-
rithm can use to assign names to unnamed concepts or check for is-a relationships
among recognized concepts. Our current prototype implementation uses Word-
Net as its natural-language lexicon. Data frames in a data-frame library provide
a mechanism for recognizing and classifying character-string representations of
data values using regular-expression recognizers [1]. Suppose, for example, the
string “12-08-2008” appears as a data value in a table. In looking for a con-
cept for this data value, the semantic-enrichment algorithm can discover that
the Date data frame recognizes dates in the form MM-DD-YYYY and can thus
classify the instance value as belonging to the Date data frame.

Semantically Conceptualizing and Annotating Tables 349

1. Input: canonicalized table
2. Output: semantically enriched conceptual-model instance
3. −− recognize concepts and associate values with concepts
4. create concept-values mappings:
5. −− concept-values mappings must come from the same dimension tree
6. (column or row of table data values) instance-of (dimension leaf)
7. (spanned table data values) instance-of (spanning dimension node)
8. (dimension siblings/cousins) instance-of (concept)
9. if unclassified table data values remain
10. if no dimension tree has been established as the one with concepts,
11. check: (data values) instance-of (title or caption concept)
12. default: map data to (1) title, (2) caption, or (3) unnamed concept
13. else map data to lowest unclassified nodes in established dimension tree
14. if unclassified labels remain, classify them as non-lexical concepts
15. −− discover relationships, including types of relationships
16. initialize relationships within each dimension tree
17. refine types of relationships:
18. (child) subclass-of (parent)
19. (child) subpart-of (parent)
20. (descendants in subpart-of hierarchy) subclass-of (generalization of root)
21. molecular structure recognition
22. value augmentations
23. values under spanning label
24. join dimension trees
25. −− adjust conceptual-model instance for discovered constraints
26. add discovered constraints and make necessary adjustments:
27. functional relationships
28. is-a constraints
29. computed values
30. mandatory/optional participation

Fig. 3. Semantic Enrichment Algorithm

Lines 3–14: recognize concepts and associate values with concepts

As Figure 3 shows in Line 6, the first step in creating concept-values map-
pings is to check columns and rows of data values to determine whether they
are instances of leaf concepts in dimension trees. We use both lexical services
and data-frame services in our instance-of check. For our running example, the
lexical service recognizes the cities in the last column in Figure 1 as City val-
ues and maps them to Capital City, which is the column header and thus also
a dimension leaf node.1 Hence, the algorithm creates a concept-values mapping
between the concept Capital City and the set of values {Augusta, Concord, Mont-

1 We note that both the lexical service and the data-frame service can recognize value
sets even without associated names. Thus, for example, if no name had appeared
as the header for the state capitals in the table in Figure 1, the algorithm would
still have recognized the cities in the columns and would have given their header
the name City (or perhaps even State Capital if the lexical or data-frame service
contains enough specific knowledge about these cities).

350 S. Lynn and D.W. Embley

Fig. 4. Graphical View of the Sample Table in Figure 1 in Canonical Form

pelier, Olympia, Salem}. This action creates the lexical object set Capital City
in Figure 2. In a similar way, the data-frame service recognizes the geographic
coordinates as instances of the leaf nodes Longitude and Latitude in the first
dimension tree in Figure 4. This action results in establishing the lexical object
sets Longitude and Latitude in Figure 2. The data-frame service might also be
able to recognize the Population values, but this recognition is more complex
since the population values are in units of millions. As currently implemented,
our data-frame service does not recognize the population values in Figure 1.

Observe that all three recognized concept-values mappings are for the same
dimension tree. This is a property of well formed tables—the concepts for the
table data values can come from at most one dimension tree—informally, the
data values in rows or columns associate properly with row or column headers,
but not some rows with row headers and also some columns with column headers.
In our implementation, the first established mapping of a row or a column to
a concept in a dimension tree determines the dimension tree for the table’s
concepts.

In the second step of creating concept-values mappings (Line 7), the algorithm
checks multiple rows or columns of data values to see if they are instances of
non-leaf nodes in dimension trees. Our sample table in Figure 1 does not have
an example, but a simple variation of the table does. Consider Population, but
instead of just one column of population values for the year 2000, imagine a
table with six columns of population values, one for each year from 2000 to
2005. Further, imagine each of these columns is headed by a year label and that
above the year labels, a spanning label Population appears. In this case the
first dimension tree in Figure 4 would have a third level below Population with
six siblings—the year labels 2000, ..., 2005. If we further assume that the data-
frame library has a Population data frame that recognizes these values (perhaps,
they are actual population numbers, not masked by being in units of millions),
then we have an example illustrating the second step in creating concept-values
mappings. A label (Population) spans several columns of data values, which are

Semantically Conceptualizing and Annotating Tables 351

recognized as instances of a spanning dimension node (a non-leaf node in the
dimension tree).

Having checked for mappings between the table’s data values and the ta-
ble’s labels, the algorithm considers the possibility that some of the labels might
be values for some concept associated with the table. The algorithm does not
check labels already designated as concepts in established concept-values map-
pings, but other labels may be values. The third step in creating concept-values
mappings (Line 8) uses lexical and data-frame services to check whether sibling
or cousin nodes in dimension trees are values of some recognized concept. For
our running example, the lexical service recognizes the states as instances of its
State concept and recognizes Northeast and Northwest as instances of its Re-
gion concept. This gives rise to the object sets State and Region in Figure 2.
Points of interest about checking whether labels are values include the following:
(1) The data-frame service as well as the lexical service can recognize values.
A data-frame for Year, for example, would recognize the years 2000 – 2005 as
siblings under Population for the variation example mentioned in the previous
paragraph. (2) A number of names for a concept are possible (e.g., Area as well
as Region is a possible name for {Northeast, Northwest}). In the absence of any
reason to choose one over the other the choice is arbitrary. In our implementa-
tion, if a synonym name for a concept is in the title as State and Region are in
Figure 1 we prefer these names over alternative synonyms. Footnotes, captions,
and other labels higher up in the dimension tree are other possible sources for
selecting names from among the synonyms. (3) In our current implementation,
we only consider an entire level in a dimension tree as possible value sets. Al-
though this is typical and works in our running example for State and Region
and even for our Year example, the label-as-value idea can be expanded to check
for some, rather than all, siblings and cousins. For example, a table with pop-
ulation columns for years 2000 – 2005 might also have columns at the end for
Average Yearly Growth Rate and Five-Year Increase/Decrease. Only the first six
of these eight siblings under Population are year values.

After the three steps in Lines 6–8, it is possible for both data values and
labels to remain unclassified. In our running example, the data values under
Population remain unclassified, and the labels Population, Location, and the
virtual root of the first dimension tree in Figure 4 remain unclassified. Lines
9–13 of our semantic enrichment algorithm tell how we map unclassified data
values to concepts, and Line 14 tells how we classify labels. If we have already
established a dimension tree as the one with concepts to which data values
belong, Line 13 of the algorithm maps the set of data values indexed by a lowest
level unclassified node in this dimension tree as data values for the concept
named in that node. In our example the values in the column beginning with
3.120 in Figure 1 become values for the concept Population, yielding the lexical
object set Population in Figure 2.

If no dimension tree has been established as the one with concepts to which
data values belong, we check in Line 11 to see whether all the data values belong
to a concept named in the title or caption for the table. Imagine, as an example,

352 S. Lynn and D.W. Embley

a table that has only population values for locations for several different years.
Imagine further, that the labels in the year dimension consist only of these year
values and that the title for the table is Population Information. Assuming a
population data frame recognizes the data values and the keyword “Population”
in the title, the algorithm would establish a mapping between the concept Pop-
ulation and all the data values in the table. If this semantic check fails, then
in Line 12, the algorithm defaults to establishing a lexical object set for all the
data values in the table, giving it the title as its name (if the table has a title) or
the caption as its name (if the table has no title but does have a caption), and
finally leaving it without a name (if the table has neither a title nor a caption).

For any unclassified labels that remain, Line 14 of the algorithm classifies them
all as non-lexical concepts. In our running example, Location and the virtual root
of the first dimension tree become non-lexical object sets. We will see later how
some of these non-lexical concepts can be semantically resolved into something
better. In the absence of additional semantic information to resolve these non-
lexical object sets into something better, keeping them as non-lexical concepts
turns out to make sense. In our running example, if the semantic “instance-of”
check in Line 8 had not succeeded, each of the labels in the second dimension
tree in Figure 4 would have become non-lexical object sets. We would then, for
example, have a Maine object set, which would have a single object identifier
in it denoting Maine, and a Northwest object set whose single object identifier
would denote the concept Northwest.

Lines 15–24: discover relationships, including types of relationships

As the first step in discovering relationships (Line 16), the algorithm ini-
tializes the conceptual-model instance with relationship sets that correspond to
the dimension trees. Figure 5 shows the result for our running example. If sib-
lings/cousins have been recognized in the creation of concept-values mappings in
Line 8, some edges in the dimension trees will coalesce. In the second dimension
tree in Figure 4, for example, all the edges at each level will coalesce resulting
in the second tree in Figure 5.

Fig. 5. Relationship Sets from Dimension Trees

Following the relationship-set-initialization step, the algorithm checks for the
possibility of making several refinements (Lines 17–23). Specifically, the algo-
rithm checks for the possibility that initialized relationship sets might rep-
resent generalization/specialization hierarchies (is-a relationships), aggregation

Semantically Conceptualizing and Annotating Tables 353

hierarchies (part-of relationships), molecular structures (known structures over
concept groups), and n-ary relationship sets (n > 2).

The refinement in Line 18 checks for the possibility that the concept name of a
child node is a hyponym of the concept name of its parent node, or, equivalently,
a hypernym from parent to child. If so, the algorithm replaces the relationship
set with a generalization/specialization constraint. In our running example, our
lexical service recognizes that “Region” is a hyponym of “Location” (a region
is a location), and thus the algorithm makes Location a generalization of Re-
gion. Since is-a relationships require that the object sets in generalizations and
specializations correspond lexically or non-lexically, if ever a mismatch occurs,
non-lexical object sets become lexical. In our example, the introduction of the
is-a relationship between Location and Region causes Location to become lexical.

Checking further, the refinement in Line 18 fails to recognize “State” as be-
ing a hyponym of “Region.” Instead (since a state can be part of a region), the
meronym/holonym check in Line 19 succeeds. “State” is a meronym of “Region,”
or, equivalently, “Region” is a holonym of “State.” Thus, the algorithm intro-
duces an aggregation relationship between Region and State. Then, in Line 20,
since we have a subpart-of hierarchy from State to Region and an is-a relation-
ship between Region and Location, the algorithm checks the descendant State in
the part-of hierarchy to see if it is also a hyponym of Location, the generalization
of Region, which is the root of the subpart-of hierarchy. In our running example,
State is a hyponym of Location (a state is a location), and thus the State object
set becomes a specialization of the Location object set. Figure 2 shows the result
of the steps in Lines 18–20 as the aggregation between State and Region and
the generalization/specialization with Location as the generalization and Region
and State as its specializations.

The algorithm introduces a molecular structure (Line 21) whenever it finds the
constituent components of the molecular structure appropriately configured in
the conceptual-model instance. In our running example, Longitude and Latitude
are both associated with some (as yet unnamed) concept. In our implementa-
tion, the Geographic Coordinate data frame in our data-frame library recognizes
this Longitude/Latitude configuration as being a geographic coordinate. The
algorithm thus introduces the non-lexical object set Geographic Coordinate as
Figure 2 shows.

Value augmentations and values under spanning labels both indicate the pres-
ence of n-ary relationship sets. The value augmentation 2000 in Figure 1 indi-
cates the presence of a ternary relationship set among the locations, the popu-
lation values, and the value object 2000. Our implementation of value augmen-
tations (Line 22) turns this pattern into a ternary relationship set, which (with
the addition of some downstream operations) eventually becomes the ternary
relationship among the object 2000 and the lexical object sets Location and
Population in Figure 2. The values-under-spanning-label step (Line 23) applies,
when, for example, we have the year values 2000, ..., 2005 discussed earlier.
When the algorithm recognizes these labels as year values under the spanning

354 S. Lynn and D.W. Embley

label Population, the step in Line 23 creates a ternary relationship among Year,
Population, and the unnamed object set which eventually becomes Location.

The algorithm’s final step in discovering relationships (Line 24) joins the
conceptual-modeling fragments for each of the table’s n dimensions into a sin-
gle conceptual-model instance. Temporarily, until the algorithm does constraint
analysis in its final phase, the algorithm simply creates an n-ary relationship
set among the root object sets of the n dimension trees. Further, in the case
when the algorithm had established no dimension tree as the one with concepts
to which the data values belong (Line 10), but rather added a lexical object set
for all the data values in the table (Lines 11–12), the algorithm in Line 24 adds
this lexical object set to the n-ary relationship set among the n root object set
making the relationship set an (n + 1)-ary relationship set.

Lines 25–31: adjust conceptual-model instance for discovered constraints

Functional constraints, which we consider in Line 27 of Figure 3, arise in three
ways: (1) molecular structures that include functional relationship sets, (2) rela-
tionship sets established in Lines 16–23 whose instance values indicate that the re-
lationship set should be functional, and (3) table-implied functional dependencies
—the data values of a table depend functionally on their indexing labels.

1. Molecular structures bring all their constraints with them. The bijection
between Geographic Coordinate and the aggregate pair (Longitude, Latitude)
in Figure 2 comes from the given molecular structure.

2. Relationship sets established within dimension trees may be functional. In
our implementation, we check for this possibility by checking for 1-1 and
many-1 relationships among instance values. The functional dependency,
State → Region, in Figure 2 arises because of the many-1 relationship be-
tween the state instances and the region instances in Figure 1.

3. Fundamentally, each data value in a table depends functionally on its indexes
(usually its row and column headers). Variations in how the data values and
indexes become part of the conceptual model dictate where these functional
dependencies appear in the evolving conceptual-model instance. Two basic
variations depend on whether the table does (a) or does not (b) have a
dimension tree with multiple concepts for the data values in the table.
(a) One dimension tree with multiple concepts for table values. Our running
example in Figure 1 illustrates one of the most common cases. One dimen-
sion tree has concept nodes for the data values in the table, and a second
dimension tree has a root node whose conceptual object set is lexical and
logically contains all the instance values of the dimension tree. In our ex-
ample, the concept nodes in one dimension tree are Population, Longitude,
Latitude, and Capital City, and the root node in the other dimension tree
is Location, which contains all the State and Region values. In this case,
the algorithm adjusts the relationship set created in Line 24 that joins the
dimension trees. Specifically, it first removes the root object set of the di-
mension tree that contains the concepts for the table’s data values and also
all its connecting relationship sets. It then adds in their place functional

Semantically Conceptualizing and Annotating Tables 355

relationship sets from the root in which the values appear to the object
sets representing the concepts. Figure 2 shows the result for our running ex-
ample: Location → CapitalCity, Location → GeographicCoordinate, and
Location 2000 → Population. In the example discussed earlier in which
Population is a non-leaf node with children 2000, ..., 2005, the functional
dependency would be Location Y ear → Population.

All other variations involve (i) non-root-contained values or (ii) more than
two dimension trees. (i) When the root does not contain all the values for
a dimension tree, the algorithm uses the highest level nodes that together
contain all the values. In the worst case, the values are all in the leaves. In a
variation of our running example in which none of the hypernym/hyponym
and holonym/meronym relationships are recognized, the algorithm would
yield many functional relationship sets: Northeast 2000 → Population, ...,
V ermont → GeographicCoordinate, ..., Oregon → CapitalCity. (ii) When
a table has n dimension trees (n > 2), each dimension tree except the
dimension tree with multiple concepts for table values provides domains
for the functional dependencies (the codomains are always in the concept-
providing dimension tree). The functional relationship sets are thus always
n-dimensional.
(b) No dimension tree with multiple concepts for table values. This variation
has two cases: (i) one dimension tree has a conceptual root node representing
all the data values in the table and (ii) no dimension tree has a conceptual
root node for the table’s data values. In both cases, the algorithm makes the
n-ary relationship set created in Line 24 functional. For case (i), the domains
for the functional relationship set come from all the dimension trees, except
the dimension tree that has the conceptual root node, and the codomain
is the object set for this conceptual root node. For case (ii), all the dimen-
sion trees contribute domains for the functional relationship set, and the
codomain is the lexical object set established either in Line 11 or Line 12.
For both cases, the object set(s) in a dimension tree that become domain
object set(s) are the highest level node(s) that together contain all the val-
ues for a dimension tree. As an example, consider a table like the table in
Figure 1 but with just population values for the years 2000–2005. If the root
of the dimension tree for years is Population, the linking relationship set
between Population and Location would become functional from Location
to Population.

For is-a constraints (Line 28), the algorithm considers generalization/special-
ization relationships identified in Lines 18 and 20. It constrains the is-a to have
a union constraint if all values in the generalization object set are also in at
least one of the specialization object sets, to have a mutual-exclusion constraint
if there is no overlap in the values in the specialization object sets, and to
have a partition constraint if the values satisfy both union and mutual-exclusion
requirements. As a result of these checks for our running example, the in
Figure 2 appears: every value in the Location object set is also in either the
Region object set or the State object set, and no value is in both.

356 S. Lynn and D.W. Embley

Tables often include columns or rows that contain summations, averages, or
other value aggregates. Because checking all possible combinations for all possible
aggregate operators is prohibitive, the algorithm (Line 29) should only check
probable combinations with likely operators. Our current implementation checks
only for summations and averages for data cells associated with non-leaf nodes
in dimension trees. Thus, our algorithm examines values such as 3.120, which
is indexed by the non-leaf node Northeast, computes aggregates of values from
related object sets, and compares them. The algorithm captures constraints that
hold and adds them to the conceptual-model instance. In our running example,
these checks add the constraint Region.Population = sum(Population); Region,
which means that a region’s population is the sum of the population values
grouped by Region.

In Line 30, the algorithm determines whether objects in an object set par-
ticipate mandatorily or optionally in associated relationship sets. The algorithm
identifies object sets whose objects have optional participation in relationship
sets by considering empty value cells in the table. As Figure 2 shows, the step
in Line 30 discovers that Location optionally participates with Geographic Co-
ordinate and also with Capital City because some locations, namely Northeast
and Northwest, have no associated longitude, latitude, and city values.

3 Experimental Evaluation

We evaluated our implemented version of the semantic-enrichment algorithm
in Figure 3 using a test set of tables found by a third-party participant. We
asked the participant for twenty different web pages that contain HTML tables—
stipulating that the test tables should come from at least three distinct sites,
should contain a mix of simple and complex tables, and should all be from the
geopolitical domain. To canonicalize the tables, we used a tool [6] that makes
it easy to designate a table’s labels, data values, and augmentations. Our algo-
rithm processed each of the twenty canonicalized tables and saved the resulting
conceptual-model instances for manual evaluation with respect to its ability to
do concept/value recognition, relationship discovery, and constraint discovery.2

We use precision and recall to evaluate how well our implementation of the
semantic-enrichment algorithm performs. We observe how many concept-value
mappings, relationships, and constraints the algorithm correctly identifies C,
how many it identifies incorrectly I, and how many it misses M . We then
compute precision by C/(C + I) and recall by C/(C + M). For the experi-
mental test, our implemented prototype achieved 87% precision and 94% recall
for the concept/value-recognition task, 73% precision and 81% recall for the
relationship-discovery task, and 89% precision and 91% recall for the constraint-
discovery task. As a combined measure of precision and recall, we also com-

2 When building semantically enriched conceptual-model instances, there is often no
“right” answer. Many tables correspond to multiple valid instances. Our evaluation
permitted only valid conceptualizations, but did allow for reasonable alternatives.

Semantically Conceptualizing and Annotating Tables 357

puted F-measures. Concept recognition and constraint discovery both have an
F-measure of 90% while relationship discovery has an F-measure of 77%.

4 Discussion Points and Future Work

As a result of empirically investigating our prototype implementation we iden-
tified several potential enhancements. We should:

– check for totals and other aggregates in all columns or rows of numeric data
values, not just in data cells for non-leaf nodes in dimension trees;

– check for lists of values rather than a single value in data cells;
– check label instances in flat dimensions tree for generalization/specialization

and aggregation relationships (the canonicalization step may not be able to
syntactically discern nestings that indicate these possibilities);

– combine multiple columns (or rows) that corresponded to the same concept—
for example, when a table about mountain peaks contains two columns la-
beled Height, one in meters and in the other in feet; and

– discard columns that merely provide rank sortings based on some other
column—sort order is always recoverable.

An in-depth discussion of canonicalization issues, an assumed preprocessing
step to our semantic-enrichment algorithm, is beyond the scope of this paper.
We mention, however, that the motivation is to split the work of canonical-
ization (based on observations of syntactic layout) and semantic enrichment
(based on observations with respect to semantic resources such as WordNet and
a data-frame library). We and many others, especially in the document-analysis
community, are investigating the problem of table canonicalization [11]. Some
good results have been found, and better results are likely forthcoming. As a
direction for further work, it appears possible to synergistically exploit syntac-
tic/semantic interplay. For example, syntactic discovery of table orientation may
suggest semantic label/value-set associations when semantic resources fail to dis-
cover them, and semantic label analysis may suggest dimension-tree nesting even
when it is not obvious from syntactic layout.

Our semantic-enrichment algorithm assumes the existence of a good lexicon
and data-frame library, both rich in the domain knowledge about a table’s con-
tent. But what if these resources are unavailable or insufficiently provide seman-
tic information for a domain of interest? We offer two answers:

1. The semantic-enrichment algorithm (Figure 3) degrades gracefully. When
little or no semantic knowledge applies, the algorithm still successfully cre-
ates a semantic-model instance from a canonicalized table. Although addi-
tional syntactic clues enable the algorithm to perform better, it can succeed
based only on a proper division between values and labels, split into n di-
mensions for an n-dimensional table.

2. The semantic resources—the data-frame library in particular—can improve
itself with use through self-adaptation. Whenever the algorithm establishes a

358 S. Lynn and D.W. Embley

concept-values mapping, the system can update its data-frame recognizers by
adding any values not currently recognized—for example, the system could
add cities in Figure 2 not already recognized by the City data frame. The
system could also establish a new data frame for the library and initialize
its recognizers with information in the table. If, for example, a data frame
for Population did not already exist, the system could establish one based
on the information in the table in Figure 2. The system could also update
keywords and units for data frames—adding, for instance, from the table
in Figure 2 that populations can be expressed in units of millions and that
“Geographic Center” is a phrase connected with geographic coordinates.

The algorithm for semantic-enrichment, presented here, does not stand alone.
We envision it as part of a much larger system that automatically, or at least
semi-automatically, generates interesting semantic-web content from data-rich
web pages [2,13].

5 Concluding Remarks

We have described an an algorithm that automates the generation of semanti-
cally rich conceptual-model instances from canonicalized tables. The algorithm
uses a novel approach to semantic enrichment based on semantic knowledge
contained in lexicons and a data-frame library. Experimental results show that
the algorithm is able to automatically identify the concepts, relationships, and
constraints for data in a table with a relatively high level of accuracy—with
F-measures of 90%, 77%, and 90% respectively in web tables selected from the
geopolitical domain. These results are encouraging in our effort to automate the
conceptualization and annotation of semi-structured data and make the data
available on the semantic web.

Acknowledgements

We wish to thank the anonymous referees and also George Nagy for their insight-
ful comments on our paper. Although in agreement with their suggestions for
additional explanation, commentary, and illustrations, space constraints prevent
us from complying with their requests. We offer, however, on-line access to [8],3

which includes the requested figures illustrating an evolving conceptual model
and also the tables used in our experiments.

References

1. Embley, D.W., Campbell, D.M., Jiang, Y.S., Liddle, S.W., Lonsdale, D.W., Ng,
Y.-K., Smith, R.D.: Conceptual-model-based data extraction from multiple-record
web pages. Data & Knowledge Engineering 31(3), 227–251 (1999)

3 www.deg.byu.edu/papers

Semantically Conceptualizing and Annotating Tables 359

2. Embley, D.W., Liddle, S.W., Lonsdale, E., Nagy, G., Tijerino, Y., Clawson, R.,
Crabtree, J., Ding, Y., Jha, P., Lian, Z., Lynn, S., Padmanabhan, R.K., Peters,
J., Tao, C., Watts, R., Woodbury, C., Zitzelberger, A.: A comceptual-model-based
computational alembic for a web of knowledge. In: Proceedings of the 27th Inter-
national Conference on Conceptual Modeling, Barcelona, Spain (October 2008)

3. Faatz, A., Steinmetz, R.: Ontology enrichment with texts from the www. In: Pro-
ceedings of ECML—Semantic Web Mining, Helsinki, Finland (August 2002)

4. Gagliardi, H., Haemmerlé, O., Pernelle, N., Säıs, F.: An automatic ontology-based
approach to enrich tables semantically. In: Proceedings of The First International
Workshop on Context and Ontologies: Theory, Practice and Applications, Pitts-
burgh, Pennsylvania, July 2005, pp. 64–71 (2005)

5. Hignette, G., Buche, P., Dibie-Barthélemy, J., Haemmerlé, O.: Semantic annotation
of data tables using a domain ontology. In: Proceedings of the 10th International
Conference on Discovery Science (DS 2005), Sendai, Japan, pp. 253–258 (October
2007)

6. Jha, P., Nagy, G.: Wang notation tool: Layout independent representation of tables.
In: Proceedings of the 19th International Conference on Pattern Recognition ICPR
2008, Tampa, Florida (December 2008) (in press)

7. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. Journal of the Association for Computing Machinery 42(4), 741–
843 (1995)

8. Lynn, S.: Automating mini-ontology generation from canonical tables. Master’s
thesis, Department of Computer Science, Brigham Young University (2008)

9. Pazienza, M.T., Stellato, A.: An open and scalable framework for enriching on-
tologies with natural language content. In: Ali, M., Dapoigny, R. (eds.) IEA/AIE
2006. LNCS, vol. 4031, pp. 990–999. Springer, Heidelberg (2006)

10. Pivk, A., Sure, Y., Cimiano, P., Gams, M., Rajkovič, V., Studer, R.: Transforming
arbitrary tables into logical form with TARTAR. Data & Knowledge Engineer-
ing 60, 567–595 (2007)

11. Rahman, F., Klein, B.: Special issue on detection and understanding of tables and
forms for document processing applications. International Journal of Document
Analysis 8(2), 65 (2006)

12. Silva, A.C.e., Jorge, A.M., Torgo, L.: Design of an end-to-end method to extract
information from tables. International Journal of Document Analysis and Recog-
nition 8(2), 144–171 (2006)

13. Tijerino, Y.A., Embley, D.W., Lonsdale, D.W., Ding, Y., Nagy, G.: Toward on-
tology generation from tables. World Wide Web: Internet and Web Information
Systems 8(3), 261–285 (2005)

14. Zanibbi, R., Blostein, D., Cordy, J.R.: A survey of table recognition: Models, obser-
vations, transformations, and inferences. International Journal of Document Anal-
ysis and Recognition 7(1), 1–16 (2004)

Semantic Assistants – User-Centric
Natural Language Processing Services for

Desktop Clients

René Witte1 and Thomas Gitzinger2

1 Department of Computer Science and Software Engineering
Concordia University, Montréal, Canada

2 Institute for Program Structures and Data Organization (IPD)
University of Karlsruhe, Germany

Abstract. Today’s knowledge workers have to spend a large amount of
time and manual effort on creating, analyzing, and modifying textual
content. While more advanced semantically-oriented analysis techniques
have been developed in recent years, they have not yet found their way
into commonly used desktop clients, be they generic (e.g., word pro-
cessors, email clients) or domain-specific (e.g., software IDEs, biological
tools). Instead of forcing the user to leave his current context and use
an external application, we propose a “Semantic Assistants” approach,
where semantic analysis services relevant for the user’s current task are
offered directly within a desktop application. Our approach relies on an
OWL ontology model for context and service information and integrates
external natural language processing (NLP) pipelines through W3C Web
services.

1 Introduction

Consider the following scenarios: (1) A scientific journalist, while writing an
article on the global climate change, needs to find information on the role of
DMSP1 in the Atlantic marine biology. A Google search finds thousands of hits on
this topic, forcing our user to interrupt his writing in order to manually evaluate
the results. (2) A software developer, while editing code in his IDE, needs to
trace a method back to the requirements document in order to understand why
a certain feature was implemented. But requirements are not directly linked at
the source code level, forcing our developer to interrupt her code analysis and
switch to document retrieval and editing tools.

Both scenarios highlight two particularities of today’s desktop environments:
First, whenever dealing with textual information, users do not get any semantic
analysis support besides full-text information retrieval (and document search).
Although research in natural language processing (NLP) and text mining has
developed a large number of tools and applications within the last decade, like
1 DMSP stands for “Dimethylsulfoniopropionate” and is a component of the organic

sulfur cycle.

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 360–374, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Semantic Assistants – User-Centric NLP Services for Desktop Clients 361

machine translation, question-answering, summarization, topic detection, cluster
analysis, and information extraction [1], none of these newly developed technolo-
gies have materialized in the standard desktop tools commonly used by today’s
knowledge workers—such as email clients, software development environments
(IDEs), or word processors. This directly leads to the second observation: The
vast majority of users still relies on manual retrieval of relevant information
through an information retrieval tool or website and subsequent manual process-
ing of the (often millions of) results—forcing the user to interrupt his workflow
by leaving his current client and performing all the “natural language process-
ing” himself, before returning to his actual task.

The core idea of our Semantic Assistants approach is to take the existing
NLP frameworks, wrap concrete analysis pipelines in an OWL-based semantic
description that can be brokered through a service-oriented architecture (SOA),
and allow desktop clients to connect to this architecture with a plug-in inter-
face using Web services. The semantic analysis services, like question-answering
or summarization, then become available directly in the desktop tool used for
manipulating content. The following figure illustrates this idea:

NLP Service 1

NLP Service 2

NLP Service n

NLP Service
Result

Focused
Summarization

...

Client

− Parameter
− Calling an NLP Service

Word Processor

Server

The user is not concerned with the implementation or integration of these ser-
vices, from his point of view he only sees context-sensitive Semantic Assistants
relevant for his task at hand.

2 Requirements Analysis

In this section, we define the requirements for our Semantic Assistants more
precisely. As stated before, the central goal is to bring semantic text analysis
support to the end user, by integrating NLP systems with desktop clients:

Requirement #0: Semantic Assistants Architecture. Provide the in-
frastructure for bringing semantic services for content analysis and development
offered by NLP systems directly to end-user clients in a context-sensitive fashion.

An immediate observation is that a number of different user groups will be in-
volved in the creation of these assistants: language engineers, software engineers,
and end users. Hence, we adopt a separation of concerns: First, there is the role
of the end user. Considering his perspective, we think about a user working with
a client program enriched through semantic services, and not knowing or car-
ing much about the underlying technology. Secondly, we adopt the perspective of

362 R. Witte and T. Gitzinger

the system integrator. His role consists of “plugging” new clients or NLP services
into our architecture. System integrators form an important user group, because
with every client and every NLP service, they add value to the overall system.
Also, this group’s requirements can be quite different from those of the end user
group. Additionally, we define the role of the language engineer, who is actually
creating and developing the semantic services, like question-answering, summa-
rization, or information extraction. However, within this paper we do not discuss
the engineering of specific language services—a topic already widely discussed in
the literature[1]—since for the integration capabilities of our approach it should
be of no concern how a language service was created. Likewise, the language engi-
neer should not need to care about whether his NLP service will be integrated or
not. Therefore, within this paper, we simply assume that NLP services exist, and
do not inquire where they came from. Finally, we assume the system perspective,
where we take care of properties desirable for the system as a whole.

2.1 End User Requirements

“End users” is a very broad term, and necessarily so: we want to facilitate the
work of knowledge workers who use any kind of desktop client while working with
textual content. Word processors, email clients, PIMs and IDEs are used by a
large variety of users for numerous tasks. There should be no a priori assump-
tions; End user characters can range from secretaries to researchers to school
kids to housewives. In particular, this means that we cannot expect these users
to have any expertise in semantic technologies, language engineering, or software
engineering. The most important and obvious consequence from this observation
is the requirement to design a client-independent system architecture:
Requirement #1: Client Independence. The architecture must be open
and flexible with respect to the type of clients integrated with it.
Thus, the architecture must not be limited to any particular user group or soft-
ware type. It should even allow the connection of future clients that do not
currently exist.
Requirement #2: Context Sensitivity. Not every analysis method is suit-
able for every situation, user, or document, but can rather depend on language
capabilities (of both the users and analysis services), data formats, and the user’s
current goal and task.
In other words, Semantic Assistants must be equipped with some kind of context
model that captures the user’s context and matches it with applicable services
in order to be able to recommend helpful assistants.

2.2 System Integrator Requirements

The second group of users are system integrators: developers who integrate either
some client software or a new semantic service into our architecture. We want
to make their job as easy as possible by taking care of some important issues:
Requirement #3: Facilitate Client Integration. Clients in the form
of end-user applications or user agents partly acting on their own are the user’s

Semantic Assistants – User-Centric NLP Services for Desktop Clients 363

“entry door” to our architecture. Without such clients, the architecture is rather
useless, so Requirement #3 is a very fundamental one: Allow for the integra-
tion of any client, and enable developers to do this in an effective and efficient
manner.
After all, the main reason current desktop clients do not offer sophisticated
semantic NLP services is that their integration involves taking care of many
cumbersome details, like connection settings and remote procedure calls. Fur-
ther refining this requirement, we have to take care of two details: (1) Server
Abstraction: the integrator must be shielded from low-level communication de-
tails between the client and the server. (2) Implementation of Common Client
Functionality: Many clients will most likely have to fulfill some of the same or
similar tasks, like finding available NLP services, passing text from the desk-
top client, or retrieving results from the service. To avoid duplication of these
common functions, a reusable abstraction layer should be provided to system
integrators.
Requirement #4: Facilitate NLP Service Integration. NLP services
must not be hardcoded but rather discovered on-the-fly by the architecture.
This requirement allows for new services to be plugged into the architecture,
thereby becoming immediately available to any connected end-user client. In
order words, this requires the development of service metadata, based on a formal
specification.

2.3 System Requirements

Finally, we address some additional core architectural requirements that stem
from the point of view of the “system role.” First, it is quite plausible that
clients need to have a way to provide input to the semantic services they wish
to use—otherwise, these services would have nothing to work on:
Requirement #5: Intuitive Input Passing for Clients. Allow for an
easy transfer of unstructured data from the client to the analysis service.
Language services might require individual parameters, such as the length of
a summary to be generated. Some of these parameters can be automatically
determined by the architecture (such as input/output connections), but some
should be configurable by the end user. Therefore, we have:
Requirement #6: Control of Language Services. Provide a way to
transmit parameter values from the client to the actual language processing com-
ponent(s).
In particular, the architecture must enable parameter detection, client notifica-
tion of required parameters, and handle correct value assignment of individual
parameters to language services (e.g., the length of a summary to be generated).
Requirement #7: Flexible Result Handling. The final step in the pro-
cess of invoking a language service includes taking the result or results of the
service, wrapping it up in a response message and sending that message back to
the client.

364 R. Witte and T. Gitzinger

Here, the architecture must be capable of detecting the output(s) provided by
the language services: these can be new documents, stored in a file or database,
or annotations attached to an existing or newly retrieved document. Our archi-
tecture must therefore allow for a description of these outputs along with the
description of a language service. This description has to be detailed enough so
that the architecture knows how to capture and handle the produced output.
Furthermore, to allow for a simple client-side integration, we postulate a uniform
response format that must be expressive enough to capture all the various result
forms.

2.4 Related Work

Some previous work exists in building personalized information retrieval agents,
e.g., for the Emacs text editor [2] or Microsoft Word [3]. These approaches are
typically focused on a particular kind of application (e.g., emails or word process-
ing), whereas our approach is general enough to define NLP services independent
from the end-user application through an open, client/server infrastructure.

The most widely found approach for bringing NLP to an end user is the
development of a new interface (be it Web-based or a “fat client”). These appli-
cations, in turn, embed NLP frameworks for their analysis tasks, which can be
achieved through the APIs offered by frameworks such as GATE [4] or UIMA
[5]. The BioRAT system [6] targeted at biologists is an example for such a tool,
embedding GATE to offer advanced literature retrieval and analysis services.
In contrast with these approaches, we provide a service-oriented architecture to
broker any kind of language analysis service in a network-transparent way. Our
architecture can just as well be employed on a local PC as it can deliver focused
analysis tools from a service provider. For example, a commercial scientific pub-
lisher might want to offer a “related work finder” analysis service, similar to the
one presented by [7], to scientists writing research papers or proposals.

Recent work has been done in defining Web services for integrating NLP
components. In [8], a service-oriented architecture geared towards terminology
acquisition is presented. It wraps NLP components as Web services with clearly
specified interface definitions and thus allows language engineers to easily create
and alter concatenations of such components, also called processing configu-
rations. Their work is complimentary to our approach, since it addresses the
composition of NLP components into pipelines, whereas we are concerned with
semantic descriptions of existing pipelines and their integration with desktop
clients.

Close in spirit to our approach is the work performed by the Semantic Desktop
community [9]. The architectures developed in this area, like IRIS [10],2 aim
at deriving, maintaining, and exchanging semantic metadata between desktop
applications to provide better semantic support for end users. This work can
again be seen as complimentary to our approach, as the type of services offered
and their data granularity differs greatly.

2 The same holds for similar approaches, like Nepomuk, Gnowsis, or Haystack.

Semantic Assistants – User-Centric NLP Services for Desktop Clients 365

3 Semantic Assistants Design

We now describe the design of our Semantic Assistants, in particular the over-
all system architecture (Section 3.1) and our ontology-based NLP service and
context model (Section 3.2).

3.1 System Architecture

An overview of our system architecture developed for the stated requirements is
shown in Fig. 1. It is based on a typical multi-tier information system design.

W
riter

O
penO

ffice.org

P
lugin

C
lient

C
lient S

ide A
bstraction Layer

Tier 1: Clients

P
lugin

Tier 4: Resources

W
eb

application
N

ew

Tier 2: Presentation and Interaction Tier 3: Analysis and Retrieval

NLP Subsystem

Web Information System

NLP Service Connector

W
eb S

erver

Navigation

Annotation

Presentation

Service Invocation

Service Information

Language Services

Web/IS Connector

Question Answering

Index Generation

Information Retrieval

Information Extraction

Automatic Summarization

Language

Service

Descriptions

Indexed

Documents

External

Documents

Fig. 1. Architecture for integrating text analysis services and end-user clients

Tier 1: Clients. This tier has the main purpose of providing access to the
system. Typically, this will be an existing client (like a word processor or email
client), extended to connect with our architecture through a plug-in interface.
Besides facilitating access to the whole system, clients are also in part responsible
for presentation, e.g., of language service results. In addition to the actual client
applications, an abstraction layer is part of Tier 1. It shields the clients from
the server and provides common functionality for NLP services, as stipulated by
Requirement #3.
Tier 2: Presentation and Interaction. Tier 2 consists of a standard Web
server and a module labeled “NLP Service Connector” in the diagram. One
responsibility of this module is interaction, in that it handles the communica-
tion flows between the NLP framework and the Web server. Moreover, it pre-
pares language service responses, by collecting results from the NLP services
and transforming them into a format suitable for transmission to the client (Re-
quirement #7). Finally, the NLP Service Connector reads the descriptions of
the language services, and therefore “knows” the vocabulary used to write these
descriptions, as discussed in Requirement #4. In addition, our architecture can
also provide services to other (Web-based) information system, like a Wiki [11].
Tier 3: Analysis and Retrieval. Tiers 1 and 2 are the ones the user has direct
contact with. Tier 3 is only directly accessed by the NLP Service Connector. It

366 R. Witte and T. Gitzinger

contains the core functionality that we want, through Tiers 1 and 2, to bring
to the end user. Here, the semantic services reside, and the NLP subsystem in
whose environment they run (such as GATE or UIMA). Language services can
be added and removed from here as required.

Tier 4: Resources. The final tier “Resources” contains the descriptions of the
language services. These descriptions are read by the NLP Service Connector
so that it can satisfy its clients’ information needs. Whenever a new language
service is added to the architecture, its description must be added here, too
(Requirement #4). The vocabulary of these descriptions is based on an OWL
ontology using description logics (OWL-DL). Furthermore, indexed documents
as well as external documents (e.g., on the Web) count as resources.

3.2 The Semantic Assistants Ontology

As discussed in Requirement #2, in order to be able to recommend semantic ser-
vices relevant for the user’s current task, we need to model the current context,
which includes the user’s task, available services, the artifacts involved (services,
documents, etc.) and their languages. We previously developed an upper ontol-
ogy for supporting software processes [12], which we adapted for the Semantic
Assistants setting. It includes five essential concepts that form the basis of this
upper ontology, namely Artifact, Format, User, Language, and Task :

Format

Artifact

hasFormat

Language

hasLanguage

User

knowsLanguage

Task

hasTask

Artifacts include both content (documents, Web pages, etc.) and tools (such as
an NLP tool). Formats (e.g., OWL, XML, or PDF) have been modeled separately
from languages (both natural languages and artificial languages) as they are
largely orthogonal. Users are modeled with their language capabilites and the
tasks they need to perform.

Modeling Artifacts. We can now start to extend the Artifact concept of
the upper ontology with concepts required for Semantic Assistants (Fig. 2), as
stipulated by Requirement #4. We have just mentioned Tool as a sub-concept of
Artifact, a tool possibly processing artifacts as input and producing artifacts as
output (consumesInput and producesOutput relations). Additionally, a tool may
require parameters (hasParameter relation). For Semantic Assistants, documents
are a focal point. NLP services are often language-specific, so to be able to only
offer assistants relevant for the language of a document a user is working on,
and the language(s) he understands, we make use of the hasLanguage relation.

In order to work with documents, they often must somehow be identified
and retrieved. In particular, the server must be able to pull documents from a
networked source, including the Internet. Thus, when we model such an input

Semantic Assistants – User-Centric NLP Services for Desktop Clients 367

IOArtifact

Artifact

isActualArtifact isa

Tool

isProducedBy isa servesAsInputFor

Parameter

isa Document

isa

IdentifiableArtifact

isaconsumesInputproducesOutput

hasParameter

NaturalLanguageDocument

isa

Fig. 2. Modeling Artifacts in the Upper Ontology

document in our ontology, we must have a way to specify its URI (Uniform Re-
source Identifier) by which we can address it. As not only documents, but also
other artifacts like Web services have to be uniquely identified and addressed,
we introduce hasIdentifier as an optional property for artifacts. We define Iden-
tifiableArtifact as a class whose members are artifacts and have this property.
In practice, the identifier can, and often will, be a URI, but it does not have
to be. For example, if we have a set of elements with unique names, a simple
string can be enough. With hasIdentifier, we provide an important property on
the highest abstraction level, while leaving the exact semantics to the concrete
ontologies and the applications that use them.

The same tool can often produce different output (types), depending on both
how it is invoked (parameters) and the type of the input artifacts (if any). To
model this fact, we introduced a concept called IOArtifact, where information on
input and output relationships can be stored. We will show a more concrete use
of this concept in the following section, when we concretize the upper ontology.
By means of an isActualArtifact relation, we have IOArtifact individuals “point”
to Artifact individuals. They can be seen as proxies for artifacts.

Specializing the Upper Ontology. The upper ontology that we have just
introduced provides us with several concepts we need: artifacts, users, parameters,
tools, etc. However, to integrate NLP analysis tools on a semantic level, we have
to refine this abstract ontology for language services. While the overall design is
largely independent from a concrete NLP system, at this point we also introduce
concepts specific to our environment, which is based on GATE [4]. However, other
NLP subsystems (like UIMA [5]) can be integrated in a similar fashion.

To be able to offer semantic services to end users, we need to model existing
NLP analysis services, like summarization (Requirement #4). Towards this end,
we introduce new child concepts to the Tool concept, classifying language services
into two categories: IRTool and NLPTool. The semantics that we want to convey
by this separation is that an information retrieval tool (IRTool) finds documents,
but leaves them untouched, while an NLP tool processes documents and typically
generates some new artifact(s) from them. For NLP tools, input and output
natural languages can be specified, if they are language-specific. A GATEPipeline

368 R. Witte and T. Gitzinger

is an analysis service with a certain format that can perform either type (or both)
of document processing. Instances of GATEPipeline are the language services
we offer the user through our architecture.

Language

NaturalLanguage

isa

Parameter

GATERuntimeParameter

isa

Artifact

hasLanguageisa

ParameterValuePair

isa

GATECorpus

isa

Tool

isaservesAsInputFor isProducedBy

IOArtifact

isa

GATEAnnotation

isa

parameter

NLPTool

hasOutputNaturalLanguage hasInputNaturalLanguage

hasParameter

consumesInputproducesOutput

isa IRTool

isa

GATEPipeline

isa

isActualArtifact

GATE_OutputArtifact

isa

necessaryParameterSetting

urlGivenByParameter

Fig. 3. Additional classes introduced in the specialized ontology

To be able to invoke concrete services, we also have to extend the Artifact
concept. A GATECorpus represents a collection of documents, which typically
serves as input for a language service. GATEAnnotation instances describe the
information that language services add to a document during processing, in-
cluding their result output. GATERuntimeParameter models parameters that
control certain aspects of a GATE pipeline, and is introduced as a sub-concept
to the already existing Parameter concept. Along with these artifact types, we
have to introduce corresponding new formats (remember that artifacts are re-
quired to have a format). These are defined under the common parent concept
of GATEFormat, which is a child of the Format concept.

We mentioned earlier that output formats can change depending on both
parameters passed to a tool (like a GATE pipeline) and its input document,
which led to the introduction of the IOArtifact concept. To allow our architecture
to automatically retrieve the obtained result and deliver it to the end user, we
introduce the GATE OutputArtifact. Instances of GATE OutputArtifact have
a property necessaryParameterSetting, thus connecting an output artifact to a
certain parameter value. This parameter value is represented through an instance
of a newly introduced concept called ParameterValuePair.

4 Implementation

We now discuss selected aspects of the current implementation of our archi-
tecture and briefly describe the process of integrating new (desktop) clients in
Section 4.5.

Semantic Assistants – User-Centric NLP Services for Desktop Clients 369

4.1 Language Service Description and Management

We start discussing the implementation from the status quo, a common
component-based NLP framework—in our case, GATE [4]. The NLP subsystem
allows us to load existing language services, provide them with input documents
and parameters, run them, and access their results. The GATE framework’s API
also permits to access all the artifacts involved in this process (documents, gram-
mars, lexicons, ontologies, etc.). Language services take the form of (persistent)
pipelines or applications in GATE, which are composed of several sequential
processing resources or PRs. As mentioned in Section 2, creating a language
service (e.g., for summarization or question-answering) is the responsibility of a
language engineer, and need not further concern us here.

Our ontology described in the previous section has been implemented using
OWL-DL.3 For each deployed language service, the corresponding entries in
the Semantic Assistants ontology need to be created and stored on the server-
side (Fig. 1, Tier 4). This permits us to dynamically find, load, parametrize,
and execute available language services, based on the user’s current task and
language capabilities (this is further discussed in Section 4.4). Additionally, the
ontology contains all information needed to to locate and retrieve the result(s)
delivered (Requirement #7).

4.2 Web Services

Thus far, we can search, load, parametrize, and execute language services. How-
ever, all input/output channels are still local to the context of the NLP frame-
work’s process. To make NLP services available in a distributed environment, we
have to add network capabilities, which we achieve using Web services, a standard
defined by the W3C:4 “A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL5). Other systems in-
teract with the Web service in a manner prescribed by its description using SOAP6

messages, typically conveyed using HTTP with an XML serialization in conjunc-
tion with other Web-related standards.” In essence, a requester agent has to know
the description of a Web service to know how to communicate with it, or, more ac-
curately, with the provider agent implementing this Web Service. It can then start
to exchange SOAP messages with it in order to make use of the functionality of-
fered by the service. Provider agents are also referred to as Web service endpoints.
Endpoints are referenceable resources to which Web service messages can be sent.
Within our architecture (Fig. 1), the central piece delivering functionality from
the NLP framework as a Web service endpoint is the NLP Service Connector. Our
implementation makes use of the Web service code generation tools that are part
of the Java 6 SDK and the Java API for XML-Based Web services (JAX-WS).7

3 OWL Web Ontology Language Guide, http://www.w3.org/TR/owl-guide/
4 Web Services Architecture, see http://www.w3.org/TR/ws-arch/
5 Web Services Description Language (WSDL), see http://www.w3.org/TR/wsdl
6 Simple Object Access Protocol, see http://www.w3.org/TR/soap/
7 Java API for XML-Based Web Services (JAX-WS), see https://jax-ws.dev.java.net/

http://www.w3.org/TR/owl-guide/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap/
https://jax-ws.dev.java.net/

370 R. Witte and T. Gitzinger

With all necessary artifacts in place, we can now generate and publish the Web
service. The JAX-WS API provides convenient functions for this, so that, with two
lines of source code (comments not counted), we can start a Web server integrated
with the Java environment, and publish the Web service at an address of our choice:
// Create SSB instance
SemanticServiceBroker agent = new SemanticServiceBroker();
// Publish SSB instance as Web service endpoint
Endpoint endpoint = Endpoint.publish("http://localhost/...", agent);

4.3 The Client-Side Abstraction Layer (CSAL)

We have just published a Web service endpoint, which means that the server
of our architecture is in place. On the client side, our client-side abstraction
layer (CSAL) is responsible for the communication with the server. This CSAL
offers the necessary functionality for clients to detect and invoke brokered lan-
guage services. The implementation essentially provides a proxy object (of class
SemanticServiceBroker), through which a client can transparently call Web
services. A code example, where an application obtains such a proxy object and
invokes the getAvailableServices method on it to find available language
analysis services, is shown below:
// Create a factory object
SemanticServiceBrokerService service = new SemanticServiceBrokerService();
// Get a proxy object, which locally represents the service endpoint (= port)
SemanticServiceBroker broker = service.getSemanticServiceBrokerPort();
// Proxy object is ready to use. Get a list of available language services.
ServiceInfoForClientArray sia = broker.getAvailableServices();

4.4 Dynamic Assistant Generation

The ontology described in Section 3.2 contains the information needed to dynam-
ically find, load, parametrize, and execute available language services, based on
user’s current task and language capabilities. In our implementation, it is queried
using Jena’s SPARQL8 interface, using the context information delivered by the
client plug-in, in order to recommend applicable Semantic Assistants.

For example, when a recommendation request is received, with a context
object saying the user knows English and German, the generated SPARQL query
should restrict the available services to those that deliver English or German as
output language. A simplified version of such a generated query is shown below:

SELECT ?x ?name
WHERE { ?x sa:hasGATEName ?name .

{?x cu:hasFormat sa:GATECorpusPipeline_Format} . {
{?x sa:hasOutputNaturalLanguage cu:en} UNION

{?x sa:hasOutputNaturalLanguage cu:de}}
}

Once the SPARQL query has been generated, it is passed to the OntModel
instance containing the language service descriptions. The results are then re-
trieved from this object, converted into the corresponding client-side versions,
and returned to the client.
8 SPARQL Query Language for RDF, see http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-sparql-query/

Semantic Assistants – User-Centric NLP Services for Desktop Clients 371

4.5 Client Integration

After describing the individual parts of our architecture’s implementation, we
now show how they interact from the point of view of a system integrator adding
Semantic Assistants to a client application. The technical details depend on the
client’s implementation: If it is implemented in Java (or offers a Java plug-in
framework), it can be connected to our architecture simply by importing the
CSAL archive, creating a SemanticServiceBrokerService factory, and calling
Web services through a generated proxy object. After these steps, a Java-enabled
client application can ask for a list of available language services, as well as invoke
a selected service. The code examples shown above demonstrate that a developer
can quite easily integrate his application with our architecture, without having
to worry about performing remote procedure calls or writing network code.

A client application developer who cannot use the CSAL Java archive still has
access to the WSDL description of our Web service. If there are automatic client
code generation tools available for the programming language of his choice, the
developer can use these to create CSAL-like code, which can then be integrated
into or imported by his application.

5 Application

In this section, we present a real-world application scenario for our architecture:
the integration of Semantic Assistants into a word processor.

5.1 The OpenOffice.org Writer Plug-In

Word processor applications are one of the primary tools of choice for many users
when it comes to creating or editing content. Thus, they are an obvious candidate
for our approach of bringing advanced NLP support directly to end users in form
of Semantic Assistants. We selected the open source OpenOffice.org9 application
Writer for integration. With its plug-in framework, extensions can easily be
added to any OpenOffice.org application.

Following the steps described in Section 4.5, we developed a Java plug-in
for Writer that offers the functionality to connect with our architecture, in-
quire about available language services, offers additional dialogs for selecting
services and setting required parameters, and handles passing of input docu-
ments and NLP results. Depending on the selected language service, either the
full document a user is working on can be sent to the language service, or only
a highlighted text segment. On the back-end, we integrated some of the lan-
guage services we developed for other projects, which include index generation,
automatic summarization, and question-answering (focused summarization).

Our plug-in creates a new menu entry “Semantic Assistants,” as shown in
Fig. 4. In this menu, the user can inquire about available services, which are
selected based on the client (here Writer) and the available languages, as de-
scribed in Section 4.4. The dynamically generated list of available services is then
9 Open source office suite OpenOffice.org, see http://www.openoffice.org/

http://www.openoffice.org/

372 R. Witte and T. Gitzinger

Fig. 4. “Semantic Assistants” menu entry in OpenOffice.org Writer

presented to the user, together with a brief description, in a separate window.
The user can then select an assistant and execute it. In case the service requires
additional parameters, such as the length of a summary to be generated, they
are detected by our architecture through the OWL-based service description and
requested from the user through an additional dialog window.

Once invoked, the language service is executed asynchronously by our archi-
tecture, allowing the user to continue his work (he can even execute additional
services). Note that all low-level details of handling language services, such as
metadata lookup, parametrization, and result handling, are hidden from the
client plug-in through our client-side abstraction layer.

5.2 Example Use Case

One direct use case of our Semantic Assistants is to satisfy information needs of
a knowledge worker. As motivated in Section 1, language services can deliver fo-
cused analysis results directly within the client—here a word processor—needed
to perform a task, rather than interrupting the user’s workflow by forcing him
to perform an external (Web) search.

Let us go back to the example scenario stated in the introduction: a scien-
tific journalist who is writing a report on the global climate change and needs
information on the role of “DMSP in the Atlantic marine biology.” Using our
Semantic Assistants, he can simply highlight this phrase in the editor and select
the “Web Retrieval Summarizer.” This is a compound assistant that performs

Fig. 5. The result of the “Web Retrieval Summarizer” Semantic Assistant, answering
the user’s question, is presented as a new Writer document

Semantic Assistants – User-Centric NLP Services for Desktop Clients 373

two tasks: In a first step, a selected number of hits from a Yahoo! search using
the highlighted phrase is retrieved to build a corpus on-the-fly. This corpus is
then fed into the multi-document summarizer ERSS [13] to produce a summary
answering the question(s) (a so-called focused summary). All these actions are
performed in the background, allowing the user to continue with other parts of
his report. When the summary is ready, the architecture notifies the plug-in,
which then presents the generated summary in a new window (Fig. 5). The user
can now inspect the result, refine it, and continue with other parts of the report.

6 Conclusions and Future Work

In this paper, we presented the idea of “Semantic Assistants” that aim to help
users dealing with the proverbial information overload. In particular, we ad-
dress end-users that need to find, analyze, or write any kind of textual content.
The central idea of our work is that such support should be offered directly
integrated into the clients users are accustomed to when working on natural
language data: their email clients, Web browsers, word processors or editors.
Thus, instead of offering analysis services through a Web interface or custom-
build applications, we propose to integrate them directly into end-user clients
by means of a service-oriented architecture, based on W3C Web services. An
important design goal of our architecture is that it should be as easy as possible
to integrate existing clients through plug-in frameworks on the user side, and
new semantically-oriented NLP services on the server side.

Our work is the first that aims to bring existing NLP analysis services directly
to end users. We believe this is an important goal as there have been numerous
advances in the areas of NLP and text mining over the last decade—but none
of the newly developed tools have yet found their way into today’s desktop
environments. Rather, in order to find and process content, users still have to
leave their application of choice and perform an external (desktop or Internet)
search, forcing a mentally expensive context-switch. In our paradigm, desktop
applications can directly react to the user’s need for retrieving and analyzing
content by offering semantically-oriented services, such as question-answering or
summarization, within the same interface. We achieve this by adding a layer of
“semantic glue” using an OWL-DL context and service ontology that permits
us to connect the existing, but so far separated, worlds of desktop applications
and NLP frameworks in a way that brings added value to end users.

Our implementation shows that these ideas can be implemented with cur-
rent, off-the-shelf tools and open standards. A first practical evaluation of our
approach, by integrating a major open source application, the OpenOffice.org
Writer program, proves that the Semantic Assistants concept can be deployed
on a contemporary desktop environment. Future user studies will need to be
performed to evaluate the impact of such services on the completion of prede-
fined tasks; however, this will obviously highly depend on the selected type of
client, the tasks, and the deployed language services and must therefore not be
confused with the evaluation of our architecture and ontology model as such.

374 R. Witte and T. Gitzinger

Obviously, many extensions are still possible throughout the architecture, but
the one most beneficial to end users will be the development of new client plug-
ins, bringing further semantic support to, e.g., email clients (searching for rel-
evant information and providing answers to questions), software development
environments (linking code to its documentation and offering support when mod-
ifying either side), or domain-specific tools (like for biologists or architects).

We believe that bringing the existing, hard-won advances in natural lan-
guage processing, like question-answering, summarization, or opinion mining,
to a larger user base will have significant impact on the fields of NLP, semantic
desktop research, and software engineering work. Users can directly benefit from
a large number of developed technologies that so far have been limited to expert
users and proprietary commercial applications. The developed architecture will
be made available under an open source license, which we hope will foster a
vibrant ecosphere of client plug-ins.

References

1. Feldman, R., Sanger, J.: The Text Mining Handbook: Advanced Approaches in
Analyzing Unstructured Data. Cambridge University Press, Cambridge (2006)

2. Rhodes, B.J., Maes, P.: Just-in-time Information Retrieval Agents. IBM Syst.
J. 39(3-4), 685–704 (2000)

3. Colbath, S., Kubala, F.: TAP-XL: An Automated Analyst’s Assistant. In: Proc.
NAACL 2003, ACL, pp. 7–8 (2003)

4. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In: Proc. of the 40th Anniversary Meeting of the ACL (2002), http://gate.ac.uk

5. Ferrucci, D., Lally, A.: UIMA: An Architectural Approach to Unstructured In-
formation Processing in the Corporate Research Environment. Natural Language
Engineering 10(3-4), 327–348 (2004)

6. Corney, D.P., Buxton, B.F., Langdon, W.B., Jones, D.T.: BioRAT: Extracting
Biological Information from Full-Length Papers. Bioinformatics 20(17), 3206–3213
(November 2004)

7. Zeni, N., Kiyavitskaya, N., Mich, L., Mylopoulos, J., Cordy, J.R.: A lightweight
approach to semantic annotation of research papers. In: Kedad, Z., Lammari, N.,
Métais, E., Meziane, F., Rezgui, Y. (eds.) NLDB 2007. LNCS, vol. 4592, pp. 61–72.
Springer, Heidelberg (2007)

8. Cerbah, F., Daille, B.: A service oriented architecture for adaptable terminology
acquisition. In: Kedad, Z., Lammari, N., Métais, E., Meziane, F., Rezgui, Y. (eds.)
NLDB 2007. LNCS, vol. 4592, pp. 420–426. Springer, Heidelberg (2007)

9. Decker, S., Park, J., Quan, D., Sauermann, L. (eds.): Proc. of the 1st Workshop on
The Semantic Desktop, Galway, Ireland, CEUR Workshop Proceedings, vol. 175
(November 6, 2005), CEUR-WS.org

10. Cheyer, A., Park, J., Guili, R.: IRIS. Integrate. Relate. Infer. Share. In: [9] (2005)
11. Witte, R., Gitzinger, T.: Connecting Wikis and Natural Language Processing Sys-

tems. In: Proc.of the 2007 Intl. Symp. on Wikis, WikiSym 2007 (2007)
12. Rilling, J., Meng, W.J., Witte, R., Charland, P.: A Story Driven Approach to

Software Evolution. IET Software (2008)
13. Witte, R., Bergler, S.: Fuzzy clustering for topic analysis and summarization of doc-

ument collections. In: Kobti, Z., Wu, D. (eds.) Canadian AI 2007. LNCS, vol. 4509,
pp. 476–488. Springer, Heidelberg (2007)

http://gate.ac.uk
CEUR-WS.org

Exploiting Gene Ontology to Conceptualize
Biomedical Document Collections

Hai-Tao Zheng, Charles Borchert, and Hong-Gee Kim

Biomedical Knowledge Engineering Laboratory, Seoul National University
28 Yeongeon-dong, Jongro-gu, Seoul, Korea

hgkim@snu.ac.kr

Abstract. As biomedical science progresses, ontologies play an increas-
ingly important role in easing the understanding of biomedical informa-
tion. Although much research, such as Gene Ontology annotation, has
been proposed to utilize ontologies to help users understand biomedi-
cal information easily, most of the research does not focus on capturing
gene-related terms and their relationships within biomedical document
collections. Understanding key gene-related terms as well as their seman-
tic relationships is essential for comprehending the conceptual structure
of biomedical document collections and avoiding information overload
for users. To address this issue, we propose a novel approach called
‘GOClonto’ to automatically generate ontologies for conceptualization of
biomedical document collections. Based on GO (Gene Ontology), GO-
Clonto extracts gene-related terms from biomedical text, applies latent
semantic analysis to identify key gene-related terms, allocates documents
based on the key gene-related terms, and utilizes GO to automatically
generate a corpus-related gene ontology. The experimental results show
that GOClonto is able to identify key gene-related terms. For a test
biomedical document collection, GOClonto shows better performance
than other clustering algorithms in terms of F-measure. Moreover, the
ontology generated by GOClonto shows a significant informative concep-
tual structure.

1 Introduction

In the biomedical domain, ontologies have been widely used to represent sets of
concepts and the relationships between those concepts. With increasing biomed-
ical information availability, much research, such as Gene Ontology annotation,
has been proposed to utilize ontologies to help users understand the information
easily. However, most of the existing methods do not use ontologies to help users
directly capture key gene-related terms and their relationships within biomedical
document collections. In this paper, key gene-related terms are considered as the
most important gene-related terms to which a biomedical document collection are
related. Understanding key gene-related terms and their semantic relationships is

� Corresponding author.

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 375–389, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

376 H.-T. Zheng, C. Borchert, and H.-G. Kim

essential for comprehending the conceptual structure of biomedical document col-
lections and avoiding information overload for users. Since GO (Gene Ontology)
[1] provides a controlled vocabulary to describe gene and gene product attributes
in any organism, it can be used to represent knowledge related to biomedical docu-
ment collections on a conceptual level. Using a corpus-related gene ontology, which
is a subset of Gene Ontology, users can easily visualize not only to which key gene-
related terms the documents are related, but also the semantic relationships be-
tween groupings of the documents, via these gene-related terms.

In this study, we propose a novel approach called ‘GOClonto’ to identify the
key gene-related terms and automatically generate corpus-related gene ontolo-
gies based on these key gene-related terms, for conceptualization of biomedical
document collections. GOClonto has been developed from the Clonto method,
which focuses on using WordNet to conceptualize general document corpora [2].
Conceptualization of biomedical document collections here means representing
document collections with a set of key gene-related terms and their semantic
relationships, which can help users more easily understand biomedical docu-
ment contents. First, GOClonto extracts gene-related terms that are contained
in GO, which we call GO-terms, from a biomedical document collection. Then,
GOClonto applies LSA (latent semantic analysis) to identify key GO-terms, al-
locates documents based on these key GO-terms, and uses GO to automatically
generate a corpus-related gene ontology. Finally, the biomedical documents are
linked to the ontology through key GO-terms. The main contribution of this
paper is proposing a novel method that exploits GO to automatically generate
ontologies for conceptualizing biomedical document collections.

The rest of the paper is organized as follows: Section 2 discusses the related
work. Section 3 elaborates the GOClonto method to show the process of key GO-
term identification and ontology generation. Section 4 presents our experimental
results. We give our conclusion and future work in section 5.

2 Related Work

To help users better understand the structure of document collections, several
clustering algorithms that extract meaningful labels for documents have been
proposed. Zamir et al [3,4] proposed a phrase-based document clustering ap-
proach based on suffix tree clustering, which uses shared suffixes to identify and
label base clusters of documents and combines them into final clusters. Schock-
aert et al [5] developed a clustering method using Fuzzy Ants, which uses ant
colony optimization principles to find good partitions of the data. Lang et al
[6] presented an algorithm for web search results clustering based on Tolerance
Rough Set (TRS), which is able to deal with vagueness and fuzziness and is used
to model relations between terms and documents. Osinski et al [7] proposed
a concept-driven algorithm for clustering search results, the Lingo algorithm,
which uses LSA (Latent Semantic Indexing) techniques to separate search re-
sults into meaningful labeled groups.

To better visualize document collections, a number of exploratory visualiza-
tion tools are described in [8]. Olsen [9] developed a document visualization

Exploiting Gene Ontology 377

system called VIBE. Grobelnik et al [10] presented a system for visualization
of large amounts of new stories. Fortuna et al [11] used LSI techniques for vi-
sualization of text document collections. Zhu [12] introduced the design and
application of an integrated exploratory visualization system called Storylines.
Shaw et al [13] describes a three-dimensional volumetric interactive information
visualization system for management and analysis of document collections. In
the Semantic Web community, Fluit et al [14] described several applications for
ontology-based information visualization. For example, an ontology-based visu-
alization tool, AutoFocus, was proposed to display search results for documents
on desktops as clusters of populated concepts. Thai et al [15] presented IVEA
(Information Visualization for Exploratory Document Collection Analysis), a
visualization tool which employs the PIMO (Personal Information Model) on-
tology to provide knowledge workers with an interactive interface allowing them
to browse for information in a personalized manner.

However, the above methods are only proposed for general purposes of docu-
ment conceptualization, and they do not identify GO-terms found in biomedical
text. To deal with this problem, much research has been proposed related to GO-
term annotation[16,17,18,19,20]. Hill et al [19] addressed the question of what
GO annotations signify and of how they are created by working with biologists.
Camon et al [17] presented the GOA (Gene Ontology Annotation) database,
which aims to provide high-quality electronic and manual annotations to the
UniProt Knowledgebase (Swiss-Prot, TrEMBL and PIR-PSD) using the stan-
dardized vocabulary of the Gene Ontology. Bada et al [16] presented GOAT,
which aims to aid the user in the annotation of gene products with GO terms
by displaying those field values that are most likely to be appropriate based on
previously entered terms. Seki et al [20] described an application of IR (Infor-
mation Retrieval) and text categorization methods to a highly practical problem
in biomedicine, specifically, Gene Ontology annotation. In addition, many GO
based annotation tools are listed in [18]. Differing from the GO based annotation
methods’ focus on identifying GO-terms in biomedical text, GOClonto is focused
on applying LSA to identify the key GO-terms and exploit their semantic re-
lationships within biomedical document collections. The ontology generated by
GOClonto is specifically used to help users understand the conceptual structure
of a biomedical document collection. To the best of our knowledge, the idea of
GOClonto has not been researched in detail until now.

3 The GOClonto Method

Figure 1 shows the overview of the GOClonto method. First, a biomedical docu-
ment collection is preprocessed into GO-term frequency files, in which each doc-
ument is represented as a list of its GO-term frequencies. Second, the inverted
document frequency of each term is calculated and each term weight is computed
by multiplying the term frequency and inverted document frequency. Inverted
term-document files are generated for each GO-term and the term-document ma-
trix is constructed based on term weights. Third, based on the term-document

378 H.-T. Zheng, C. Borchert, and H.-G. Kim

Fig. 1. An overview of the GOClonto method

matrix, we conduct key GO-term induction using LSA techniques. Fourth, with
the list of key GO-terms, we allocate the related documents for each of the key
GO-terms. Fifth, using GO, each key GO-term’s superclass GO-terms are de-
tected and used to construct a corpus-related gene ontology, which is a subset
of GO. Sixth, documents are linked to the ontology through the identified key
GO-terms.

To identify the key GO-terms for a biomedical document collection, extracting
all of the literally contained GO-terms is the first step. Since GO-terms can be
single terms or phrases, GOClonto employs CRFTagger [21] and CRFChunker
[22] to perform POS (Part-of-Speech) tagging and phrase chunking respectively.
Based on the tagging and chunking results, GOClonto utilizes GO to determine
whether or not the terms in the result are GO-terms. With the extracted GO-
terms, GOClonto manages documents based on the vector space model (VSM).
VSM is a method of information retrieval that uses linear-algebra operations
to compare textual data. VSM associates a single multidimensional vector with
each document in a collection, and each component of that vector reflects a
particular keyword or term related to the document. Based on VSM, GOClonto
represents a set of documents by arranging their vectors in a term-document
matrix.

Next, GOClonto applies LSA to analyze the constructed term-document ma-
trix. Unlike VSM, LSA aims to represent the input collection using abstract
terms found in the documents rather than the literal terms appearing in them.
To do this, LSA approximates the original term-document matrix using a limited
number of orthogonal factors. These factors represent a set of abstract terms,
each conveying some idea common to a subset of the input collection. In the
GOClonto method, these terms are used as key GO-terms for representing the
biomedical document collections. Since subclasses of GO-terms are useful to cap-
ture more specific meanings of the GO-terms, the subclasses of the key GO-terms
are identified among the frequent GO-terms. Then, documents are clustered and
assigned to groups based on each GO-term along with its subclass GO-terms.
Based on GO, superclasses of these GO-terms are detected and used to gener-
ate a corpus-related gene ontology automatically. Documents are linked to the
ontology through the key GO-terms we have identified.

Exploiting Gene Ontology 379

3.1 Preprocessing and Term-Document Matrix Construction

At the preprocessing stage, we first conduct the tokenization to split a biomedical
document into sentences. Second, using CRFtagger [21], which is a Java-based
conditional random fields POS Tagger for English, we perform the POS tagging.
Third, to identify the noun phrases in a document, CRFChunker [22], a Java-
based conditional random fields phrase chunker, is employed. With the identified
nouns and noun phrases, GOClonto determines whether or not the nouns or noun
phrases are GO-terms by referencing GO. To illustrate the ideas of GOClonto,
we use a simple example collection of d = 8 documents (Fig. 2(a)), in which t = 5
GO-terms (Fig. 2(b)) appear more than once and thus are treated as frequent.
We can see that GOClonto not only extracts single-word GO-terms, but also
multi-word GO-terms.

Fig. 2. A biomedical document collection example

To construct the term-document matrix, the tfidf (term frequency-inverted
document frequency) is applied to calculate the weights of terms. In the vector
space model, a document d is represented as a feature vector d = (tft1 , ..., tfti),
where tft returns the absolute frequency of term t ∈ T in document d ∈ D, where
D is the document collection and T = {t1, t2, ..., ti} is the set of all different terms
occurring in D. To weigh the frequency of a term in a document with a factor
that discounts its importance when it appears in almost all of the documents,
the idf (inverted document frequency) of term t in document d is proposed by
Salton et al [23] as follows:

idft = log2n− log2dft + 1 (1)

where dft is the document frequency of term t that counts how many docu-
ments in which term t appears. Consequently, the tfidf measure is calculated as
the weight wt of term t:

wt = tft × idft (2)

With the weight wt of term t, the inverted file of term t is constructed, which
contains the related documents of term t. For the example we used (Fig. 2), after
calculating the term weights, each document is represented as a feature vector,
which is used to compose the term-document matrix A as shown in Figure

380 H.-T. Zheng, C. Borchert, and H.-G. Kim

3(a). In this matrix, each column vector represents each document, and each
row vector denotes each term extracted to represent the documents’ features.
In our example, the first row represents the term GO-T1 ‘cell’, the second row
represents the term GO-T2 ‘nucleus’ and so on through the terms listed in Figure
2(b). Similarly, the columns denote the documents listed in Figure 2(a). The first
column represents document D1, the second column represents document D2,
and so on.

Fig. 3. Matrices used for the key GO-term induction

3.2 Key GO-Term Induction

To conduct the key GO-term induction, we apply LSA to process the term-
document matrix by performing the singular value decomposition (SVD) of ma-
trix A (Fig. 3(a)), which breaks it into three matrices (U, S, and V) such that
A = USVT . LSA finds a low-rank approximation to the term-document matrix.
It turns out that when we select the k largest singular values from S (Fig. 3(b)),
and their corresponding singular vectors from U (Fig. 3(c)) and V, we get the
rank k approximation to A with the smallest error. In addition, SVD translates
the term and document vectors into a concept space. The first r columns of U
(where r is A’s rank) form an orthogonal basis for the term-document matrix’s
term space. Therefore, basis vectors, which are the column vectors in U, are
vector representations of the documents’ abstract terms.

In practice, if we take all r basis vectors as abstract terms it would result in
an unmanageable number of GO-terms selected as key. The singular values of
the A matrix (lying on the S matrix shown in Figure 3(b)) are used to deter-
mine how many columns of U (Fig. 3(c)) should actually proceed to the next
stage of the algorithm. In our example, based on the threshold we set as 1.2
empirically, the number of singular values that is higher than the threshold is
k = 3. Consequently, the matrix M, which represents the importance of ab-
stract terms, is obtained by setting M = UT

k (Fig. 3(d)). The importance of a
GO-term means the extent to which a given GO-term relates to the biomedi-
cal document collection. Based on M, we extract the highest value of each row
because each column of M denotes the importance of corresponding GO-terms.
Finally, the corresponding GO-terms with the highest value in each row are se-
lected as key GO-terms. In our example, in the first row, the third column, which

Exploiting Gene Ontology 381

corresponds to the GO-term GO-T3 ‘organelle’, has the highest absolute value,
0.67. Therefore, GO-T3 ‘organelle’ is selected as the first GO-term to represent
the document collection. Similarly, in the second row, the fifth column has the
highest absolute value, 0.73, and its corresponding term GO-T5 ‘cytoplasm’ is
selected. In the third row, the fourth column has the highest absolute value,
0.88, and its corresponding term GO-T4 ‘plasma membrane’ is selected.

3.3 Document Allocation and Ontology Generation

We allocate the biomedical documents by matching them to related key GO-
terms. This process is similar to extracting related documents for a query in
information retrieval models. GOClonto uses the key GO-terms as queries. To
improve the recall of information retrieval, query expansion is a widely used
method. Similarly, we employ GO to find subclass GO-terms of the key GO-
terms among the frequent GO-terms in the biomedical document collections.
Documents are allocated to each key GO-term based on the cosine similarity
between each document and the set including key GO-terms and their subclass
GO-terms. For each key GO-term, if the cosine similarity between a document
and the key GO-term exceeds a predefined threshold, the document is allocated
to the corresponding group represented by the key GO-term. This assignment
method naturally creates overlapping groups and well handles cross-topic docu-
ments. In our example, the key GO-terms are GO-T3 ‘organelle’, GO-T5 ‘cyto-
plasm’, and GO-T4 ‘plasma membrane’. The allocation results of our example
are shown in Figure 4.

To generate an ontology based on a set of key GO-terms, we develop an
algorithm called corpus-related gene ontology generation algorithm (Algorithm
1). This algorithm uses a set of key GO-terms and their subclass GO-terms,
which are identified among the frequent GO-terms in a document collection, as
input. A tree structure is used to store GO-terms and their subclass GO-terms,
each tree node representing a GO-term, and its subclass GO-terms stored as
subnodes of this tree node. α is a list of tree nodes storing GO-terms, initially
containing the original input. For each iteration, a tree node tj whose GO-term
is not the root in GO is selected from α. We obtain p, the direct superclass

Fig. 4. Related document allocation results for each key GO-term

382 H.-T. Zheng, C. Borchert, and H.-G. Kim

Algorithm 1. Corpus-related gene ontology generation algorithm
Input: η ← a set of key GO-terms and their subclass GO-terms
Output: a corpus-related gene ontology O in OWL format
α ← Empty list {α is a list of tree nodes storing GO-terms used to construct the
ontology}
for each GO-term gi in η do

Create tree node ti that represents gi

Add ti to α

end for
while α has more than one tree nodes do

Get a tree node tj from α whose GO-term is not the root in GO
Get the direct superclass GO-term p of tj ’s GO-term from GO
Create tree node pr that represents p

if pr is not found in α then
Add pr to α

end if
Set tj as subnode of pr

Remove tj from α

end while
Output the last tree node in α as a corpus-related gene ontology O in OWL format

GO-term of tj ’s GO-term from GO, and create tree node pr corresponding to p.
pr is checked for presence in α by recursively looking up all the tree nodes and
their subnodes. If pr is not contained in α, pr is added to α. Next, the tree node
tj is added as pr’s subnode. tj is removed from α because tj has been added as
a subnode of pr. Finally, when the common superclass GO-term of all the input
GO-terms is found, the tree node having this common superclass GO-term as its
root, the last item in α, represents the generated ontology. GOClonto recursively
stores the whole tree into an OWL file [24].

Fig. 5. Generated ontology of the document collection example in GOClonto

Figure 5 shows the generated ontology of our example in the user interface
of the tool ‘GOClonto’, which helps users conceptualize a biomedical document
collection by automatically generating a corpus-related gene ontology. The doc-
uments, having been allocated to their related key GO-terms, are then linked to

Exploiting Gene Ontology 383

the ontology through these GO-terms. When users select GO-terms in the on-
tology, their corresponding documents automatically display in the right panel.
Note that all of the documents allocated to a GO-term’s subclass GO-terms
are also allocated to that GO-term. A conceptual structure of the biomedical
document collection in the example (Fig. 2) is easily visualized in the generated
ontology (Fig. 5). The documents allocated to GO-T4 ‘plasma membrane’ are
also related to the documents allocated to GO-T5 ‘cytoplasm’, because the two
GO-terms have the same superclass GO-term ‘cell part’. GO-term ‘cell part’
incorporates all documents allocated to GO-T4 ‘plasma membrane’ and GO-T5
‘cytoplasm’. In addition, since all the GO-terms have the same superclass ‘cel-
lular component’, users can see that the whole document collection is related to
this more general GO-term. Therefore, with this ontology, users not only see the
potential GO-terms related to the document collection, but can also more easily
understand the semantic relationships between groupings of the documents.

4 Experimental Results

4.1 Experimental Setup

To examine the effectiveness of GOClonto, we conducted a series of experi-
ments. First, to evaluate the results of key GO-term identification, we combined
documents that belong to pre-defined categories and examined whether or not
GOClonto can identify the category topics as key GO-terms. Second, to evalu-
ate the effectiveness of the related document allocation of each key GO-term,
we performed a clustering evaluation by comparing GOClonto with the STC
(Suffix Tree Clustering) algorithm [3], the Lingo algorithm [7], the Fuzzy Ants
clustering algorithm [5], and clustering based on Tolerance Rough Set (TRS) [6].
All the above algorithms were tested using the Carrot2 software [25]. Finally, to
evaluate informativeness of the generated ontology, we compared the ontology
generated by GOClonto with the hierarchical tree generated by the Fuzzy Ants
clustering algorithm [5]. The experiments were performed on J2SE 5.0, Windows
XP, Pentium 4, 3.0GHz with 2GB RAM.

We collected document sets related to various GO-terms from PubMed [26].
We used the ‘MajorTopic’ tag along with the GO-terms as queries to PubMed.
Since the retrieved documents are tagged manually with GO-terms as a result of

Table 1. Experimental Biomedical Document Collection

Category
name

Number of
Documents

Description

Chromosome 20 Abstracts of biomedical literature related to chromosome
Membrane 20 Abstracts of biomedical literature related to membrane
Cilium 10 Abstracts of biomedical literature related to cilium
Axoneme 7 Abstracts of biomedical literature related to axoneme
Centrosome 10 Abstracts of biomedical literature related to centrosome

384 H.-T. Zheng, C. Borchert, and H.-G. Kim

common sense agreement of many users, we use them as the answer set for exper-
iments. The GO-terms used for the queries were also used as category names. For
each category, documents were assembled from the titles and abstracts retrieved
from PubMed. Five categories were constructed: chromosome, membrane, cil-
ium, axoneme, and centrosome (Table 1). Next, we combined the documents
obtained from different categories into a biomedical document collection with 67
documents.

To evaluate the quality of the clustering results, we adopted a quality measure,
F-measure, which is widely used in the text mining literature for the purpose
of document clustering [27]. F-measure combines the precision and recall ideas
found in the information retrieval literature. Each cluster is treated as if it were
the result of a query and each class is treated as if it were the desired set of
documents for a query. The precision and recall of a cluster j with respect to a
class i are defined as:

P = Precision(i, j) =
nij

ni
(3)

R = Recall(i, j) =
nij

nj
(4)

where nij is the number of members of class i in cluster j, nj is the number
of members of cluster j and ni is the number of members of class i. The F-
measure of cluster j and class i is then given by F(i, j) = 2PR/(P +R). The
overall F-measure is computed by taking the weighted average of all values for
the F-measure as given by the following:

F =
∑

i

ni

n
max{F(i, j)} (5)

where F(i, j) is the highest F-measure to the cluster j that maps to class i,
n is the number of documents.

4.2 Results and Discussion

Based on the biomedical document collection, the key GO-terms extracted by
GOClonto are: centrosome, microtubule, centriole, membrane, flagellum, spin-
dle, cilium, growth, chromatin. Among the nine key GO-terms, we found that
category names ‘centrosome’, ‘membrane’, and ‘cilium’ are correctly selected.
Although category name ‘chromosome’ is not highlighted, the selected GO-term
‘chromatin’ is a subclass GO-term ‘chromosomal part’, which is closely related to
GO-term ‘chromosome’. Since the size of category ‘axoneme’ is smaller than the
other categories, the GO-term ‘axoneme’ is less important than the other iden-
tified key GO-terms for the whole collection. We can see above that GOClonto
is able to recognize key GO-terms from the document collection.

According to different threshold values, different numbers of documents are
allocated based on their related GO-terms. We tested various thresholds and set
it to 1.8, allocating the documents to their related key GO-terms with similari-
ties higher than that threshold. The results were compared with other clustering

Exploiting Gene Ontology 385

Table 2. Comparison of GOClonto and other clustering algorithms

GOClonto STC Lingo Fuzzy Ants Clustering based on TRS
F-measure 0.6356 0.4859 0.3718 0.4888 0.1598

algorithms. The desired clusters of other algorithms were set from three to seven.
We tested each algorithm with various parameters and chose the best clustering
results. The F-measure values of all the methods are listed in Table 2, which
shows that GOClonto has the highest F-measure value 0.6356. The F-measure
of GOClonto is 0.1497 higher than STC, 0.2638 higher than Lingo, 0.1468 higher
than Fuzzy Ants, and 0.4758 higher than clustering based on TRS. GOClonto
is focused on extracting key GO-terms and allocating documents based the key
GO-terms, while the other clustering algorithms focus on general meaningful
groupings, but do not specialize in the biomedical domain. Therefore, we can
see that GOClonto outperforms other clustering algorithms on biomedical docu-
ments, allocating them to their related GO-terms with a relatively high precision.

Figure 6 shows a corpus-related gene ontology generated by the GOClonto
method. Figure 7 shows a hierarchical tree created by the Fuzzy Ants clus-
tering algorithm. We found that the ontology is much more informative than
the hierarchical tree. GO is structured as directed acyclic graphs and many
GO-terms are inherited from different superclasses in the generated ontology.
For example, GO-term ‘centrosome’ has superclass GO-term ‘intracellular non-
membrane-bounded organelle’ and superclass GO-term ‘microtubule organizing
center’. In the generated ontology, although GO-term ‘heterochromatin’ is not
identified as a key GO-term, it is a frequently found GO-term in the biomedical
collection and found to be a subclass GO-term of key GO-term ‘chromatin’ by
GOClonto. Therefore, GO-term ‘heterochromatin’ is also used in the generated
ontology, giving a more specific meaning than the key GO-term ‘chromatin’.
This shows how the generated ontology includes not simply the key GO-terms
used to distinguish document groups, but also uses other important GO-terms
that may be helpful to navigate the whole document collection.

From the generated ontology, we can easily observe the conceptual structure
of the biomedical document collection. For instance, the documents allocated to
GO-term ‘membrane’ are related to the documents allocated to GO-term ‘cil-
ium’ because they share the same superclass GO-term ‘cell part’. Specifically, the
documents allocated to GO-term ‘cell part’ also incorporates all documents allo-
cated to its child GO-terms, including ‘cilium’ and ‘membrane’. The generated
ontology guarantees an ‘is-a’ relationship between GO-terms. The documents are
thus sorted and categorized in an intuitive and semantically sound way. However,
the hierarchical tree generated by the Fuzzy Ants algorithm does not maintain
relationship meaning. For the document collection we used, the created hierar-
chical tree is meaningless for the purposes of conceptualization. We attribute
this to the fact that GOClonto specifically aims at conceptualizing biomedical
document collections, while the Fuzzy Ants clustering algorithm does not.

To conclude, the GOClonto method is able to identify the key GO-terms and
generate corpus-related gene ontologies to represent the biomedical document

386 H.-T. Zheng, C. Borchert, and H.-G. Kim

Fig. 6. A corpus-related gene ontology generated by GOClonto

Fig. 7. A hierarchical tree created by the Fuzzy Ants clustering algorithm

collection. The ontology generated by GOClonto is more informative than the
hierarchical tree created by Fuzzy Ants clustering algorithm. This ontology can
help users easily visualize the conceptual structure of the biomedical document
collection and intuitively navigate its document groupings.

Exploiting Gene Ontology 387

5 Conclusion and Future Work

In this paper, we proposed a novel method, GOClonto, which exploits GO to
automatically generate corpus-related gene ontologies for users. The generated
ontologies can help users conceptualize biomedical document collections. Based
on the vector space model, LSA techniques are used to identify the meaningful
key GO-terms. The documents are allocated to these GO-terms using cosine sim-
ilarities. By determining the superclass GO-terms of these GO-terms, ontologies
are automatically generated and documents are linked to the generated ontolo-
gies through the GO-terms. The experimental results show that GOClonto is able
to identify key GO-terms from document corpora. The generated ontologies are
more informative than the hierarchical tree created by Fuzzy Ants clustering
algorithm. We believe that GOClonto will play an important role helping users
visualize and conceptualize biomedical document collections.

One limitation of the GOClonto method is that its performance depends on
the precision of GO-term extraction. Since many GO-terms are implicitly repre-
sented in biomedical text, more sophisticated NLP (Natural Language Process-
ing) techniques are necessary to discover potential GO-terms.

We will conduct further research to improve our work in the following ways.
First, we will study more NLP methods to extract potential GO-terms from
biomedical text. Also, addition of other visualization techniques alongside GO-
Clonto can further aid user navigation of biomedical document collections. Fur-
thermore, we can consult with biomedical researchers and other professionals in
order to gauge how best GOClonto can be used to support their work. Finally,
other biomedical-related ontologies can be used to generate the ontologies. Good
examples are FMA (the Foundational Model of Anatomy) [28], which is known
to be ontologically well designed, and SNOMED CT (Systematized Nomencla-
ture of Medicine - Clinical Terms) [29], which is a practical clinical ontology used
by many hospitals.

Acknowledgements

This work was supported in part by MKE & IITA through IT Leading R&D
Support Project.

References

1. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-
Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M.,
Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium. Nat Genet 25(1), 25–29 (2000)

2. Zheng, H.T., Borchert, C., Kim, H.G.: A concept-driven automatic ontology
generation approach for conceptualization of document corpora (unpublished
manuscript, 2008)

388 H.-T. Zheng, C. Borchert, and H.-G. Kim

3. Zamir, O., Etzioni, O.: Web document clustering: a feasibility demonstration. In:
SIGIR 1998: Proceedings of the 21st annual international ACM SIGIR conference
on Research and development in information retrieval, pp. 46–54. ACM, New York
(1998)

4. Zamir, O., Etzioni, O.: Grouper: a dynamic clustering interface to web search
results. Comput. Netw. 31(11-16), 1361–1374 (1999)

5. Schockaert, S.: Het clusteren van zoekresultaten met behulp van vaagmieren (clus-
tering of search results using fuzzy ants). Master thesis, University of Ghent (2004)

6. Lang, N.C.: A tolerance rough set approach to clustering web search results. Master
thesis, Warsaw University (2004)

7. Osinski, S., Weiss, D.: A concept-driven algorithm for clustering search results.
IEEE Intelligent Systems 20(3), 48–54 (2005)

8. Plaisant, C., Fekete, J.D., Grinstein, G.: Promoting insight-based evaluation of
visualizations: From contest to benchmark repository. IEEE Transactions on Vi-
sualization and Computer Graphics 14(1), 120–134 (2008)

9. Olsen, K.A., Korfhage, R.R., Sochats, K.M., Spring, M.B., Williams, J.G.: Visu-
alization of a document collection: the vibe system. Inf. Process. Manage. 29(1),
69–81 (1993)

10. Grobelnik, M., Maldenic, D.: Visualization of news articles. Informatica 28, 32–35
(2004)

11. Fortuna, B., Grobelnik, M., Mladenic, D.: Visualization of text document corpus.
Informatica 29, 497–504 (2005)

12. Zhu, W., Chen, C.: Storylines: Visual exploration and analysis in latent semantic
spaces. Computers & Graphics 31(3), 338–349 (2007)

13. Shaw, C.D., Kukla, J.M., Soboroff, I., Ebert, D.S., Nicholas, C.K., Zwa, A., Miller,
E.L., Roberts, D.A.: Interactive volumetric information visualization for document
corpus management. Int. J. on Digital Libraries 2(2-3), 144–156 (1999)

14. Fluit, C., Sabou, M., van Harmelen, F.: Ontology-based information visualisation:
Towards semantic web applications. In: Visualising the Semantic Web, 2nd edn.
(2005)

15. Thai, V., Handschuh, S., Decker, S.: IVEA: An information visualization tool
for personalized exploratory document collection analysis. In: Bechhofer, S.,
Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021,
pp. 139–153. Springer, Heidelberg (2008)

16. Bada, M., Turi, D., McEntire, R., Stevens, R.: Using reasoning to guide annotation
with gene ontology terms in goat. SIGMOD Rec. 33(2), 27–32 (2004)

17. Camon, E., Magrane, M., Barrell, D., Lee, V., Dimmer, E., Maslen, J., Binns, D.,
Harte, N., Lopez, R., Apweiler, R.: The gene ontology annotation (goa) database:
sharing knowledge in uniprot with gene ontology. Nucleic Acids Res. 32 (database
issue) (2004)

18. Gene Ontology Annotation Tool,
http://www.geneontology.org/go.tools.annotation.shtml

19. Hill, D.P., Smith, B., McAndrews-Hill, M.S., Blake, J.A.: Gene ontology annota-
tions: what they mean and where they come from. BMC bioinformatics 9 (suppl.
5) (2008)

20. Seki, K., Mostafa, J.: An application of text categorization methods to gene on-
tology annotation. In: SIGIR 2005: Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in information retrieval, pp.
138–145. ACM, New York (2005)

21. Phan, X.H.: Crftagger: Crf english pos tagger (2006),
http://crftagger.sourceforge.net/

http://www.geneontology.org/go.tools.annotation.shtml
http://crftagger.sourceforge.net/

Exploiting Gene Ontology 389

22. Phan, X.H.: Crfchunker: Crf english phrase chunker (2006),
http://crfchunker.sourceforge.net/

23. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (1975)

24. OWL Web Ontology Language, http://www.w3.org/tr/owl-ref/
25. Carrot2, http://project.carrot2.org/
26. PubMed, http://www.ncbi.nlm.nih.gov/sites/entrez/
27. Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering tech-

niques. In: KDD Workshop on Text Mining (2000)
28. Rosse, C., Mejino, J.L.V.: A reference ontology for biomedical informatics: the

foundational model of anatomy. J. of Biomedical Informatics 36(6), 478–500 (2003)
29. Stearns, M., Price, C., Spackman, K., Wang, A.: Snomed clinical terms: overview

of the development process and project status. In: Proc. AMIA Symp., pp. 662–666
(2001)

http://crfchunker.sourceforge.net/
http://www.w3.org/tr/owl-ref/
http://project.carrot2.org/
http://www.ncbi.nlm.nih.gov/sites/entrez/

Extracting Semantic Frames from
Thai Medical-Symptom Phrases with

Unknown Boundaries

Peerasak Intarapaiboon, Ekawit Nantajeewarawat,
and Thanaruk Theeramunkong

School of Information and Computer Technology
Sirindhorn International Institute of Technology, Thammasat University

Pathumthani, Thailand
{ipeerasak,ekawit,thanaruk}@siit.tu.ac.th

Abstract. Due to the limitations of language-processing tools for the
Thai language, pattern-based information extraction from Thai docu-
ments requires supplementary techniques. Based on sliding-window rule
application and extraction filtering, we present a framework for extract-
ing semantic information from medical-symptom phrases with unknown
boundaries in Thai free-text information entries. A supervised rule learn-
ing algorithm is employed for automatic construction of information ex-
traction rules from hand-tagged training symptom phrases. Two filtering
components are introduced: one uses a classification model for predict-
ing rule application across a symptom-phrase boundary, the other uses
extraction distances observed during rule learning for resolving conflicts
arising from overlapping-frame extractions. In our experimental study,
we focus our attention on two basic types of symptom phrasal descrip-
tions: one is concerned with abnormal characteristics of some observable
entities and the other with human-body locations at which symptoms
appear. The experimental results show that the filtering components im-
prove precision while preserving recall satisfactorily.

1 Introduction

Standard formalisms for knowledge representation such as RDF and OWL have
been recently developed by the semantic web community and are now in place.
A crucial question still remains: how will we feed machines with the relevant
knowledge in an application domain? In this paper, we present an informa-
tion extraction (IE) framework towards bridging the gap between the world of
symbols in Thai text in the domain of medical symptoms, i.e., words used in
medical symptom descriptions in Thai, and the world of concepts, which rep-
resent abstractions of human thought. IE techniques usually involve linguistic
patterns and domain-specific lexicons, coupled with a conceptual description
of an application domain, i.e., a domain ontology. While an ideal domain on-
tology is possibly language-independent, linguistic patterns and lexicons rely
heavily on the language in which the source textual information appears. Due to

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 390–404, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Extracting Semantic Frames from Thai Medical-Symptom Phrases 391

language-structure differences, some basic language-processing tools available in
one language may be unavailable in another language. When an IE framework
that works well in one language is applied in a different language, the framework
often needs modification and supplementary components are often necessary.

As part of a larger project on constructing a large-scale medical-related knowl-
edge base in Thailand from information sources available on the Internet, we aim
to develop a system for extracting semantic information from symptom descrip-
tions in the Thai language and representing the extracted results in a form of
machine-processable frames. IE based on linguistic analysis of Thai text is not
currently feasible due to the lack of basic supporting language-processing tools.
Not to mention a full parser for Thai sentences, neither a shallow-parsing (chunk-
ing) tool nor a fairly accurate part-of-speech analyzer is currently available, much
owing to the high ambiguity of the structure of written Thai.

However, by incorporation of ontology-based semantic annotations and ap-
propriate extraction filtering techniques, it is expected that IE based on pat-
terns of triggering class tags and triggering plain words can be realized for Thai
documents without text chunking and part-of-speech tagging. We focus on two
types of symptom descriptions: one is concerned with abnormal characteristics
of some observable entities and the other with human-body locations at which
primitive symptoms appear. A well-known supervised rule learning algorithm,
called WHISK [6], is used as the core algorithm for constructing IE rules auto-
matically from a set of hand-tagged training symptom phrases. The technical
challenges we address in this paper are twofold:

1. IE from free text with unknown phrase boundary: From Thai symptom tex-
tual phrases tagged with desired extraction outputs in a training corpus,
WHISK generates a set of IE rules, each of which yields an extracted frame
when its pattern matches a newly incoming symptom phrase. However, the
information sources of our target IE task are collections of free-text infor-
mation entries describing diseases, rather than collections of text portions
identified beforehand as potential symptom phrases. Each such information
entry is a “paragraph-like” textual description, typically containing several
symptom phrases along with other text portions. Locating potential symp-
tom phrases in an information entry requires a chunk parser and is thus
not currently achievable for Thai text. A method, called rule application us-
ing sliding windows (RAW), is introduced for applying IE rules to free-text
information entries without predetermining symptom-phrase boundaries.

2. Extraction filtering techniques: Using sliding windows, IE rules are applied to
text portions regardless of symptom-phrase boundaries and, therefore, tend
to make many false-positive extractions. Two extraction filtering modules,
called wildcard-instantiation filtering (WIF) and overlapping-frame filtering
(OFF), are proposed for removal of incorrect extractions. The first module
uses a binary classifier for prediction of rule application across a symptom-
phrase boundary; the second one uses extraction distances observed dur-
ing rule learning to resolve extraction conflicts arising from overlapping

392 P. Intarapaiboon, E. Nantajeewarawat, and T. Theeramunkong

Fig. 1. An overview of the presented framework

extracted frames. It is desirable that these modules improve extraction pre-
cision while minimally sacrificing recall.

To begin with, Section 2 briefly describes Thai language-processing barri-
ers and then gives an overview of our framework. After introducing a phrase-
boundary extension technique for preparation of training instances, Section 3
explains the RAW method. Section 4 describes WIF and OFF. Section 5 presents
experimental results and Section 6 discusses some related works.

2 Framework Overview

Like many other South Asian and South East Asian languages, Thai is an ana-
lytic language—its syntax and meaning are shaped by the use of particles and
word order rather than by word inflection. Working with Thai text introduces
many problems, primarily founded on the ambiguity of the language structure.
In the Thai writing system, words are consecutively written without delimiters
and a sentence comprises a series of words without an explicit sentence boundary.
Spaces occur only occasionally between words or phrases within sentences—there
is no standard rule for using spaces. A paragraph in written Thai often contains
chunks of phrases that do not together constitute sentences grammatically. Some-
times, the main subject, verb, or object can be omitted from a sentence and it
is still considered valid. The high language-structure ambiguity seriously hin-
ders the development of basic language-processing tools. Among very few such
tools available, only a word segmentation program (a word boundary detector)
is commonly used.

Extracting Semantic Frames from Thai Medical-Symptom Phrases 393

Preprocessing. Considering the langauge-processing limitations, the IE frame-
work outlined in Fig. 1 is proposed. Paragraph-like Thai free-text descriptions,
referred to as information entries, are taken as input documents for our target
IE task. Word segmentation is applied to all information entries as part of a pre-
processing step. A domain-specific ontology, along with a lexicon for it, is then
employed to partially annotate word-segmented phrases with tags denoting the
semantic classes of occurring words with respect to the lexicon. Fig. 2 illustrates
an obtained word-segmented and partially annotated information entry, where
‘|’ indicates a word boundary, ‘∼’ signifies a space, and the tags “sec,” “col,”
“ptime,” “sym,” and “org” denote the semantic classes “Secretion,” “Color,”
“Time period,” “Symptom,” and “Organ,” respectively, in the domain ontology.
This information entry contains four symptom phrases of our target types. They
are underlined in the figure.

เป็น|โรค|ที|่พบ|บ่อย|หลัง|จาก|เป็น|ไข้หวัด|∼|ผู้ป่วย|จะ|ม|ี[sec เสมหะ]|เป็น|[col สีเขียว]|เป็น|ระยะ|

เวลา|∼|[ptime 4-10 วัน]|∼|และ|อาจ|ม|ีอาการ|อ่ืน|ด้วย|∼|ที|่พบ|บ่อย|ได้แก่|∼|[sym เบ่ืออาหาร]|∼|มี|

[sym อาการเจ็บ]|ที|่[org หน้าอก]|อยู|่นาน|∼|[ptime 6-12 วัน]|∼|มี|[sym อาการเจ็บ]|[org คอ]|∼|และ|ม|ี

[sym อาการไอ]|จน|เกิด|[org คอ]|[col แดง]|นาน|∼|[ptime 3-4 วัน]|∼|โดย|ความรุนแรง|ขึ้น|อยู่|กับ|ชนิด|

ของ|เช้ือโรค|ที|่ได้|รับ|∼|เป็น|โรค|ที|่พบ|ใน|ผู้ใหญ่|มาก|กว่า|ใน|เด็ก|∼|ผู้ป่วย|อาจ|ม|ีสุขภาพ|ทั่วไป|แข็งแรง

Fig. 2. An information entry describing acute bronchitis

Extracted Frames and IE Rules. Fig. 3 and Fig. 4 show the frames required
to be extracted from the first and the second underlined symptom phrases, re-
spectively, in Fig. 2. Each of them contains three slots, i.e., Obs, Attr, and
Per in Fig. 3 and Sym, Loc, and Per in Fig. 4, where Obs, Attr, Per, Sym,
and Loc stand for “observed entity,” “attribute,” “period,” “symptom,” and
“location,” respectively. Fig. 5 depicts the semantic representations of the two
extracted frames. Fig. 6 gives a typical example of an IE rule. Its pattern part
contains three triggering class tags, one triggering plain word, and four instanti-
ation wildcards. The three triggering class tags also serve as slot markers—the
terms into which they are instantiated are taken as fillers of their respective slots
in the resulting extracted frame. When instantiated into the symptom phrase in
Fig. 4, this rule yields the extracted frame shown in the same figure.

Rule Construction and Classifier Construction. From manually identified
symptom phrases in a training corpus, the WHISK algorithm is used for auto-
matically constructing a set of IE rules. During rule learning, symptom-phrase
lengths and extraction distances are observed when a rule makes correct extrac-
tions on the training instances: the former kind of observed information is used
for determining an appropriate window size for RAW while the latter one for
removal of overlapping extracted frames in the OFF module. In order to pre-
pare training data for construction of classification models used for predicting

394 P. Intarapaiboon, E. Nantajeewarawat, and T. Theeramunkong

Symptom phrase: |ม|ี[sec เสมหะ]|เป็น|[col สีเขียว]|เป็น|ระยะ|เวลา|∼|[ptime 4-10 วัน]|
Extracted frame: {OBS [sec เสมหะ]}{ATTR [col สีเขียว]}{PER [ptime 4-10 วัน]}

Fig. 3. A symptom phrase and an extracted frame

Symptom phrase: |ม|ี[sym อาการเจ็บ]|ที|่[org หน้าอก]|อยู|่นาน|∼|[ptime 6-12 วัน]|
Extracted frame: {SYM [sym อาการเจ็บ]}{LOC [org หน้าอก]}{PER [ptime 6-12 วัน]}

Fig. 4. A symptom phrase and an extracted frame

TYPE TYPE TYPE

OBS PER

ATTR

TYPE

TYPE

TYPE TYPE TYPE

LOC PER

Secretion Symptom Time
period

Mucus
(เสมหะ)

4-10 days
(4-10 วัน)

Green
(สีเขียว) Color

Symptom

Organ Sore
(อาการเจ็บ)

Time
period

Chest
(หน้าอก)

6-12 days
(6-12 วัน)

(a) (b)

Fig. 5. Semantic representations of the extracted frames in Fig. 3 and Fig. 4

Pattern: *(sym)*(org)*นาน*(ptime)

Output template: {SYM $1}{LOC $2}{PER $3}

Fig. 6. An IE rule example

rule instantiation across symptom-phrase boundaries in the WIF module, the
IE rules obtained from WHISK are applied to the partially annotated free-text
information entries in the training corpus using RAW (cf. Fig. 1).

3 Rule Learning and Rule Application

3.1 Rule Learning from Phrases with Extended Boundaries

WHISK [6] uses a covering algorithm to construct a set of multi-slot extrac-
tion rules. It takes a corpus of training instances that are hand-tagged with
desired extraction outputs to guide rule creation. The algorithm induces rules
top-down, starting from the most general rule that covers all training instances,
and then specializing the initial rule by adding triggering terms one at a time in
order to prevent rule application with incorrect extractions. Reasons for selecting
WHISK include not only its previous success in a wide variety of English-text IE
tasks but also its capability to generate multi-slot extraction rules, which enable
extracted pieces of symptom-related information to be semantically connected,

Extracting Semantic Frames from Thai Medical-Symptom Phrases 395

e.g., an observed entity and its abnormal characteristic. Other IE-rule learning
algorithms with performance comparable to WHISK, e.g., RAPIER [1] and SRV
[3], can generate only single-slot extraction rules (i.e., individual-field extraction
rules) and, hence, do not suit our application requirements.

For rule learning, symptom phrases are manually collected from a training
corpus of information entries. Our rule application targets are, by contrast, in-
formation entries containing symptom phrases whose boundaries are not identi-
fied beforehand. It is thus desirable to construct rules with the ability to make
extractions from text portions in which symptom phrases appear alongside some
other words. To prepare training instances for construction of such rules, each
collected symptom phrase is extended with a prefix and a suffix so as to make its
boundary unknown. Since each rule produces only one (multi-slot) output frame
when it is applied, symptom-phrase extension is subject to the constraint that
no extra frame can be extracted from an extended phrase. The notion of an n-
word-bound extension is introduced for this purpose: the n-word-bound extended
version of a symptom phrase S with respect to an information entry E is the
longest text portion T comprising m1 words preceding S in E (called m1-word
prefix), S itself, and m2 words following S in E (called m2-word suffix) such that
m1, m2 ≤ n and only one extracted frame can be obtained from T .

Prefix: |ที|่พบ|บ่อย|ได้แก่|∼|[sym เบ่ืออาหาร]|∼|
Symptom phrase: |ม|ี[sym อาการเจ็บ]|ที|่[org หน้าอก]|อยู|่นาน|∼|[ptime 6-12 วัน]|

Suffix: |∼|มี|[sym อาการเจ็บ]|
Hand-tagged frame: {SYM [sym อาการเจ็บ]}{LOC [org หน้าอก]}{PER [ptime 6-12วัน]}

Fig. 7. A hand-tagged symptom phrase extended with a prefix and a suffix

Example 1. Fig. 7 illustrates a hand-tagged training instance prepared by ex-
tending the symptom phrase in Fig. 4 using 5-word-bound extension with respect
to the information entry in Fig. 2. (This symptom phrase is the second under-
lined phrase in Fig. 2.) The prefix part of this extension contains five words (four
plain words and one annotated word). The suffix part, however, contains only
two words (one plain word and one annotated word) by the constraint that no
extra frame is obtained from the extended phrase—adding one more word to the
suffix part causes the resulting phrase to contain the third underlined symptom
phrase in Fig. 2 entirely and an extra frame is obtained. ��

3.2 Rule Application Using Sliding Windows (RAW)

A WHISK rule does not have ability to automatically segment a free-text in-
formation entry so that the rule can be applied to the relevant portion of text.
When working with free text, a WHISK-based IE system normally uses a part-of-
speech tagger and a shallow parser to group together words into larger syntactic
chunks, from which the boundaries of relevant text portions are determined. In
the absence of such supporting tools, a sliding window technique is introduced

396 P. Intarapaiboon, E. Nantajeewarawat, and T. Theeramunkong

Table 1. Frames extracted from the text portions in Fig. 8 by the rule in Fig. 6

Portion Extracted frame Correctness

[35, 44] {SYM [sym เบ่ืออาหาร]}{LOC [org หน้าอก]}{PER [ptime 6-12 วัน]} Incorrect
[36, 45] {SYM [sym อาการเจ็บ]}{LOC [org หน้าอก]}{PER [ptime 6-12 วัน]} Correct
[50, 59] {SYM [sym อาการไอ]}{LOC [org คอ]}{PER [ptime 3-4 วัน]} Incorrect

[36, 45]-portion

[35, 44]-portion

. . . |ได้แก่|∼|[sym เบ่ืออาหาร]|∼|ม|ี[sym อาการเจ็บ]|ที|่[org หน้าอก]|อยู่|นาน|∼|[ptime 6-12 วัน]|∼|. . .
33 34 35 36 37 38 39 40 41 42 43 44 45

. . . |[org คอ]|∼|และ|ม|ี[sym อาการไอ]|จน|เกิด|[org คอ]|[col แดง]|นาน|∼|[ptime 3-4 วัน]|∼|โดย|. . .
48 49 50 51 52 53 54 55 56 57 58 59 60 61

[50, 59]-portion

Fig. 8. Text portions from which extractions are made when the rule in Fig. 6 is applied
to the information entry in Fig. 2 using a 10-word sliding window

to locate text portions for rule application, and filtering methods are used to re-
move potentially incorrect extractions afterwards. Rule application using sliding
windows (RAW) is explained below along with an example.

Using a k-word sliding window, a rule r is applied to each k-word portion
of an information entry one-by-one sequentially. More precisely, assume that an
information entry E consisting of n words is given and for any l, m such that
1 ≤ l ≤ m ≤ n, the [l, m]-portion of E is the portion beginning at the lth word
position and ending at the mth word position of E. Then r is applied to the
[i, i + k − 1]-portion of E for each i such that 1 ≤ i ≤ n− k + 1. An application
that results in a duplicated frame is discarded.

Example 2. As shown in Fig. 8, when the rule in Fig. 6 is applied to the informa-
tion entry in Fig. 2 using a 10-word sliding window, it makes extractions from
the [35, 44]-portion, the [36, 45]-portion, and the [50, 59]-portion of the entry.
Table 1 shows the resulting extracted frames. Only the extraction made from
the [36, 45]-portion is correct. When the rule is applied to the [35, 44]-portion,
the slot filler taken through the first slot marker of the rule, i.e., “sym,” does
not belong to the symptom phrase containing the filler taken through the second
slot marker of it, i.e., “org,” whence an incorrect extraction occurs. The same
situation arises when the rule is applied to the [50, 59]-portion. As will be de-
scribed in the next section, WIF is designed to filter out incorrect extractions of
this kind. ��

The possibility that a symptom phrase fits into a window increases as the window
size increases; but the risk of rule application across a symptom-phrase bound-
ary is also higher. Appropriate window size for different rules may be different.
In the evaluation presented in Section 5, the base window size for an individual

Extracting Semantic Frames from Thai Medical-Symptom Phrases 397

rule is set to the length of the longest training symptom phrase observed when
the rule makes correct extractions in the rule generation process.

4 Extraction Filtering

Two modules are proposed for filtering out incorrect extractions, i.e., false pos-
itives, resulting from RAW. The first module, called wildcard-instantiation fil-
tering (WIF), employs a classification model to predict incorrect extractions
based on instantiation features of rule internal wildcards. The second one, called
overlapping-frame filtering (OFF), uses extraction distances and rule Laplacian
errors observed during rule learning to resolve conflicts caused by overlapping
frames.

4.1 Wildcard-Instantiation Filtering (WIF)

WHISK learns an extraction pattern in terms of triggering terms for making an
extraction from a “single” symptom phrase. Using RAW, however, an obtained
IE rule may be instantiated across a symptom-phrase boundary (cf. Example 2),
yielding an extracted frame containing unrelated slot fillers, which is definitely
a false positive. Instantiations of wildcards occurring between the first and the
last slot markers of a rule, called internal wildcards , provide a clue to detect
such an undesirable extraction—if an internal wildcard of a rule is instantiated
across a symptom-phrase boundary, then unrelated slot fillers are extracted by
the resulting rule instantiation. A wildcard that is not internal does not give the
same clue since it is never instantiated into a word string enclosed by two slot
fillers of the same extracted frame.

Predicting whether an internal wildcard is instantiated across a symptom-
phrase boundary can be regarded as a binary classification problem. A classifier
is constructed for each rule from observations obtained from applying the rule
to free-text information entries in the training corpus by assuming that rules
obtained from WHISK are error-free with respect to their training symptom
phrases,1 i.e., if each internal wildcard of a rule is instantiated into a portion of
a single symptom phrase, then the rule yields a correct extraction. Under this
assumption, an incorrect extraction implies an existence of an internal-wildcard
instantiation across a symptom-phrase boundary. We construct a feature vector
characterizing a rule wildcard instantiation as follows: Let T be a text portion
and r a rule containing m internal wildcards w1, w2, . . . , wm. The instantiation
feature vector for wi observed at T is a vector f = [fa, fp, fs], where fa, fp

and fs are the number of annotated words, the number of plain words and
the number of spaces, respectively, in the text portion of T into which wi is
instantiated when r is applied to T . The wildcard-instantiation feature vector for
r observed at T is then defined as a vector x = f1 ‖ f2 ‖ · · · ‖ fm, where f i

is the instantiation feature vector for wi observed at T and ‘‖’ denotes vector
1 WHISK uses an error tolerance threshold to accept rules with incorrect extractions.

However, this threshold is normally small.

398 P. Intarapaiboon, E. Nantajeewarawat, and T. Theeramunkong

Table 2. Instantiation features obtained from rule application using RAW in Fig. 8

Portion
Internal-wildcard instantiation

Feature vector Label
1st wildcard 2nd wildcard 3rd wildcard

[35, 44] |∼|ม|ี[sym อาการเจ็บ]|ที|่ |อยู|่ |∼| [1, 2, 1, 0, 1, 0, 0, 0, 1] -1

[36, 45] |ที|่ |อยู|่ |∼| [0, 0, 0, 0, 1, 0, 0, 0, 1] 1

[50, 59] |จน|เกิด| |[col แดง]| |∼| [0, 2, 0, 1, 0, 0, 0, 0, 1] -1

concatenation. Fisher’s linear discriminant analysis [2], a well-known baseline
method for supervised linear classification, is used for classifier construction in
our experiments.

Example 3. The rule in Fig. 6 has three internal wildcards, i.e., those occurring
between “sym” and “ptime” in its pattern. Referring to Example 2, Table 2 shows
the instantiations of these wildcards and the obtained wildcard-instantiation fea-
ture vectors when the rule is applied to the three text portions in Fig. 8. For
example, when the rule is applied to the [35, 44]-portion, the first internal wild-
card is instantiated into a string consisting of one annotated word, two plain
words, and one space, yielding [1, 2, 1] as the resulting instantiation feature vec-
tor. Likewise, the instantiation feature vectors for the second and the third inter-
nal wildcards observed at the same portion are [0, 1, 0] and [0, 0, 1], respectively.
The three vectors constitute the wildcard-instantiation feature vector for the
rule observed at the [35, 44]-portion. ��

4.2 Overlapping-Frame Filtering (OFF)

WHISK directly supports multi-slot extraction using a single rule application,
allowing one to design a multi-slot template containing all required slot fillers
from an individual symptom phrase. In our IE application, one symptom phrase
is independent of another symptom phrase. Accordingly, when two distinct ex-
tracted frames overlap, i.e., when they contain a slot filler extracted from the
same text position, one of them is necessarily a false positive. Overlapping frames
are resolved based on two kinds of information collected during rule learning, i.e.,
the most frequently observed extraction distances and the Laplacian expected
errors; the former takes priority over over the latter. OFF resolves overlapping
frames using the procedure described below.

An extracted frame F is identified with a pair 〈T, r〉, where T is the text
portion from which F is obtained and r is the rule that extracts F from T . The
extraction distance of 〈T, r〉 is the distance in T between the word positions from
which the first and the last slot fillers of F is obtained when r is applied to T .
Let δ(T, r) be the difference between the extraction distance of 〈T, r〉 and the
extraction distance most frequently observed when r makes correct extractions
on the training set. Let L(r) denote the Laplacian expected error of r, i.e.,
L(r) = (e + 1)/(n + 1), where n is the number of extractions made by r on the
training set and e is the number of errors among those extractions.

Extracting Semantic Frames from Thai Medical-Symptom Phrases 399

Now suppose that F = {〈T1, r1〉, 〈T2, r2〉, . . . , 〈Tn, rn〉} is an initially given
set of extracted frames. Overlapping frames in F are filtered out by repeatedly
performing the following steps until no overlapping frame remains in F :

1. Determine the set O of all overlapping frames currently belonging to F .
2. Determine the subsets Maxδ and MaxL of O by:

(a) Maxδ = {〈T, r〉 ∈ O | ∀〈T ′, r′〉 ∈ O : δ(T, r) ≥ δ(T ′, r′)},
(b) MaxL = {〈T, r〉 ∈ Maxδ | ∀〈T ′, r′〉 ∈ Maxδ : L(r) ≥ L(r′)}.

3. Select an arbitrary frame in MaxL and remove it from F .

5 Experimental Results and Discussion

5.1 Data Sets and Output Templates

Information Entries. This work is part of a project supported by the Thailand
Research Fund (TRF) and the National Electronics and Computer Technology
Center (NECTEC), aiming at development of a framework for constructing a
large-scale medical-related knowledge base in Thailand from various information
sources available on the Internet. The overall project framework includes data ac-
quisition, keyword extraction, link construction, and ontology-based knowledge
representation. A set of supporting tools for gathering medical text data from
Thai web pages were developed and a number of medicinal and pharmaceutical
web sites (2759 URLs) were selected as seeds. The obtained data covers 474 dis-
eases and 770 medicinal chemical substances, with approximately 6600 and 3350
information entries, respectively. Disease information entries were organized into
disease characteristics, symptoms, cause, treatment, etc.

From textual data gathered in this knowledge-base construction project, free-
text symptom information entries are collected and divided into 3 data sets, i.e.,
D1, D2, and D3, based on their disease groups. D1 comprises distinct information
entries obtained from 5 disease groups, i.e., the circulatory system, the urology
system, the reproductive system, the eye system, and the ear system; D2 from 6
groups, i.e., the skin/dermal system, the skeletal system, the endocrine system,
the nervous system, parasitic diseases, and venereal diseases; D3 from 4 groups,
i.e., the respiratory system, the gastrointestinal tract system, infectious diseases,
and accidental diseases. The collected information entries are preprocessed using
a word segmentation program, called CTTEX, developed by NECTEC, and are

Table 3. Data set characteristics

Data
set

No. of info.
entries

No. of words per
info. entry

No. of distinct
symptom phrases

No. of symptom
phrase occurrences

Max. Avg. Min. Type-A Type-B Type-A Type-B

D1 59 130 44 9 179 77 213 84
D2 56 146 45 7 136 66 160 69
D3 58 140 55 8 161 65 210 73

400 P. Intarapaiboon, E. Nantajeewarawat, and T. Theeramunkong

Table 4. Top five rules for each template type obtained from WHISK

Type Pattern Output template Lap. error

A *(org)*(col) {OBS $1}{ATTR $2} 0.148

A *(org)*(szq) {OBS $1}{ATTR $2} 0.148

A *(sec)*(col) {OBS $1}{ATTR $2} 0.200

A *(ch)*ที่*(org) {OBS $2}{ATTR $1} 0.250

A *(ch)*ตาม*(org) {OBS $2}{ATTR $1} 0.250

B *(sym)*(org) {SYM $1}{LOC $2} 0.029

B *(sym)*บริเวณ*(org) {SYM $1}{LOC $2} 0.125

B *(sym)*ใน*(org) {SYM $1}{LOC $2} 0.166

B *(sym)*(org)*นาน*(ptime) {SYM $1}{LOC $2}{PER $3} 0.166

B *(sym)*(org)*เป็น*(ptime) {SYM $1}{LOC $2}{PER $3} 0.166

then partially annotated with semantic class tags using a predefined ontology
lexicon. The second column of Table 3 shows the number of information entries
in each data set. It is followed by a column group showing the maximum number,
the average number, and the minimum number of words per information entry
in each data set. The last two column groups of this table characterize the three
data sets in terms of the number of symptom phrases and their occurrences.
They are detailed below.

Symptom Phrases and Output Templates. A collected information en-
try typically contains several symptom phrases, which provide several kinds of
symptom-related information. Two basic types of symptom phrases, referred to
as Type-A and Type-B, are considered in our experiments. A symptom phrase
of Type-A describes a symptom in terms of abnormal characteristics of some
observable entity. The output template for Type-A takes the form:

{Obs X}{Attr Y }{Per Z},

where X is an observed entity, Y its abnormal characteristic, and Z the time
period in which the abnormality occurs. The semantic representation graphically
shown in Fig. 5a provides an example of a result generated by the Type-A
template. A symptom phrase of Type-B is concerned with a symptom that is
described in terms of a primitive named symptom in the predefined domain
ontology. The output template for Type-B takes the form:

{Sym X}{Loc Y }{Per Z},

where X specifies a primitive named symptom, Y the location at which the
primitive symptom occurs, and Z the time period. The representation in Fig. 5b
illustrates an instance of the Type-B template. The slot Per in the Type-A
template is optional. One of the slots Loc and Per, but not both, may be
omitted in the Type-B template. One symptom phrase may occur in more than
one information entry and may therefore have multiple occurrences in one data

Extracting Semantic Frames from Thai Medical-Symptom Phrases 401

set. The number of all distinct symptom phrases of the two types and the number
of their occurrences are given in the last two column groups of Table 3.

5.2 Experimental Results

Training Process. D1 is used as the training corpus. All Type-A and Type-
B symptom phrases occurring in D1 are manually tagged with desired output
frames and their 5-word-bound extended versions are used as training instances
for rule learning. Using our implementation of WHISK, 27 rules for the Type-A
template and 11 rules for the Type-B template are generated. Tables 4 shows
the top five rules with the lowest Laplacian errors from the obtained rule set for
each template. The length of the longest symptom phrase observed when a rule
yields correct extractions on the training set is taken as the window size for the
rule. By applying the obtained rules to the information entries in D1 using RAW,
wildcard-instantiation feature vectors are constructed and then used as training
data for constructing WIF classifiers. Fisher’s linear discriminant analysis [2] is
employed for classifier learning.

Evaluation. The proposed framework is evaluated using D2 and D3 as test sets.
Recall and precision are used as performance measures, where the former is the
proportion of correct extractions to relevant symptom phrases and the latter is
the proportion of correct extractions to all obtained extractions. Table 5 shows
the evaluation results obtained from using RAW without any extraction filtering,
RAW with WIF (RAW+WIF), RAW with OFF (RAW+OFF), and RAW with
both WIF and OFF (RAW+WIF+OFF),2 where ‘R’ and ‘P’ stand for recall and
precision, which are given in percentage. Compared to the results obtained using
RAW alone, each of RAW+WIF, RAW+OFF, and RAW+WIF+OFF improves
precision while satisfactorily preserving recall in every row of this table. For
Type-A, where RAW has high precision (85.4 for D2 and 89.4 for D3), the three
combinations yield similar precision improvement. However, for Type-B, where
RAW has low precision (37.5 for D2 and 31.9 for D3), RAW+WIF and RAW+
WIF+OFF significantly outperform RAW+OFF in terms of precision gain.

Table 6 compares WIF, OFF, and the combination of them (WIF+OFF)
in terms of removal correctness. The third row, for example, shows that when
applied to D2, RAW generates 115 incorrect extractions for Type-B, 111 of
which are removed by WIF+OFF. The same row also indicates that WIF+OFF
removes two correct extractions, while WIF and OFF remove one each—on closer
examination, the frame incorrectly removed by WIF in this case differs from that
removed by OFF. Altogether, the results in this table suggest that WIF and OFF
have different but complementary abilities.

Recall Improvement. As seen in Table 5, recall for Type-A appears to be
relative lower than that for Type-B. A detailed examination of Type-A symptom
phrases in D2 and D3 reveals that there are 79 target symptom phrases from
which RAW fails to make any extraction, i.e., 79 false negatives. These false
2 In RAW+WIF+OFF, OFF is applied to the set of frames obtained from RAW+WIF.

402 P. Intarapaiboon, E. Nantajeewarawat, and T. Theeramunkong

Table 5. Evaluation results

Type Data
set

RAW RAW+WIF RAW+OFF RAW+WIF+OFF
R P R P R P R P

A D2 76.9 85.4 76.9 94.6 76.3 94.6 76.9 96.1
A D3 80.0 89.4 80.0 96.0 78.6 96.5 79.0 97.1
B D2 100.0 37.5 98.6 86.1 98.6 66.0 97.1 94.4
B D3 98.6 31.9 98.6 92.3 94.5 67.6 97.3 93.4

Table 6. Removal correctness evaluation

Type Data
set

RAW WIF OFF WIF+OFF
#Ecor #Einc #Rcor #Rinc #Rcor #Rinc #Rcor #Rinc

A D2 123 21 14 0 14 1 16 0
A D3 168 20 13 0 14 3 15 2
B D2 69 115 104 1 80 1 111 2
B D3 72 154 148 0 121 3 149 1

#Ecor: No. of correct extractions #Rcor: No. of correct removals
#Einc: No. of incorrect extractions #Rinc: No. of incorrect removals

Table 7. Recall improvement by doubling the window size and rule generalization

Data
set

Improved
by

RAW RAW+WIF RAW+OFF RAW+WIF+OFF
R P R P R P R P

D2 2W 81.3 73.4 81.3 94.9 80.0 97.0 80.0 98.5
D2 RG 85.0 76.4 85.0 94.4 84.4 93.1 84.4 95.7
D2 2W+RG 88.1 60.3 88.1 93.4 86.3 93.9 86.9 97.9
D3 2W 83.3 71.4 83.3 96.2 82.4 97.2 82.4 97.2
D3 RG 89.0 77.0 88.1 95.9 89.0 96.4 88.1 98.9
D3 2W+RG 89.0 55.3 89.0 93.0 88.6 94.9 88.6 96.9

negatives are divisible into two disjoint groups: symptom phrases that match
the pattern part of some existing rule, and those that do not. 23 of the 79 false
negatives belong to the first group, and the rest of them belong to the second
group. By increasing the size of a window in use, extractions can be made from
false negatives in the first group but not from those in the second group.

Further analysis of the obtained Type-A rules shows that most of them have
low coverage, i.e., they tend to be overfitting. Each of them contains a tag denot-
ing a subclass of “Gradable quantity” in the domain ontology, e.g., the tags “col”
(Color), “szq” (Size), and “ch” (Characteristic) in the five Type-A rules in Ta-
ble 4. Moreover, some rule differs from another only at tags denoting subclasses
of “Gradable quantity” and can be merged together by generalizing such tags
into “gq” (Gradable quantity). For example, consider the first two Type-A rules
in Table 4. The first rule differs from the second one only at their second tags,

Extracting Semantic Frames from Thai Medical-Symptom Phrases 403

i.e., “col” and “szq.” Merging them by generalizing “col” and “szq” upwards
into “gq” yields a new rule with higher coverage.

Two approaches are taken so as to reduce the number of false negatives:
first, double the window size previously used for each rule, and, secondly, merge
rules that can be made identical by merely generalizing tags denoting subclasses
of “Gradable quantity” upwards into “gq.” Referring to the first approach as
2W and the second one as RG, Table 7 presents the obtained evaluation results,
where 2W+RG denotes the combination of the two approaches. The table shows
that RG and 2W+RG yield higher recall gain than 2W in both D2 and D3.
Compared to the results obtained from using RAW alone for Type-A in Table 5,
RG and 2W+RG increase recall from 76.9 to 85.0 and 88.1, respectively, in
D2, and from 80.0 to 89.0 in D3. It is noteworthy that, like in Table 5, each
of RAW+WIF, RAW+OFF, and RAW+WIF+OFF improves precision while
satisfactorily preserving recall in every row of Table 7.

6 Related Works

Application of WHISK to IE tasks in medical-related domains was reported in
[4] and [5]—the former is concerned with information on biomedical events and
the latter with drug treatment information. Both of them take English doc-
uments as information sources and use linguistic tools, such as part-of-speech
taggers and chunk parsers, along with ontology-based semantic tagging for text
preprocessing. While a preliminary investigation was given in [5] without in-
troducing any supplementary technique, an extraction verification module was
proposed in [4] for removing incorrectly extracted biomedical events based on
a maximum entropy (ME) classification method. The verification module in [4]
uses a learned ME classifier to predict a class of the an extracted slot filler, and
removes an extracted frame whose components contradict the class assigned by
the classifier. By contrast, the WIF module in our framework uses a classifier to
predict rule application across symptom-phrase boundary, compensating for the
unavailability of a phrase boundary analyzer, which is a fundamental problem
for text processing in Thai. Very few works on IE from Thai text were reported
in the literature. Although some IE techniques were applied in [7], its target
application was word boundary identification in Thai text rather extraction of
semantically related slot fillers. An approach to Thai-text IE using triggering
terms and corpus-based syntactic surface analysis was discussed in [8]. However,
only hand-crafted IE rules were demonstrated; rule learning was not considered.

7 Conclusions

From a set of manually collected symptom phrases, IE rules are created using
our implementation of WHISK. To apply the obtained rules to free-text infor-
mation entries without predetermining symptom-phrase boundaries, rule appli-
cation using sliding windows is introduced. Filtering techniques are proposed for
removal of false positives resulting from rule application across symptom-phrase

404 P. Intarapaiboon, E. Nantajeewarawat, and T. Theeramunkong

boundaries and those resulting from overlapping-frame extractions. The exper-
imental results show that these techniques improve extraction precision while
satisfactorily preserving recall. Further works include extension of the types of
target phrases, empirical investigation of framework application in different data
domains, and in-depth analysis of how the ontology-based semantic frames ex-
tracted from symptom phrases facilitate logic-based medical diagnosis reasoning.

Acknowledgement. This work has been supported by the Thailand Research
Fund (TRF), under Grant No. BRG50800013 and under TRF Royal Golden
Jubilee Ph.D. Program Grant No. PHD/0056/2550, and was supported by the
National Electronics and Computer Technology Center (NECTEC), under Grant
No. NT-B-22-I4-38-49-05.

References

1. Califf, M.E., Mooney, R.J.: Bottom-up Relational Learning of Pattern Matching
Rules for Information Extraction. Journal of Machine Learning Research 4, 177–
210 (2003)

2. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Inter-
science, Hoboken (2000)

3. Freitag, D.: Machine Learning for Information Extraction in Informal Domains.
Machine Learning 39(2–3), 169–202 (2000)

4. Kim, E., Song, Y., Lee, C., Kim, K., Lee, G., Yi, B.-K.: Two-Phase Learning for
Biological Event Extraction and Verification. ACM Transactions on Asian Language
Information Processing 5(1), 61–73 (2006)

5. Lee, C.-H., Na, J.-C., Khoo, C.S.G.: Towards ontology enrichment with treatment
relations extracted from medical abstracts. In: Sugimoto, S., Hunter, J., Rauber,
A., Morishima, A. (eds.) ICADL 2006. LNCS, vol. 4312, pp. 419–428. Springer,
Heidelberg (2006)

6. Soderland, S.: Learning Information Extraction Rules for Semi-Structured and Free
Text. Machine Learning 34(1–3), 233–272 (1999)

7. Sornlertlamvanich, V., Potipiti, T., Charoenporn, T.: Automatic Corpus-based Thai
Word Extraction with the C4.5 Learning Algorithm. In: Proc. 18th International
Conference on Computational Linguistics, Saarbrucken, Germany, pp. 802–807
(2000)

8. Sukhahuta, R., Smith, D.: Information Extraction Strategies for Thai Documents.
International Journal of Computer Processing of Oriental Languages 14(2), 153–172
(2001)

Refining Instance Coreferencing Results Using
Belief Propagation

Andriy Nikolov, Victoria Uren, Enrico Motta, and Anne de Roeck

Knowledge Media Institute, The Open University, Milton Keynes, UK
{a.nikolov,v.s.uren,e.motta,a.deroeck}@open.ac.uk

Abstract. The problem of coreference resolution (finding individuals,
which describe the same entity but have different URIs) is crucial when
dealing with semantic data coming from different sources. Specific fea-
tures of Semantic Web data (ontological constraints, data sparseness,
varying quality of sources) are all significant for coreference resolution
and must be exploited. In this paper we present a framework, which
uses Dempster-Shafer belief propagation to capture these features and
refine coreference resolution results produced by simpler string similarity
techniques.

1 Introduction

A major problem, which needs to be solved during information integration, is
coreference resolution: finding data instances, which refer to the same real-world
entity. This is a non-trivial problem due to many factors: different naming con-
ventions used by the authors of different sources, usage of abbreviations, am-
biguous names, data variations over time. This problem for a long time has been
studied in the domains of database research and machine learning and multi-
ple solutions have been developed. Although in the Semantic Web community
information integration has always been considered as one of the most impor-
tant research directions, so far the research has been primarily concentrated on
resolving schema-level issues. However, semantic data represented in RDF and
formatted according to OWL ontologies, has its specific features: instances often
have only a few properties, relevant information is distributed between inter-
linked instances of different classes, an OWL ontology allows expressing a wider
range of data restrictions than a standard database schema, different sources
may significantly differ in quality. Some of these features make it hard to di-
rectly reuse the algorithms developed in the database domain, while others may
provide valuable clues, which should be exploited.

The main motivation for our work comes from the enterprise-level knowledge
management use case. In this scenario a shared corporate ontology is populated
automatically with information extracted from multiple sources: text documents,
images, database tables. Although there is no schema alignment required in this
scenario, the data-level integration problems listed above are present. In addi-
tion to the usual issues related to heterogeneity, the data may also contain noise

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 405–419, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

406 A. Nikolov et al.

caused by incorrect extraction results. Data sparseness often prevents the use of
sophisticated machine-learning algorithms and requires simple techniques such
as string similarity metrics applied to instance labels. The output of these tech-
niques is not completely reliable. In order to improve coreferencing results we
have to utilize the links between data instances, to take into account uncertainty
of sources and coreferencing algorithms and to consider logical restrictions de-
fined in the domain ontology. In this paper we describe an approach, which uses
the Dempster-Shafer belief propagation in order to achieve this goal.

The rest of the paper is organized as follows: in the section 2 we briefly discuss
the most relevant existing approaches. Section 3 provides a short description
of the approach and its place in the overall integration architecture. Section
4 summarizes the theoretical background of our belief propagation algorithm.
Section 5 describes in detail the usage of belief networks and provides examples.
In the section 6 we present the results of our experiments performed with test
datasets. Finally, section 7 summarizes our contribution and outlines directions
for future work.

2 Related Work

The problem of coreference resolution during data integration has been studied
for a long time [1]. In different communities it has been referred to as record
linkage [1], object identification [2] and reference reconciliation [3]. A large num-
ber of approaches (see [4] for a survey) are based on a vector similarity model
initially proposed in [1]: similarity scores are calculated for each pair of instances’
attributes and their aggregation is used to make a decision about whether two
instances are the same. This procedure is performed for instances of each single
class in isolation. Different string similarity techniques have been proposed to
measure the similarity between attribute values (e.g., edit distance, Jaro, Jaro-
Winkler, Monge-Elkan [5]) and different machine learning algorithms to adjust
the parameters of decision models have been developed (e.g., [6], [2]).

Such approaches assume that all attributes, which are relevant for determining
the equivalence of two instances, are contained in the attribute vector. This as-
sumption does not hold for scenarios where relevant data is distributed between
different instances, which are related to each other. Thus, approaches, which
analyze relations between data instances of different classes, have received sig-
nificant attention in recent years (e.g., [3], [7], [8], [9]). One algorithm focusing
on exploiting links between data objects for personal information management
was proposed in [3], where the similarities between interlinked entities are prop-
agated using dependency graphs. RelDC [7] proposes an approach based on ana-
lyzing entity-relationship graphs to choose the best pair of coreferent entities in
case when several options are possible. The authors of these algorithms reported
good performance on evaluation datasets and, in particular, significant increase
in performance achieved by relation analysis. These algorithms, however, assume
data representation similar to relational databases. The OWL language used for

Refining Instance Coreferencing Results 407

formatting Semantic Web data allows more advanced restrictions over data to be
defined (e.g., class disjointness, cardinality restrictions, etc.), which are relevant
for the validation of coreference mappings. Given the variable quality of semantic
annotations, information about provenance of the data is also valuable: if a
mapping between two individuals violates an ontological restriction, it is possible
that some piece of data is wrong, rather than a mapping. These factors require
development of specific solutions adjusted to the needs of the Semantic Web
domain.

The problem of data integration in the Semantic Web context also requires
dealing with data sparseness and the distribution of data between several linked
individuals. In the Semantic Web community so far the research effort has
been primarily concentrated on the schema-level ontology matching problem
[10]. Some of the schema-matching systems utilize links between concepts and
properties to update initial mappings created using other techniques. One such
technique is similarity flooding [11], which uses links in the graph to propagate
similarity estimations. It is, however, more suitable to schema matching rather
than data integration: it relies, for example, on the assumption that the graph is
complete. Ontological restrictions and uncertainty of mappings between concepts
are analyzed in [12]. Now, with a constantly increasing amount of RDF data be-
ing published and the emergence of the Linked Data initiative, the problem of
instance-level integration is also gaining importance. The issue of recognizing
coreferent individuals coming from different sources and having different URIs
has been raised by different research groups and several architectural solutions
were developed, such as OKKAM [13], Sindice [14], RKBExplorer [15]. Sindice
[14] relies on inverse functional properties explicitly defined in corresponding on-
tologies. The authors of OKKAM entity name service [13] have employed Monge-
Elkan string similarity for their prototype implementation. Data aggregation for
RKBExplorer [15], to our knowledge, was performed using techniques specially
developed for the scientific publication domain (e.g., analyzing co-authorship,
etc.). The L2R/N2R algorithm recently proposed in [16] and [17] focuses on
employing ontological restrictions (in particular, functionality and disjointness)
in order to make coreferencing decisions. Their approach is probably the most
similar to ours, but emerged as a purely logical inference-based algorithm and
treats some aspects in a different way. In particular, data uncertainty is not
considered (data statements are treated as correct) and similarity between indi-
viduals is aggregated using maximum function, which does not allow capturing
cumulative evidence.

In our view, there is still a need for data integration methods adjusted to the
needs of the Semantic Web domain. First, as was said, the algorithms developed
in the database community do not take into account the specific properties of
semantic data. Ontology matching techniques, on the other hand, focus primarily
on the schema-matching issues. Our approach tries to analyze together relations
between individuals of multiple classes, logical restrictions imposed by ontologies
and data uncertainty in order to improve the quality of instance coreferencing.

408 A. Nikolov et al.

3 Overview

The algorithm described in the paper represents a module of the knowledge fu-
sion architecture KnoFuss initially developed to integrate semantic annotations
produced from different sources using automatic information extraction algo-
rithms. The architecture receives as its input a source knowledge base (KB)
containing a set of RDF assertions extracted from a particular source. The sys-
tem processes this source KB and integrates it into the target KB. KnoFuss
aims to solve two main problems: find and merge coreferent individuals and
ensure consistency of the integrated KB. The structure of the KnoFuss system
and the initial stage of its workflow is described in [18]. This stage involves
producing mappings between individuals (interpreted as owl:sameAs relations)
using a library of coreferencing algorithms. In this paper we focus on the second
stage of the fusion workflow where these initially produced mappings are refined
using additional factors, which are not considered by attribute-based similar-
ity algorithms but can serve as evidence for revising and refining the results of
coreferencing stage. We consider three kinds of such factors:

– Ontological schema restrictions. Constraints and restrictions defined by the
schema (e.g., functionality relations) may provide both positive and nega-
tive evidence. For instance, having two individuals as objects of a functional
property with the same subject should reinforce a mapping between these
individuals. The reverse also applies: the fact that two potentially identi-
cal individuals belong to two disjoint classes should be considered negative
evidence.

– Coreference mappings between other entities. Even if there is no explicit func-
tionality restriction defined for an ontological property, related individuals
still may reduce the ambiguity: the fact that two similar individuals are both
related to a third one may reinforce the confidence of the mapping.

– Provenance data. Knowledge about the quality of data may be used to assign
the confidence to class and property assertions. This is important when we
need to judge whether a mapping, which violates the domain ontology, is
wrong or the conflict is caused by a wrong data statement. Knowledge about
the “cleanness” of a source (e.g., whether duplicates occur in a given source)
provides additional evidence about potential mappings.

Most information, which we have to deal with in the fusion scenario, is uncer-
tain. Mappings are created by attribute-based matching algorithms, which do
not provide 100% precision. Class and property assertions may come from unre-
liable sources or be extracted incorrectly. Various ontological relations provide
different impact as evidence for mappings: if two similar foaf:Person individuals
are both connected to a sweto:Publication individual via a sweto:author relation,
it is a much stronger evidence for identity mapping than if they were related to
a tap:Country individual #USA via a #citizenOf relation. In order to manage
uncertainty adequately, the framework needs to have well-defined rules for rea-
soning about the confidence of both data statements and coreference mappings,
combining multiple uncertain pieces of evidence and propagating beliefs. This

Refining Instance Coreferencing Results 409

can be achieved by employing an uncertainty representation formalism. Our ar-
chitecture utilizes the Dempster-Shafer theory of evidence [19], which generalizes
the Bayesian probability theory. We proposed the initial version of the algorithm
as a means to resolve ABox inconsistencies in knowledge bases [20]. The next
section briefly summarizes our previous work.

4 Dempster-Shafer Belief Propagation

Our algorithm uses the Dempster-Shafer theory of evidence as a theoretical ba-
sis for uncertainty representation. The reason for this choice (in comparison
with the more commonly used Bayesian probability) is its ability to represent
a degree of ignorance in addition to the positive and negative belief [20]. This
feature is valuable when we deal with the output of coreferencing algorithms. By
default, these algorithms can only produce positive evidence: a positive result
produced by a low-quality algorithm (e.g., with a precision 0.2) can only be con-
sidered as insufficient evidence rather than negative evidence. The uncertainty of
a statement is described by belief masses, which can be assigned to sets of pos-
sible values. In our case each statement is described by three mass assignments:
(i) belief that the statement is true m(1), (ii) belief that the statement is false
m(0) and (iii) unassigned belief m({0; 1}), specifying the degree of our ignorance
about the truth of the statement. Given that

∑
i mi = 1, these assignments are

usually represented using two values: belief (or support) (m(1)) and plausibility
(m(1)+m({0; 1})). Bayesian probability is a special case, which postulates that
no ignorance is allowed and m(1) + m(0) = 1. Our workflow for processing a
conflict involves three steps:

– Constructing a belief propagation network. At this stage an OWL subontol-
ogy is translated into a belief network.

– Assigning mass distributions. At this stage the belief mass distribution func-
tions are assigned to nodes.

– Belief propagation. At this stage the uncertainties are propagated through
the network and the confidence degrees of statements are updated.

As the theoretical base for belief propagation we used valuation networks as
described in [21]. Valuation networks contain two kinds of nodes: variable nodes,
which represent the uncertain assertions, and valuation nodes, which represent
the belief propagation rules (converted from TBox axioms). We use a set of rules
to convert an OWL subontology into a corresponding valuation network (this
procedure is described in more detail in [20]). Then, initial beliefs are propagated
through the network and updated values are produced according to the standard
axioms for valuation networks formulated in [21]. The basic operators for belief
potentials are marginalization ↓ and combination ⊗. Marginalization takes a
mass distribution function m on domain D and produces a new mass distribution
on domain C ⊆ D. It extracts the belief distribution for a single variable or subset
of variables from a complete distribution over a larger set.

m↓C(X) =
∑

Y ↓C=X

m(Y)

410 A. Nikolov et al.

For instance, if we have the function m defined on the domain {x, y} as m({0; 0})
= 0.2, m({0; 1}) = 0.35, m({1; 0}) = 0.3, m({1; 1}) = 0.15 and we want to
find a marginalization on the domain {y}, we will get m(0) = 0.2 + 0.3 = 0.5
and m(1) = 0.35 + 0.15 = 0.5. Combination calculates an aggregated belief
distribution based on several pieces of evidence. The combination operator is
represented by Dempster’s rule of combination [19]:

m1 ⊗m2(X) =

∑
X1∩X2=X m1(X1)m2(X2)

1−
∑

X1∩X2=� m1(X1)m2(X2)

Belief propagation through the network is performed by passing messages be-
tween nodes according to the following rules:

1. Each node sends a message to its inward neighbour (towards the arbitrary
selected root of the tree). If µA→B is a message from a node A to a node B,
N(A) is a set of neigbours of A and the potential of A is mA, then the message
is specified as a combination of messages from all neighbours except B and
the potential of A: µA→B = (⊗{µX→A|X ∈ (N(A)− {B})⊗mA})↓A∩B

2. After a node A has received a message from all its neighbors, it combines all
messages with its own potential and reports the result as its marginal.

Loops must be eliminated by replacing all nodes in a loop with a single node
combining their belief functions. The initial version of the algorithm deals with
inconsistency resolution and does not consider coreference mappings and identity
uncertainty. In the following section we describe how we further develop the same
theoretical approach in order to reason about coreference mappings.

5 Refining Coreference Mappings

The algorithm receives as its input a set of candidate mappings between indi-
viduals of source and target KBs. In order to perform belief propagation, these
mappings along with relevant parts from both knowledge bases must be trans-
lated into valuation networks. Building a large network from complete knowledge
bases is both computationally expensive and unnecessary, as not all triples are
valuable for analysis. We select only relevant triples, which include (i) values of
object properties, which can be used to propagate belief between two owl:sameAs
mappings (functional, inverse functional and “influential” as described in 5.2)
and (ii) class and property assertions, which produce conflicts. Conflicts are de-
tected by selecting all statements in the neighborhood of potentially mapped
individuals and checking their consistency with respect to the domain ontology
(we use the Pellet OWL reasoner with the explanation service). If the reasoner
found an inconsistency, all statements which contribute to it are considered rele-
vant. Then, belief networks are constructed by applying the rules defined in ([20]
and the extended set described in subsection 5.1) and initial beliefs are assigned
to variable nodes. For each owl:sameAs variable node the belief is determined
according to the precision of the corresponding coreferencing algorithm, which

Refining Instance Coreferencing Results 411

produced it. Each algorithm could produce two kinds of mappings: “probably
correct” exceeding the optimal similarity threshold for the algorithm (the one,
which maximized the algorithm’s F-measure performance), and “possibly cor-
rect” with similarities below the optimal threshold, but achieving at least 0.1
precision. Each variable node representing a class or property assertion receives
its initial belief based on its attached provenance data: the reliability of its source
and/or its extraction algorithm. After that the beliefs are updated using belief
propagation and for each mapping the decision about its acceptance is taken.

The most significant part of the algorithm is network construction. At this
stage we exploit the factors listed in the section 3. In the following subsections
we describe how it is done in more detail.

5.1 Exploiting Ontological Schema

Logical axioms defined by the schema may have both positive and negative
influence on mappings. First, some OWL axioms impose restrictions on the data.
If creating an owl:sameAs relation between two individuals violates a restriction,
the confidence of the mapping should be reduced. Second, object properties
defined as owl:FunctionalProperty and owl:InverseFunctionalProperty allow us
to infer equivalence between individuals. The initial set of rules and possible
network nodes we proposed in [20] does not capture instance equivalence and
thus is insufficient for reasoning about coreference relations. Therefore, in this
section we present a novel set of additional rules (Table 1), which allow us to
reason about coreference mappings. Table 2 lists the additional belief assignment
functions for corresponding valuation nodes.

Table 1. Belief network construction rules

N Axiom Pre-conditions Nodes to create Links to create

1 sameAs I1 = I2
N1 : I1 = I2

(variable)

2 differentFrom
I1 = I2 N1 : I1 = I2

(variable)

3 sameAs
N1 : I1 = I2 (variable), N3 : I1 = I2 (N1,N3),(N2,N3),
N2 : R(I2, I3) (valuation), (N3,N4)

N4 : R(I1, I3)

4 differentFrom
N1 : I1 = I2 (variable), N3 : I1 = I2 (N1,N3),(N2,N3)
N2 : I1 = I2 (variable) (valuation)

5 Functional � 	≤ 1R, N1 : R(I3, I1),
N4 : � 	≤ 1R

(N1,N4),(N2,N4),
Property N2 : R(I3, I2), N3 : I1 = I2 (N3,N4)

6 InverseFunctional � 	≤ 1R−, N1 : R(I1, I3),
N4 : � 	≤ 1R− (N1,N4),(N2,N4),

Property N2 : R(I2, I3), N3 : I1 = I2 (N3,N4)

The axioms owl:sameAs and owl:differentFrom (Table 1, rows 1-4) lead to the
creation of both variable and valuation nodes. This is because each one repre-
sents both a schema-level rule, which allows new statements to be inferred, and a
data-level assertion, which has its own confidence (e.g., produced by a matching

412 A. Nikolov et al.

algorithm). owl:FunctionalProperty and owl:InverseFunctionalProperty (rows 5-
6) can only be linked to already existing owl:sameAs nodes, so that they can
only increase similarity between individuals, which were already considered po-
tentially equal. Otherwise the functionality node is treated as in [20]: as a strict
constraint violated by two property assertion statements. This is done to prevent
the propagation of incorrect mappings.

To illustrate the work of the algorithm we will use an example from our
experiments with datasets from the citations domain (see Section 6). One such
dataset (DBLP) contains an individual Ind1 describing the following paper:

D. Corsar, D. H. Sleeman. Reusing JessTab Rules in Protege. Knowledge-Based Sys-
tems 19(5). (2006) 291-297.

Another one (EPrints) also contained a paper Ind2 with the same title:
Corsar, Mr. David and Sleeman, Prof. Derek. Reusing JessTab Rules in Protege. In

Proceedings The Twenty-fifth SGAI International Conference on Innovative Techniques
and Applications of Artificial Intelligence (2005), pages pp. 7-20, Cambridge, UK.

This illustrates a common case when the same group of researchers first pub-
lishes their research results at a conference and then submits the extended
and revised paper to a journal. An attribute-based coreferencing algorithm
(Jaro-Winkler similarity applied to the title), which had a good overall perfor-
mance (precision about 0.92 and F-measure about 0.94), incorrectly considered
these two papers identical. However, a mapping between these individuals
violated two restrictions: the individual belonged to two disjoint classes si-
multaneously and had two different values for the functional property year.
The inconsistencies were detected by the algorithm, which produced two
sets of relevant statements: {owl:sameAs(Ind1, Ind2); Article(Ind1); Arti-
cle in Proceedings(Ind2); owl:disjointWith(Article, Article in Proceedings)} and
{owl:sameAs(Ind1, Ind2); year(Ind1, 2006); year(Ind2, 2005); owl: Functional
Property(year)}. Since these sets share a common statement (sameAs link), they
are translated into a single valuation network (Fig. 1). Although in our exam-
ple the initial support of the mapping was higher than the support of both
statements related to Ind2 (Article in Proceedings(Ind2) and year(Ind2, 2005)),
after belief propagation the incorrect owl:sameAs mapping was properly recog-
nized and received the lowest plausibility (0.21 - obtained as m(1) + m(0; 1) =
0.20 + 0.01).

Fig. 1. Example of a belief network constructed during the experimental testing. The
numbers show the support before propagation and support and plausibility after propa-
gation for variable nodes (white). Leaf variable nodes are given in the KB while non-leaf
ones are inferred using axioms corresponding to valuation nodes (blue).

Refining Instance Coreferencing Results 413

5.2 Influence of Context Mappings

Belief propagation for properties explicitly defined as functional is a trivial case.
However, properties which allow multiple values are also valuable as a means to
narrow the context of matched individuals and increase similarity between them.
We have to estimate the impact of the relation and model this in the network.
As shown in Table 2 (row 1), by default the valuation node for the owl:sameAs
relation is defined in such a way that the belief in I1 = I2 is completely inde-
pendent from a strong belief for both R(I3, I1) and R(I3, I2). The functionality
axiom represents an opposite scenario: having a belief 1.0 for both R(I3, I1) and
R(I3, I2) implies the belief 1.0 for I1 = I2. The actual strength of influence for
a property may lay between these extreme cases. In order to utilize such links
the network construction algorithm receives for each relevant property a vector
< n1, n2 >, where n1, n2 determine the impact of the link in direct (subject to
object) and reverse (object to subject) directions. The impact in two directions
may be different: having two people as first authors of the same paper strongly
implies people’s equivalence, while having the same person as the first author of
two papers with the similar title does not increase the probability of two papers
being the same. The owl : sameAs valuation node, combining variables I1 = I2,
R(I2, I3), R(I1, I3) will receive two belief assignments instead of one: m({0;0;0},
{0;0;1}, {0;1;0}, {1;0;0}, {1;1;1})=n1 and m({0;0;0}, {0;0;1}, {0;1;0}, {0;1;1},
{1;0;0}, {1;1;1})=1− n1. One possible way to determine coefficients < n1, n2 >
is to learn them from training data, as we did in our experiments, or to assign
them based on expert estimations or the number of statements per individual as
in [11].

Table 2. Belief distribution functions for valuation nodes

N Axiom Node type Variables Mass distribution

1 sameAs I1 = I2 I1 = I2, R(I1, I3), R(I2, I3)
m({0;0;0}, {0;0;1},
{0;1;0}, {0;1;1},
{1;0;0}, {1;1;1})=1

2 differentFrom I1 = I2 I1 = I2, I1 = I2 m({0;1},{1;0})=1

3
Functional

� 	≤ 1R R(I3, I1), R(I3, I2), I1 = I2

m({0;0;0}, {0;0;1},
Property {0;1;0}, {1;0;0},

{1;1;1})=1

4
Inverse

� 	≤ 1R− R(I1, I3), R(I2, I3), I1 = I2

m({0;0;0}, {0;0;1},
Functional {0;1;0}, {1;0;0},
Property {1;1;1})=1

Also some relevant relations may be implicit and not defined in the ontology.
For instance, the same group of people may be involved in different projects. If
the link between a project and a person is specified using a property akt:has-
project-member, when two knowledge bases describing two non-overlapping
sets of projects are combined, the relations between people cannot be utilized.
In order to capture these implicit relations we can add artificial properties, which

414 A. Nikolov et al.

connect individuals belonging to the same sets, into the ontology. Co-authorship
analysis, commonly used in the citation matching domain, is a special case of
this scenario (Fig. 2a).

Fig. 2. Examples of belief networks illustrating (a) the usage of artificial set member-
ship relations and (b) processing competing mappings knowing that a source does not
contain duplicates. The numbers show the belief before propagation and belief and
plausibility after propagation.

5.3 Provenance Data

The estimated reliability of a source is directly used at the starting stage when
initial beliefs are assigned to variable nodes representing class and property as-
sertions. Thus, if a violation of a functional restriction is caused by a property
assertion with a low belief, its impact will be insufficient to break the owl:sameAs
link. Another important factor is the knowledge about duplicate individuals in
a knowledge base. For instance, one knowledge base (AGROVOC) contains an
individual “fao:arlington”. If we match this against the UTexas geographical on-
tology, which contains two individuals “arlingtonVa” and “arlingtonTx”, then al-
though the similarity of one pair is slightly greater than another one, both values
are above the threshold and both these individuals can potentially be matched
to the first individual. However, knowing that this particular knowledge base
does not contain duplicates, allows us to add a corresponding owl:differentFrom
variable node into the network (Fig.2b). Updating beliefs allows us to reject one
of the two competing options.

6 Evaluation

In order to test the system we used the following datasets from the domain of
scientific publications:

1. AKT EPrints archive1. This dataset contains information about papers pro-
duced within the AKT research project.

1 http://eprints.aktors.org/

Refining Instance Coreferencing Results 415

2. Rexa dataset2. The dataset extracted from the Rexa search server, which
was constructed in the University of Massachusetts using automatic IE al-
gorithms.

3. SWETO DBLP dataset3. This is a publicly available dataset listing publi-
cations from the computer science domain.

4. Cora(I) dataset4. A citation dataset used for machine learning tests.
5. Cora(II) dataset. Another version of the Cora dataset used in [3].

AKT, Rexa and SWETO-DBLP datasets were previously used by the authors in
[18]. The SWETO-DBLP dataset was originally represented in RDF. AKT and
Rexa datasets were extracted from the HTML sources using specially constructed
wrappers and structured according to the SWETO-DBLP ontology (Fig. 3). The
Cora(I) dataset was created in the University of Massachusetts for the purpose
of testing machine-learning clustering algorithms. It contains 1295 references
and is intentionally made noisy: e.g., the gold standard contains some obviously
wrong mappings5. We translated this dataset into RDF using the SWETO-
DBLP ontology. The authors of Cora(II)[3] translated the data from Cora(I) into
RDF according to their own ontology and cleaned the gold standard by removing
some spurious mappings, so the results achieved on Cora(I) and Cora(II) are
not comparable. Data and gold standards mappings in Cora(II) are significantly
cleaner than in Cora(I). Also in Cora(II) all Person individuals were initially
considered different while in Cora(I) individuals with exactly the same name
were assigned the same URI, which led to a significant difference in the number
of individuals (305 vs 3521) and, consequently, in performance measurements.
In our tests we tried to merge each pair of datasets 1-3 and to find duplicates in
the Cora datasets.

To the SWETO ontology we added the restrictions specifying that (i) classes
Article and Article in Proceedings are disjoint, (ii) datatype property year de-
scribing the publication year is functional and (iii) object property author con-
necting a publication with a set of authors is functional. Given that both Cora
datasets did not distinguish between journal and conference articles, instead
we used venues as individuals and added functionality relations for them. Also
the Cora(II) ontology described pages as two integer properties pageFrom and
pageTo, which allowed us to add a functionality restriction on them as well.

For attribute-based coreferencing we used string similarity metrics applied
to a paper title or person’s name. In particular, we used Jaro-Winkler and
Monge-Elkan metrics applied to the whole strings or tokenized strings (L2 Jaro-
Winkler). L2 Jaro-Winkler is a mixture of string similarity and set similarity

2 http://www.rexa.info/
3 http://lsdis.cs.uga.edu/projects/semdis/swetodblp/august2007/

opus august2007.rdf
4 http://www.cs.utexas.edu/users/ml/riddle/data/cora.tar.gz
5 For instance, two papers by N. Cesa-Bianchi et al. “How to use expert advice. 25th

ACM Symposium on the theory of computing (1993) 382-391” and “On-line pre-
diction and conversion strategies. Eurocolt’93 (1993) 205-216” were considered the
same in Cora(I).

416 A. Nikolov et al.

Fig. 3. Class hierarchy in the SWETO-DBLP ontology

measures: it tokenizes both compared values, then each pair of tokens is com-
pared using the standard Jaro-Winkler algorithm and the maximal total score
is selected. Initial belief mass distribution for each owl:sameAs relation was as-
signed according to the precision of the algorithm, which produced it. Initial
belief assignments for the class and property assertions are shown in the Ta-
ble 3. We assigned the values based on our knowledge about how each dataset

Table 3. Initial belief mass assignment

Dataset Class assertions Datatype assertions
DBLP 0.99 0.95

Rexa 0.95
0.81 (<2 citations)
0.855 (>2 citations)

EPrints 0.9 0.85
Cora(I & II) N/A 0.6

was produced and manual reviewing of the datasets. We did not further classify
publications in Cora datasets into journal and conference articles, so class asser-
tions were not relevant. Knowing that the data in Cora datasets was noisy, we
assigned beliefs in such a way that disagreement on a single property value was
not sufficient to break the mapping.

We measured the quality of coreference before and after belief propagation.
The results of the tests are shown in the Table 4. As expected, in almost all
cases the refinement procedure led to an improvement in overall performance ex-
pressed by the F1-measure. For sweto:Publication instances (rows 1, 2, 4, 6, 7, 8)
the recall has decreased: the algorithm incorrectly resolved some inconsistencies,
which in fact occurred due to wrong data statements. The decrease was slight
for AKT/Rexa/DBLP datasets and more significant for Cora where the degree
of noise was higher. However, in all cases this decrease was more than compen-
sated by the increase in precision. For foaf:Person individuals the effect of belief
propagation primarily influenced recall: links between instances reinforced the po-
tential mappings, which would otherwise be rejected. Because Cora(II) was better
formatted than Cora(I) there were very few “dubious” mappings produced during
initial coreferencing and belief propagation was not able to catch them.

Refining Instance Coreferencing Results 417

Table 4. Test results

Dataset No
Matching sweto:Publication
algorithm Before After

Precision Recall F1 Precision Recall F1

EPrints/Rexa
1 Jaro-Winkler 0.950 0.833 0.887 0.969 0.832 0.895
2 L2 Jaro-Winkler 0.879 0.956 0.916 0.923 0.956 0.939

EPrints/DBLP
3 Jaro-Winkler 0.922 0.952 0.937 0.992 0.952 0.971
4 L2 Jaro-Winkler 0.389 0.984 0.558 0.838 0.983 0.905

Rexa/DBLP
5 Jaro-Winkler 0.899 0.933 0.916 0.944 0.932 0.938
6 L2 Jaro-Winkler 0.546 0.982 0.702 0.823 0.981 0.895

Cora(I) 7 Monge-Elkan 0.735 0.931 0.821 0.939 0.836 0.884
Cora(II) 8 Monge-Elkan 0.698 0.986 0.817 0.958 0.956 0.957

foaf:Person

EPrints/Rexa 9 L2 Jaro-Winkler 0.738 0.888 0.806 0.788 0.935 0.855
EPrints/DBLP 10 L2 Jaro-Winkler 0.532 0.746 0.621 0.583 0.921 0.714
Rexa/DBLP 11 Jaro-Winkler 0.965 0.755 0.846 0.968 0.876 0.920
Cora(I) 12 L2 Jaro-Winkler 0.983 0.879 0.928 0.981 0.895 0.936
Cora(II) 13 L2 Jaro-Winkler 0.999 0.994 0.997 0.999 0.994 0.997

Considering the F1 measure obtained for Cora(I) publication (row 7) in com-
parison with the state-of-the art algorithms from the database and machine
learning communities, we found that it is higher than those reported in [22]
(0.867), [9] (0.87), but lower than in [2] (0.93)6. As was said before, in order to
minimize the number of attributes processed by basic coreferencing methods, in
our tests we only used the title comparison for determining candidate individu-
als. This was the main factor, which reduced the performance: e.g., the algorithm
used in [2] achieved similar F-measure (0.88) on the test set when trained only
on the title, year and venue attributes. For Cora(II) the F-measure was similar
to that reported for [3]: slightly higher for publications (0.957 vs 0.954) while
slightly lower for people (0.997 vs 0.999). The difference is due to the fact that
the authors of [3] used better similarity measures (reported F-measure for publi-
cations 0.948 without exploiting links) while exploiting data uncertainty by our
approach increased recall (e.g., having different years for papers was not enough
to break the mapping if there was an agreement for the venue name and pages).

7 Conclusion and Future Work

In the paper we have presented an approach which uses Dempster-Shafer belief
propagation in order to improve the quality of data integration, in particular
coreferencing of individuals. We consider this extension and application of the

6 Note that the authors of [8] and [7], and [16] used different versions of the Cora
dataset where, in particular, more mappings were removed from the gold standard
so that the dataset contained 132 clusters [8] rather than 125 in Cora(II), and papers
with the same title and year were considered identical [16]. This does not allow direct
comparison of reported performance with our algorithms.

418 A. Nikolov et al.

Dempster-Shafer belief propagation mechanism as the main contribution of this
paper. Our initial experiments performed with test datasets have shown an im-
provement in the output quality of basic string similarity algorithms. However,
there are still issues which have to be resolved in the future work.

First, the Dempster-Shafer belief propagation mechanism is sensitive to the
initial belief distribution, which may be an issue if initial belief does not ade-
quately reflect the actual data, e.g., if the estimated precision of a coreferencing
algorithm was measured using a test set with a different distribution of data.
Second, at the moment the algorithm assumes that the data to be merged is
formatted according to the same ontology. In order to be employed on a Web
scale, the ability to work in a multi-ontology environment is necessary. In partic-
ular, the output of ontology matching algorithms must be considered. Another
important feature would be automatic discovery of ontological restrictions by
retrieving other ontologies covering the same domain (e.g., using Watson7 or
Swoogle8 engines) and analyzing them.

Acknowledgements

This work was funded by the X-Media project (www.x-media-project.org) spon-
sored by the European Commission as part of the Information Society Technolo-
gies (IST) programme under EC grant number IST-FP6-026978. The authors
would like to thank Steffen Rendle and Karen Tso for providing their object
identification tool [2], Luna Dong for providing the Cora(II) dataset and Fatiha
Säıs for providing materials about L2R/N2R algorithm [17].

References

1. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of American Sta-
tistical Association 64(328), 1183–1210 (1969)

2. Rendle, S., Schmidt-Thieme, L.: Object identification with constraints. In: 6th
IEEE International Conference on Data Mining, ICDM (2006)

3. Dong, X., Halevy, A., Madhavan, J.: Reference reconciliation in complex informa-
tion spaces. In: SIGMOD 2005: Proceedings of the 2005 ACM SIGMOD interna-
tional conference on Management of data, pp. 85–96. ACM, New York (2005)

4. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A
survey. IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)

5. Winkler, W.E.: Overview of record linkage and current research directions. Techni-
cal Report RRS2006/02, US Bureau of the Census, Washington, DC 20233 (2006)

6. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In:
8th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-2002), Edmonton, Alberta, Canada. ACM Press, New York (2002)

7. Chen, Z., Kalashnikov, D.V., Mehrotra, S.: Adaptive graphical approach to entity
resolution. In: ACM IEEE Joint Conference on Digital Libraries 2007 (ACM IEEE
JCDL 2007), Vancouver, British Columbia, Canada, pp. 204–213 (2007)

7 http://watson.kmi.open.ac.uk/WatsonWUI/
8 http://swoogle.umbc.edu/

Refining Instance Coreferencing Results 419

8. Singla, P., Domingos, P.: Object identification with attribute-mediated depen-
dences. In: 9th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PAKDD-2005), Porto, Portugal, pp. 297–308 (2005)

9. Parag, Domingos, P.: Multi-relational record linkage. In: KDD Workshop on Multi-
Relational Data Mining, Seattle, CA, USA, pp. 31–48. ACM Press, New York
(2004)

10. Euzenat, J., Shvaiko, P.: Ontology matching. Springer-Verlag, Heidelberg (2007)
11. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph

matching algorithm. In: 18th International Conference on Data Engineering
(ICDE), San Jose (CA US), pp. 117–128 (2002)

12. Castano, S., Ferrara, A., Lorusso, D., Näth, T.H., Möller, R.: Mapping valida-
tion by probabilistic reasoning. In: Bechhofer, S., Hauswirth, M., Hoffmann, J.,
Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 170–184. Springer, Hei-
delberg (2008)

13. Bouquet, P., Stoermer, H., Bazzanella, B.: An Entity Name System (ENS) for the
Semantic Web. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M.
(eds.) ESWC 2008. LNCS, vol. 5021, pp. 258–272. Springer, Heidelberg (2008)

14. Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the open linked data.
In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck,
J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 552–565. Springer, Heidelberg
(2007)

15. Glaser, H., Millard, I.C., Jaffri, A.: RKBExplorer.com: A knowledge driven infras-
tructure for linked data providers. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 797–801. Springer,
Heidelberg (2008)

16. Säıs, F., Pernelle, N., Rousset, M.C.: L2R: a logical method for reference reconcilia-
tion. In: 22nd AAAI Conference on Artificial Intelligence (AAAI 2007), Vancouver,
BC, Canada, pp. 329–334. AAAI Press, Menlo Park (2007)

17. Säıs, F., Pernelle, N., Rousset, M.C.: Combining a logical and a numerical method
for data reconciliation. Journal of Data Semantics 12 (2008)

18. Nikolov, A., Uren, V., Motta, E., de Roeck, A.: Handling instance coreferencing in
the KnoFuss architecture. In: Workshop on Identity and Reference on the Semantic
Web, ESWC 2008, Tenerife, Spain (2008)

19. Shafer, G.: A mathematical theory of evidence. Princeton University Press, Prince-
ton (1976)

20. Nikolov, A., Uren, V., Motta, E., de Roeck, A.: Using the Dempster-Shafer theory
of evidence to resolve ABox inconsistencies. In: Aberer, K., Choi, K.-S., Noy, N.,
Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi,
R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS,
vol. 4825. Springer, Heidelberg (2007)

21. Shenoy, P.P.: Valuation-based systems: a framework for managing uncertainty in
expert systems. In: Fuzzy logic for the management of uncertainty, pp. 83–104.
John Wiley & Sons, Inc., New York (1992)

22. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string
similarity measures. In: 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2003), Washington DC, pp. 39–48 (2003)

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 420–433, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Named Entity Disambiguation: A Hybrid Statistical
and Rule-Based Incremental Approach

Hien T. Nguyen1 and Tru H. Cao2

1 Ton Duc Thang University, Vietnam
hien@tut.edu.vn

2 Ho Chi Minh City University of Technology, Vietnam
tru@cse.hcmut.edu.vn

Abstract. The rapidly increasing use of large-scale data on the Web makes
named entity disambiguation become one of the main challenges to research in
Information Extraction and development of Semantic Web. This paper presents
a novel method for detecting proper names in a text and linking them to the
right entities in Wikipedia. The method is hybrid, containing two phases of
which the first one utilizes some heuristics and patterns to narrow down the
candidates, and the second one employs the vector space model to rank the
ambiguous cases to choose the right candidate. The novelty is that the disam-
biguation process is incremental and includes several rounds that filter the can-
didates, by exploiting previously identified entities and extending the text by
those entity attributes every time they are successfully resolved in a round. We
test the performance of the proposed method in disambiguation of names of
people, locations and organizations in texts of the news domain. The experi-
ment results show that our approach achieves high accuracy and can be used to
construct a robust named entity disambiguation system.

1 Introduction

In Information Extraction and Natural Language Processing areas, named entities
(NE) are people, organizations, locations, and others that are referred to by names. A
wider interpretation of the term includes any token referring to something specific in
reality, such as numbers, addresses, amounts of money, dates, etc. ([7]). Having been
raised from research in those areas, named entities have also become a key issue in
development of Semantic Web ([20]). According to the vision of the Semantic Web,
metadata about named entities would be widely available with high quality for easily
sharing, integrating and processing by software agents. In that spirit, extracting named
entities in texts and linking them to some ontology or knowledge base (KB) such as
KIM1, OpenCyc2, Wikipedia3, etc. have been increasingly attracting researchers’
attention.

1 http://www.ontotext.com/kim/
2 http://www.opencyc.org/
3 http://www.wikipedia.org/

 Named Entity Disambiguation: A Hybrid Statistical 421

One great challenge in dealing with named entities is that one name may refer to
different entities in different occurrences and one entity may have different names
which may be written in different ways and with spelling errors. For example, the
name “John McCarthy” in different occurrences may refer to different named entities
such as a computer scientist from Stanford University, a linguist from University of
Massachusetts Amherst, a British journalist who was kidnapped by Iranian terrorists
in Lebanon in April 1986, an Australian ambassador, etc. Such ambiguity makes
identification of NEs more difficult and raises NE disambiguation problem as one of
the main challenges to research not only in the Semantic Web but also in areas of
natural language processing in general.

Our work aims at detecting named entities in a text, disambiguating and linking
them to the right ones in Wikipedia. The proposed method utilizes NEs and related
terms co-occurring with the target entity in a text and Wikipedia for disambiguation
because the intuition is that these respectively convey its relationship and attributes.
For example, suppose that in a KB there are two entities named “Jim Clark”, one of
which has a relation with the Formula One car racing championship and the other
with Netscape. Then, if in a text where the name appears there are occurrences of
Netscape or web-related referents and terms, then it is more likely that the name refers
to the one with Netscape in the KB. We exploit Wikipedia as a source of NE annota-
tions due to its size, variation, accuracy and quantity of hyper-links ([23]) to construct
annotated corpus for disambiguation.

The contribution of this paper is three-fold as follows:

− First, we propose a hybrid method that combines heuristics and a learning model
for disambiguation and identification of NEs in a text with respect to Wikipedia.

− Second, the proposed disambiguation process is incremental and includes sev-
eral rounds that filter the candidates, by exploiting previously identified entities
and extending the text by those entity attributes every time they are successfully
resolved in a round. Importantly, we explore context in several levels, from lo-
cal to the whole text, where diverse clues are extracted for disambiguation at
high accuracy.

− Finally, our method utilizes disambiguation texts in titles of articles in Wikipe-
dia as an important feature not only to choose the right entity for an ambiguous
referent by search for their occurrences in local context, but also to disambigu-
ate other ambiguous referents in a text.

The rest of the paper is organized as follows. Section 2 states the problem as well
as describes its scope. Section 3 describes resources of information in Wikipedia that
are essential for our method. Section 4 describes extraction of named entities in
Wikipedia to create a disambiguation dictionary. Section 5 presents in details the
disambiguation method. Section 6 describes evaluation of our method. Section 7 pre-
sents related works. Finally, we draw a conclusion in Section 8.

2 Background

The problem of disambiguation is to determine whether two named entities refer to the
same entity. For instance, do “J. Smith” and “John Smith” refer to the same person?

422 H.T. Nguyen and T.H. Cao

Do different occurrences of “John Smith” refer to the same person? This paper ad-
dresses the problem that aims at mapping referents that are not resolved yet in a text
to the right referents in a predefined list of resolved referents. For instance, for the text
“the computer scientist John McCarthy coined the term artificial intelligence in
the late 1950's,” our method detects whether John McCarthy and the resolved
referent John McCarthy (computer scientist) in Wikipedia refer to the
same entity and then link the referent John McCarthy to John McCarthy
(computer scientist) in Wikipedia.

In [15], the authors identify several levels of named entity ambiguity. The first
level of ambiguity is structured ambiguity, where the structures of names are ambigu-
ous. For instance, in the name “Victoria and Albert Museum” the word and is a part of
this name, whereas, in the case of “IBM and Bell Laboratories”, and is a conjunction
joining two computer company names. The second level is semantic ambiguity, where
entity-type is ambiguous. For instance, “John Smith” may refer to a company or a
person. Referent ambiguity is the next level, when one name may be used to refer to
different entities, e.g. “Paris” may refer to Paris, France, or a small town in Texas,
the United States. Our work performs both the semantic ambiguity and the referent
ambiguity resolution with assumption that the structured ambiguity is resolved in pre-
processing steps.

The task of NE disambiguation bears a resemblance to Word Sense Disambigua-
tion (WSD) in that it comprises two key steps of which a look-up step retrieves candi-
date referents in a KB of discourse (sense inventory in WSD) and the second one
chooses the most likely candidate. However, this task is different from WSD in that
NEs, roughly speaking, represent specific individuals in the world of discourse, while
words denote generic concepts such as types, properties, and relations. Reasoning
with words thus requires only lexical semantics and common senses, while reasoning
with NEs requires specific knowledge about the world of discourse.

This problem has attracted much research effort, with various methods introduced
for different domains, scopes, and purposes. Most of those methods fit into categories
described below:

− Rule-based methods, the methods that use some heuristics to disambiguate NEs
of the Location ([17], [18]), the Person ([13]) or arbitrary types from a given on-
tology ([16]).

− Machine learning methods, the methods that extract information from Wikipedia
to form language models ([2], [4]) or co-occurrence model ([21]), and then use
those models to disambiguating named entities.

− Data-driven methods, the methods of disambiguation apply semi-supervised
techniques, combined with additional un-annotated corpus, to learn contextual
information for disambiguation ([22]).

The method of disambiguation presented here combines heuristics and a learning
model. To maximize accuracy of mapping a NE referred to in a text to the right one in
Wikipedia poses a significant question that how contexts in which referents occur are
exploited and how corresponding NEs can be represented. In our case, we represent
NEs by their attributes and relations. The attributes are birthday, career, occupation,
alias, first name, last name, and so on. The relations of an entity represent relations to
others such as part-of, located-in, etc. The way we exploit the contexts is based on

 Named Entity Disambiguation: A Hybrid Statistical 423

Harris’ Distributional Hypothesis [14] stating that words occurring in similar contexts
tend to have similar senses. We adapt the hypothesis to NE instead of word sense
disambiguation.

3 Wikipedia

Wikipedia is a free encyclopedia written by a collaborative effort of a large number of
volunteer contributors. It is a multilingual resource and growing exponentially so that it
has become the largest organized knowledge repository on the Web ([19]). We utilize
Wikipedia data because of its size, quality, growth speed, as well as a source of infor-
mation about synonyms, spelling variations, and abbreviations of NEs. Also, it is a
fertile source for exploiting related terms and co-occurring NEs; those actually provide
explicit information about the important features of the corresponding entity, such as
location and industry of a company, etc. In addition, many-to-many correspondence
between names and entities can be captured from Wikipedia by utilizing redirect pages
and disambiguation pages.

Pages
A basic entry in Wikipedia is a page (or article) that defines and describes a single
entity or concept. It is uniquely identified by its title. Typically, the title is the canoni-
cal name for the entity described in the page. When the name is ambiguous, the title
contains further information that we call disambiguation text to distinguish the entity
described from others. The disambiguation text separates from the name by parenthe-
ses, or a comma, e.g. John McCarthy (computer scientist), Colum-
bia, South Carolina. Each title is an identifier (ID) of a specific named entity
in Wikipedia, because it identifies a unique entity in Wikipedia entity space.

Links
Each page consists of many links whose role is not only to point from the page to
others but also to guide readers to pages that provide additional information about the
entities mentioned. Each link is associated with an anchor text that represents the
surface form of the corresponding entity. Note that if the anchor text denotes an am-
biguous name or is an alternative name instead of canonical name, a piped link is used
instead in wiki source code. For instances, a typical link might look like [[Mid-
land, Texas | Midland]], where Midland, Texas is the link target
and Midland is its surface form.

Categories
The Wikipedia category system is also a source of meaningful information. The
Wikipedia category tree is an example of a folksonomy, a kind of collaborative tagging
system that enables the users to categorize the content of the encyclopedic entries.
Thus, the taxonomy of Wikipedia can express not only hyponymic relations but also
meronymic relations as well. As an example, the Wikipedia page for the George Bush
belongs not only to the categories Presidents of the United States and Texas
Republicans (is-a) but also to the 1946 births (has-property). In Wikipedia, every entity
page is associated with one or more categories, each of which can have subcategories

424 H.T. Nguyen and T.H. Cao

expressing meronymic or hyponymic relations. Note that we extract not only direct
category information of an entity but also all its parent and ancestors.

Redirect pages
A redirecting page typically contains only a reference to an entity or a concept page.
Title of redirecting page is an alternative name of that entity or concept. For example,
from redirect pages of United States, we extract alternative names of the United
States entity such as “US”, “USA”, “United States of America”, etc.

Disambiguation pages
A disambiguation page is created for an ambiguous name which denotes two or more
entities in Wikipedia. It consists of links to pages that define the different entities with
the same name. For instance, the disambiguation page for “John McCarthy” lists
pages discussing John McCarthy (referee), John McCarthy (jour-
nalist), John McCarthy (journalist), John McCarthy (com-
puter scientist), etc. From the disambiguation pages we detect all entities that
have the same name in Wikipedia for creating a disambiguation dictionary.

4 Creating the Disambiguation Dictionary

Based on the resources of information aforementioned, we follow the method pre-
sented in [2] to create a disambiguation dictionary. Since our work focuses on NEs,
we first consider which pages in Wikipedia define NEs. In [2], the authors consider a
page describing a NE if it satisfies one of the following heuristics:

1. If its title is a multiword title, check the capitalization of all content words in the
title, i.e. words other than prepositions, determiners, conjunctions, relative pro-
nouns or negations. Consider the page describing a NE if and only if all the con-
tent words are capitalized.

2. If its title is a one-word title that contains at least two capital letters, then the
page describes a NE. Otherwise, go to step 3.

3. Count how many times its title occurs in the text of the page, in positions other
than at the beginning of sentences. If at least 75% of these occurrences are capi-
talized, then the page describes a NE.

Following this way, a dictionary is constructed so that the set of entries in the dic-
tionary consists of all strings that may denote a named entity. In particular, if e is a
named entity, its title name, its redirect names, and disambiguation names are all
added as entries in the dictionary. Then each entry string in the dictionary is mapped
to a set of entities that the string may denote in Wikipedia. As a result, a named entity
e is included in the set if and only if the string is one of title name, redirect names, or
disambiguation names of e.

Note that although we utilize information from Wikipedia to create the disam-
biguation dictionary, our method can be adapted for an ontology or knowledge base in
general. In particular, one can generate a profile for each of KB entities by making
use of ontology concepts and properties of the entities. In other words, one can take
advantage of hierarchy of classes for feature by extracting direct class and parent
classes of the entities. Also, value of properties of entities was exploited. For attrib-

 Named Entity Disambiguation: A Hybrid Statistical 425

utes, their values were directly extracted. For relation properties, one can utilize
names and ID of the corresponding entities. All the extracted feature values of an
entity will be concatenated into a text snippet, which can be considered a profile of
the entity, for further processing.

5 Proposed Method

In a news article, co-occurring entities are usually related to each other. Furthermore,
the identity of a named entity is inferable from nearby and previously identified NEs
in the text. For example, when the name “Georgia” occurs with “Atlanta” in a text
and if Atlanta is already recognized as a city in the United States, then it is more
likely that “Georgia” refers to a state of the U.S. rather than the country Georgia, and
vice versa when it occurs with Tbilisi as a country capital in another text. Further-
more, the words surrounding ambiguous names may denote attributes of NEs referred
to. If those words are automatically extracted, the ambiguous names may be disam-
biguated. For example, in the text “Michael Collins, assistant professor”, the word
“professor” helps to discriminate “Michael Collins” who works at MIT from “Mi-
chael Collins” who flew on the Apollo 11 and others with the same name. From those
observations, we propose a method with the following essential points:

− It is a hybrid method containing two phases the first one of which is a rule-based
phase that filters candidates and disambiguates named entities if possible and
the second one employs a statistical learning model to rank the candidates.

− It is an iterative and incremental process in which a resolved referent at each it-
eration step is intermediately utilized to disambiguate others in the next step.

− It exploits both entity IDs and keywords as means of named entity disambigua-
tion in two phases. In particular, in the first phase, based on NE identifiers of
previously identified NEs in the local context, it searches for occurrences of
candidates’ disambiguation texts not only to filter the candidates but also to dis-
ambiguate ambiguous referents; then in the second phase, it utilizes words sur-
rounding ambiguous referents in consideration and entity IDs in the whole text
for ranking the candidates.

The disambiguation process comprises the following steps in each iteration:

1. Looking up candidates for referents in text using the disambiguation dictionary
as a gazetteer.

2. Narrowing down the candidates for ambiguous referents in text using textual in-
formation, IDs in local context and disambiguation texts of candidates. After this
step, the text will be extended by disambiguation text of the chosen candidate.

3. Ranking candidates using features extracted from the extended text and Wikipe-
dia to disambiguate the referents that have not been resolved yet.

5.1 Looking Up Candidates

Prior to looking up candidates in the disambiguation dictionary, we perform pre-
processing steps. In particular, we perform NE recognition and NE coreference resolution

426 H.T. Nguyen and T.H. Cao

using natural language processing resources of Information Extraction engine based on
GATE ([6]), a general architecture for developing natural language processing applica-
tions. The NE recognition applies pattern-matching rules written in JAPE’s grammar of
GATE, in order to identify the class of an entity in the text. After detecting all mentions
of entities occurring in the text, we run NE co-reference resolution ([3]) module in the
GATE system to resolve the different mentions of an NE into one group that uniquely
represents the NE. After pre-processing steps, for each entity name in the text, we send it
as a query to the dictionary to retrieval candidates. If there is only one candidate in the
result, the corresponding referent is resolved.

It can also be observed in practice, in particular news articles, that the use of short
names in place of full names is very common. For example, the names “Bush”,
“George Bush” may be used to refer to the current president of the United States stand
for “George W. Bush” in a news article, while the name “Bush”, if taken out of a
particular context, can refer to Laura Bush, or Samuel D. Bush, for instance.
If “George W. Bush” and “Bush” are found to be coreferent in a text, then it is likely
that they refer to the president of the United States. Our work is based
on the assumption that all various representations of a name in a text mention the
same entity. Therefore, we propagate resolved referents to others in their coreference
chains. For example, assumption that in a text, there are occurrences of “Denny Hil-
lis” and “Hillis” (“Hillis” may refer to Ali Hillis, American actress, Horace
Hillis, American politician, W. Daniel Hillis, American inventor, entrepre-
neur, and author, etc.), if “Denny Hillis” is recognized that it refers to the W.
Daniel Hillis and “Hillis” also refers to W. Daniel Hillis.

5.2 Narrowing Down Candidates

In this step we exploit the local context to narrow down candidates and disambiguate
ambiguous referent if possible. The local context of a location referent is its neighbor
referents (i.e. the previous and successive ones) in the text. For example, if “Paris” is
a location mention and followed by “France”, then “France” is in local context of
“Paris”. Local context of a person or an organization referent are words and referents
occurring in a limit length window, whose size is set to 10 tokens, centered on the
entity mention.

In particular, we utilize disambiguation texts of candidates to choose the correct
one for each referent. For a location referent, the right one is the candidate either
whose disambiguation text is identical to the successive entity name or whose name is
identical to disambiguation text of the previous resolved referent. For example, in the
text “Columbia, South Carolina”, the candidate Columbia, South Carolina,
the largest city of South Carolina, in Wikipedia is chosen because its disambiguation
text is “South Carolina”, or in the text “Atlanta, Georgia”, the candidate, a major
city of state Georgia of United States, with the name “Atlanta” and disambiguation
text “Georgia” is chosen, and Georgia is also resolved as a U.S. state because
previous resolved referent with identifier Atlanta, Georgia has disambiguation
text identical to “Georgia”.

For a person or an organization referent, chosen candidates are ones that have dis-
ambiguation text occurring in its local context. After this step, if there is only one
candidate in the result, the referent is considered being resolved. For example, in the

 Named Entity Disambiguation: A Hybrid Statistical 427

text “Veteran referee (Big) John McCarthy, one of the most recognizable faces of
mixed martial arts”, the word “referee” helps choose the candidate John
McCarthy (referee) as the right one instead of John McCarthy (com-
puter scientist), John McCarthy (linguist), etc. in Wikipedia.

After that, we extend the text by disambiguation texts of the resolved referents.
Those will be exploited to resolve the remaining ambiguous referents in the next step.
For example, for the text “Atlanta, Georgia”, after Atlanta was recognized as a
city of state Georgia of the United Sates and Georgia was recognized as a state of
the United States, the extended text is “Atlanta, Georgia, Georgia (U.S. sate)” in
which Atlanta, Georgia is the identifier of the city Atlanta, and Georgia
(U.S. state) is the identifier of the state Georgia in Wikipedia named entity
space.

5.3 Ranking Candidates

After extracting all information about NEs in Wikipedia based on features that are
titles of entity pages, titles of redirect pages, categories, hyperlinks, we represent
those NEs by their information. For each of the remaining ambiguous referents in the
extended text, we extract its features’ values as follows:

− All words occurring in a window context centered on the entity name in the ex-
tended text. The window size is set to 55, which is the value that was observed
to give optimum performance in the related task of cross-document coreference
([12]).

− All NE identifiers of identified named entities in the extended text.

After that we concatenate the entire feature’ values of the referents in the extended
text and NEs in Wikipedia into text snippets and represent them in form of token-based
feature vectors. Then we need a similarity metric to calculate the similarity between
the vectors. Cohen et al. ([5]) presents various string similarity schemes for the task of
matching English entity names and they report TFIDF (or cosine similarity), which is
widely used in the information retrieval community, as the best among the token-based
distance metrics. Given a pair of feature vectors S = (s1, s2,…, sn), and T = (t1, t2, …,
tm), in which si (i=1,2, …, n) and tj (j=1,2, …, m) are words (or tokens). Then the
TFIDF is defined as

∑
∩∈

×=
TSw

TwVSwVTFIDF),(),(

V’(w, S) = log(TFw,S + 1) . log(IDFw), and

∑ ∈

=
2),('

),('
),(

SwV

SwV
SwV

Sw

where TFw,S is the frequency of word w in S, IDFw is the inverse of the fraction of snip-
pets in a snippet collection that contains w.

Let CE be a set of entities in Wikipedia that have the same name with the target
entity, e, in consideration in the extended text. We cast the named entity disambigua-
tion problem as a ranking problem with assumption that there is an appropriate scor-
ing function to calculate semantic similarity between feature vectors of an entity ce ∈
CE and the entity e. We build a ranking function that takes input as a set of feature

428 H.T. Nguyen and T.H. Cao

vectors of entities in CE and the feature vector of the entity e, then based on the scor-
ing function to return the entity ce ∈ CE with the highest score. Fig.1 presents an
algorithm using TFIDF as the scoring function. At the line 3 in Fig.1, the score func-
tion takes input as a token-based feature vector of a candidate and a token-based fea-
ture vector of an ambiguous referent, and then it ranks and returns the candidate with
the highest score.

Fig. 1. An algorithm ranking candidates using TFIDF

5.4 Algorithm

Fig.2 presents our disambiguating process. First we resolve some trivial ambiguous
cases and retrieve candidates for ambiguous referents (line 1). Line 2 performs
coreference resolution. From line 3 to line 11, we use some heuristics to disambigu-
ate. Line 6 searches for disambiguation text of a candidate in a window containing the
ambiguous referent in consideration, its previous and successive ones in the ambigu-
ous case of location referents and in a window containing 10 tokens centered at am-
biguous referent in the ambiguous cases of person and organization referents. If only
one candidate for which we found it disambiguated, the corresponding referent is
resolved. Line 12 performs extending the text by disambiguation text of the resolved

Algorithm: Disambiguation
1: resolve trivial (unambiguous) referents
2: resolve coreference of referents
3: for each ambiguous referent r do
4: let C a set of candidate referents of r
5: forall candidate c C do
6: search for c’s disambiguation text in a window context
7: if found for only one candidate c* then
8: propagate c* to all referents in the coref-chain of r
9: end if
10: end forall
11: end for
12: extend the text
13: RakningCandidates(a set of remaining ambiguous referents)

Fig. 2. Disambiguating process

Algorithm RankingCandidates (a set of ambiguous referents R)

1: for each referent r ∈ R do
2: let C a set of candidates of r

3: c*=
Cci ∈

maxarg score(Vector(c
i
), Vector(r))

4: assign c* to r
5: extend the text by c* disambiguation text
6: end for

 Named Entity Disambiguation: A Hybrid Statistical 429

referents. Finally, we use TFIDF to rank candidates for each of the remaining am-
biguous referents and choose the candidate with the highest score. Note that after each
iteration step, the algorithm extends the text by disambiguation text of the chosen
candidate. Therefore, in the next iteration, the algorithms reform the feature vector of
the ambiguous referent in consideration.

6 Evaluation

We downloaded top two stories in the five CNN news categories (Travel, Entertain-
ment, World, World Business, and Americas) on July 22, 2008 to build a dataset for
evaluation. For later testing, all the NEs referred to in this dataset are manually dis-
ambiguated with respect to Wikipedia, by two persons for the quality of the dataset.
The Wikipedia version we used that is of Zesch4 ([24]). Note that, due to the incom-
pleteness of Wikipedia, an ambiguous name may be used to refer to some NEs not in
Wikipedia, which are out of our work’s target. Also note that, we evaluate our method
on named entities of three types – Person, Location, and Organization.

Table 1. Statistic about named entities in the manually disambiguated dataset

Category # of referents # of found entities in Wikis # of ambiguous referents

Person 261 213 123

Location 168 159 94

Organization 89 84 45

Total 518 454 262

There are 518 proper names occurring in the dataset 454 names of which refer to
NEs in Wikipedia and 262 names refer to two or more than different NEs in Wikipe-
dia. We evaluate our method in two scenarios. In the first scenario, we use GATE to
detect and tag boundaries of names occurring in the dataset and then categorize corre-
sponding referents as Person, Location and Organization. After that, we gain D1 data-
set. We found that GATE fails to detect boundaries of some names (12 names). For
example, “Omar al-Bashir” is recognized as separate names “Omar” and “al-
Bashir”, “Sony Ericsson” is recognized as separate names “Sony” and “Ericsson”,
and “African National Congress” recognized as “African National”, etc. Also there
are many names (77 names) that GATE does not recognize as entity names. For ex-
ample, “Darfur”, “Qunu”, “Soweto”, “Interfax”, “Rosoboronexport”, and so on are
not recognized as entity names. Then we manually fix all errors in the dataset D1
by adjusting wrong boundaries, added tagging, and re-categorizing all the wrong
cases and gain dataset D2 with no error. Table 1 presents the number of referents, the

4 http://www.ukp.tu-darmstadt.de/software/jwpl/

430 H.T. Nguyen and T.H. Cao

number of ambiguous referents, and the number of entities in Wikipedia referred to in
the manually disambiguated dataset.

After that we run our method on D1 and D2, respectively. The results are matched
against the manually disambiguated dataset. We apply the way that Fernandez et al.
([10]) measure the effect of their method to ours. In particular, we measure accuracy
as the total number of right assignments NE (in text)/Wiki NE divided by the total
number of assignments.

Table 2 presents statistic information about named entities in dataset D1. The data
on the Table show that the number of names detected less than it would be, which is
because GATE fails to detect many proper names. Table 2 shows that there are 482
referents in dataset D1 which is less than one presented in Table 1 because GATE
does not recognize some referents as the case of Darfur and fails to detect boudaries
of proper names as the case of “Omar al-Bashir”. Table 3 presents accuracy results
when we run our method on this dataset.

Table 2. Statistic about named entities in the dataset D1

Category # of referents # of found entities in Wikis # of ambiguous referents

Person 245 195 118

Location 148 140 88

Organization 89 76 41

Total 482 411 247

Table 3. Accurracy results on the dataset D1

Table 4 presents accuracy results when we run our method on the dataset D2. The

results show that our method achieves high accuracy. The accuracy results in Table 3
when we run our methods on this dataset D1 decrease comparable to those results
achieved when we run the method on the dataset D2, which is because of noise accu-
mulated from the pre-processing steps. There are three reasons as follows:

− GATE fails to dectect booundaries of names, e.g “Christopher Nolan“ detected as
“Nolan“, “Luis Moreno-Ocampo” detected as “Luis Moreno-”, etc.

− GATE fails to categorize named entites, e.g Robben Island Prison is recognized as
a person.

− GATE does not detect some proper names that could be clues providing
meaningful information to disambiguate other entities.

Category Person Location Organization All

Correct disambiguation 174 120 62 356

Accuracy 89.23% 85.70% 81.60% 86.61%

 Named Entity Disambiguation: A Hybrid Statistical 431

Table 4. Accurracy results on dataset D2

7 Related Works

Some works resolve semantic ambiguity by performing named entity tagging which is
usually seen as task of identifying text span and classifying it into a broad category
such as Person, Organization, Location, etc. ([6], [9]), or into a more fine-grained cate-
gory that is specified by a given ontology ([8], [11]). However, those works are not
disambiguation and identification of NEs in texts.

Some other works use heuristic rules and focus on only one type of NE such as lo-
cation ([18]), or person ([13]). The proposed method in [13] relies on affiliation, text
proximity, areas of interest, and co-author relationship as clues for disambiguating
person names in calls for papers only. Meanwhile, the domain Raphael ([18]) is that
of geographical names in texts. In [18], the authors use some patterns to narrow down
the candidates of ambiguous geographical names. For instance, “Paris, France” more
likely refers to the capital of France than a small town in Texas. Then, it ranks the
remaining candidate entities based on the weights that are attached to classes of the
constructed Geoname ontology. The shortcoming of those methods is that it omits
relationships between named entities with different classes, such as between person
and organization, or organization and location, etc. The statistical method in [10],
although it leverages the co-occurrence relation between NEs with different classes, is
semi-automatic and uses user feedback to disambiguated results for updating heuris-
tics and rules considered as a training dataset.

Closely related works to ours are presented in [2], [4], [16]. Bunescu et al. [2] and
Cucerzan [4] exploited several of the disambiguation resources such as Wikipedia
entity pages, redirection pages, categories, and hyperlinks, whereas in [16], the au-
thors proposed a rule-based method that utilizes KB-based relationship and named
entity co-occurring with ambiguous ones to disambiguate. Bunescu et al. and Cucer-
zan extracted that information in Wikipedia to form language models and then used
those models to disambiguate named entities. Those language models are used as
means for capturing different contexts in which different names referring to the same
entity occur.

In this paper, we propose a hybrid statistical and rule-based incremental method
that combines heuristics and a learning model. We first use heuristics and pattern
matching for entity disambiguation and then extract that information from Wikipedia
to form a language model to disambiguate named entities. The proposed method is
incremental process which includes several rounds that filter the candidates by ex-
ploiting previously identified entities and extending the text by those entity attributes
every time they are successfully resolved in a round. Importantly, our method utilizes
entity IDs instead of entity names in literature to identify the right entity for ambigu-
ous referents. Furthermore, we explore context in several levels, from local to the
whole text, where diverse clues are extracted for disambiguation at high accuracy.

Category Person Location Organization All

Correct disambiguation 207 149 73 428

Accuracy 97.18% 93.70% 86.90% 94.27%

432 H.T. Nguyen and T.H. Cao

8 Conclusion

We have proposed an original approach to named entity disambiguation. It is a hybrid
and incremental process that utilizes previously identified NEs and related terms co-
occurring with ambiguous names in a text for entity disambiguation. Firstly, it is quite
natural and similar to the way humans do, relying on co-occurring entities and terms
to resolve other ambiguous referents in a given context. Secondly, it is robust to free
texts without well-defined structures or templates. Next, currently Wikipedia editions
are available for approximately 253 languages, which mean that our method can be
used to build named entity disambiguation systems for a large number of languages.
Finally, despite the exploitation of Wikipedia as a means of named entity disambigua-
tion, our method can be adapted for any ontology and KB in general. The experiment
results have shown that our method achieves high accuracy.

References

[1] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley,
Reading (1999)

[2] Bunescu, R., Paşca, M.: Using encyclopedic knowledge for named entity disambiguation.
In: Proc. of the 11th Conference of EACL, pp. 9–16 (2006)

[3] Bontcheva, K., Dimitrov, M., Maynard, D., Tablan, V., Cunningham, H.: Shallow
Methods for Named Entity Coreference Resolution. In: Proc. of TALN 2002 Workshop,
Nancy, France (2002)

[4] Cucerzan, S.: Large-Scale Named Entity Disambiguation Based on Wikipedia data. In:
Proc. of EMNLP-CoNLL Joint Conference (2007)

[5] Cohen, W., Ravikumar, P., Fienberg, S.: A Comparison of String Metrics for Name-
Matching Tasks. In: IJCAI-03 II-Web Workshop (2003)

[6] Cunningham, H., et al.: GATE: A Framework and Graphical Development Environment
for Robust NLP Tools and Applications. In: Proc. of the 40th ACL (2002)

[7] Chinchor, N., Robinson, P.: MUC-7 Named Entity Task Definition. In: Proc. of MUC-7
(1998)

[8] Cimiano, P., Völker, J.: Towards large-scale, open-domain and ontology-based named
entity classification. In: Proc. of RANLP 2005, pp. 166–172 (2005)

[9] Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 Shared Task:
Language Independent Named Entity Recognition. In: Proc. of CoNLL 2003, pp. 142–
147 (2003)

[10] Fernandez, N., et al.: IdentityRank: Named entity disambiguation in the context of the
NEWS project. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS,
vol. 4519. Springer, Heidelberg (2007)

[11] Fleischman, M., Hovy, E.: Fine grained classification of named entities. In: Proc. of
Conference on Computational Linguistics (2002)

[12] Gooi, C.H., Allan, J.: Cross-document coreference on a large-scale corpus. In: Proc. of
HLT-NAACL for Computational Linguistics Annual Meeting, Boston, MA (2004)

[13] Hassell, J., Aleman-Meza, B., Arpinar, I.B.: Ontology-driven automatic entity
disambiguation in unstructured text. In: Cruz, I., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273,
pp. 44–57. Springer, Heidelberg (2006)

[14] Harris, Z.: Distributional structure. Word 10(23), 146–162 (1954)
[15] Wacholder, N., Ravin, Y., Choi, M.: Disambiguation of proper names in text. In: Proc. of

ANLP, pp. 202–208 (1997)

 Named Entity Disambiguation: A Hybrid Statistical 433

[16] Nguyen, H.T., Cao, T.H.: A knowledge-based approach to named entity disambiguation
in news articles. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830,
pp. 619–624. Springer, Heidelberg (2007)

[17] Peng, Y., He, D., Mao, M.: Geographic Named Entity Disambiguation with Automatic
Profile Generation. In: Proc. of WI 2006 (2006)

[18] Raphael, V., Joachim, K., Wolfgang, M.: Towards Ontology-based Disambiguation of
Geographical Identifiers. In: Proc. of the 16th WWW Workshop on I3: Identity,
Identifiers, Identifications (2007)

[19] Remy, M.: Wikipedia: The free encyclopedia. Information Review 26(6), 434 (2002)
[20] Shadbolt, N., Hall, W., Berners-Lee, T.: The Semantic Web Revisited. IEEE Intelligent

Systems 21(3), 96–101 (2006)
[21] Overell, S., Rüger, S.: Geographic Co-occurrence as a Tool for GIR. In: Proc. of CIKM

Workshop on Geographic Information Retrieval, Lisbon, Portugal, pp. 71–76 (2007)
[22] Smith, D., Mann, G.: Bootstrapping toponym classifiers. In: HLT-NAACL Workshop on

Analysis of Geographic References, pp. 45–49 (2003)
[23] Weaver, G., Strickland, B., Crane, G.: Quantifying the accuracy of relational statements in

Wikipedia: a methodology. In: Proc. of JCDL, pp. 358–358 (2006)
[24] Zesch, T., Gurevych, I., Mühlhäuser, M.: Analyzing and Accessing Wikipedia as a

Lexical Semantic Resource. In: Rehm, G., Witt, A., Lemnitzer, L. (eds.) Data Structures
for Linguistic Resources and Applications, pp. 197–205 (2007)

Exposing Heterogeneous Data Sources
as SPARQL Endpoints

through an Object-Oriented Abstraction

Walter Corno, Francesco Corcoglioniti, Irene Celino, and Emanuele Della Valle

CEFRIEL - Politecnico di Milano,
Via Fucini 2, 20133 Milano, Italy

walter.corno@students.cefriel.it, {name.surname}@cefriel.it
http://swa.cefriel.it

Abstract. The Web of Data vision raises the problem of how to expose
existing data sources on the Web without requiring heavy manual work.
In this paper, we present our approach to facilitate SPARQL queries over
heterogeneous data sources.

We propose the use of an object-oriented abstraction which can be
automatically mapped and translated into an ontological one; this ap-
proach, on the one hand, helps data managers to disclose their sources
without the need of a deep understanding of Semantic Web technolo-
gies and standards and, on the other hand, takes advantage of object-
relational mapping (ORM) technologies and tools to deal with different
types of data sources (relational DBs, but also XML sources, object-
oriented DBs, LDAP, etc.).

We introduce both the theoretical foundations of our solution, with
the analysis of the relation and mapping between SPARQL algebra and
monoid comprehension calculus (the formalism behind object queries),
and the implementation we are using to prove the feasibility and the
benefits of our approach and to compare it with alternative methods.

1 Introduction

The Semantic Web has as ultimate goal the construction of a Web of Data, i.e.
a Web of interlinked information expressed and published in a machine-readable
format which enables automatic processing and advanced manipulation of the
data itself. In this scenario, initiatives like the Linking Open Data community
project1, guidelines and tutorials on how to publish data on the (Semantic)
Web [1,2] and standards for querying this Web of Data like SPARQL [3,4] play
a central role in the realization of the Semantic Web vision.

To achieve this aim, however, it is necessary to find an easy and automated –
as much as possible – way to expose existing data sources on the Web. To this
end, two big classes of approaches are being studied to help data managers to
prepare their data sources for the Semantic Web: conversion and wrapping.
1 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 434–448, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

Exposing Heterogeneous Data Sources as SPARQL Endpoints 435

With conversion we mean all the techniques to effect a complete translation
of the data source from its native format to a Semantic Web model (pure RDF
or RDF triples described by some kind of ontologies in RDFS/OWL). This ap-
proach assures a complete replication and porting of the data but raises several
concerns like frequency of re-conversion, synchronization, conversion processing
and space occupation.

With wrapping, on the other hand, we mean all the techniques aimed at build-
ing an abstraction layer over the original data source which hides the underlying
format and structure and exposes a SPARQL endpoint to be queried. This ap-
proach requires the run-time translation of the SPARQL query request to the
source’s specific query language and the run-time conversion of the query re-
sults back to the requester. Several proposals, that are gaining ground within
the Semantic Web community, belong to this wrapping approach through the
declaration of a mapping between the original data format and the respective
RDF data model. Most of those approaches, however, deal with the wrapping
of relational databases (see Section 2) and do not consider other kinds of data
sources. Moreover, this direct mapping requires the developer to have quite a
deep understanding of Semantic Web languages, technologies and formats to
express the declaration of correspondences.

In this paper, we present our proposal for a new approach that tries to over-
come the aforementioned problems. Our approach belongs to the wrapping cate-
gory, but tries to give a solution to the heterogeneity of data sources as well as to
the problem of adoption by the larger community of developers. For the former
issue, we provide a solution based on the availability of approaches and tools to
wrap different data sources with an object-oriented abstraction; for the latter
problem, we propose an automatic mapping between the object-oriented model
(in ODL) and the correspondent one at the ontological level (in OWL-DL, see
Section 3). Our approach is both theoretically sound – because of the affinity be-
tween object-orientation and ontology modelling and because of the accordance
of the respective formalisms (SPARQL algebra [3] and monoid comprehension
calculus [5], see also Section 2) – and technologically and technically practicable –
because we realized SPOON, the reference implementation of our approach.

The remainder of the paper is structured as follows: Section 2 introduces re-
lated approaches and theoretical foundations; Section 3 explains the automatic
mapping between object-oriented models and ontologies (with its constraints);
we illustrate our approach to query translation in Section 4 and our implemen-
tation and evaluation in Section 5; concluding remarks and next steps are finally
presented in Section 6.

2 Related Work

In order to enable a faster expansion of the Web of Data, in the last few years
some efforts arose with the aim to expose existing datasources, especially rela-
tional databases (RDBMs), on the Web and to query them through SPARQL [3].
For instance, Cyganiak and Bizer studied similarities between SPARQL algebra
and relational algebra [6] and developed D2RQ [7] and D2R Server, to build

436 W. Corno et al.

SPARQL endpoints over RDBMs. SquirrelRDF2 exposes both relational and
LDAP sources, but it is still incomplete; SPASQL [8] is a MySQL module that
adds native SPARQL support to the database; Relational.OWL [9], Virtuoso
Universal Server [10], R2O [11] and DB2OWL [12] are other projects that aim
to expose relational data on the Web.

While relational databases are the most widespread, the most common pro-
gramming paradigm is object-oriented (OO) programming. Since the OODBMS
Manifesto [13] many projects developed proprietary object datasources (e.g. O2,
Versant, EyeDB, and so on3), but none of them strictly follows the ODMG
Standard [14], so these technologies failed in being either widely used or inter-
operable. As a consequence, new technologies were born from the cited ones:
the Object-Relational Mappings (ORMs), that allow to use relational sources as
if they were object datasources and to query them in an object-oriented way.
Well-known ORMs are Hibernate, JPOX, iBatis SQL Maps and Kodo4. Among
these, JPOX and Kodo implement the JDO specification [15], a standard Java-
based model of persistence, that allows to use not only RDBMs but also many
other types of source (OODBMS, XML, flat files and so on)5. Even if different
in syntax and characteristics, all the object query languages developed so far
are based on the Object Query Language (OQL) developed by the ODMG con-
sortium [14]. The monoid comprehension calculus [5] is a framework for query
processing and optimization supporting the full expressiveness of object queries;
it can be considered as a common formalism and theoretical foundation for all
OQL-like languages. This formalism has been used in [16] to translate queries in
description logics to object-oriented ones.

3 Schema and Data Mapping

The first step of our proposed approach is to help the data manager to expose
his data-source schema (already wrapped by an ORM) as an ontological model.
To this end, we propose to adopt a specific mapping strategy to make this step
completely automatic (albeit some restrictions/constraints on the OO model).

Object-oriented model is much more similar to ontological model than rela-
tional one. In particular, these models share a common set of primitives (e.g.
classes, properties, inheritance,. . .), and can describe relationships between
classes directly, whereas the relational model may require complex expedients
such as the use of join tables.

OO and ontological models are not fully equivalent, as shown in [17,18] (e.g.
single vs. multiple inheritance and local vs. global properties); however the issues
highlighted in these works are only relevant for the problem of describing an
existing ontology as an object model (due to some limitations of the OO model),

2 http://jena.sourceforge.net/SquirrelRDF/
3 Versant Object DB: http://www.versant.com/, EyeDB http://www.eyedb.org/
4 Hibernate: http://www.hibernate.org/, JPOX: http://www.jpox.org/, Apache

iBatis: http://ibatis.apache.org/, BEA Kodo: http://bea.com/kodo/
5 For these reasons in our implementation we chose JPOX as ORM tool.

http://jena.sourceforge.net/SquirrelRDF/
http://www.versant.com/
http://www.eyedb.org/
http://www.hibernate.org/
http://www.jpox.org/
http://ibatis.apache.org/
http://bea.com/kodo/

Exposing Heterogeneous Data Sources as SPARQL Endpoints 437

while in our approach we deal with the opposite problem (i.e., to expose an OO
model as an ontology).

In our approach we propose a one-to-one mapping as simple as possible (sim-
ilar to the one shown in [19]), because we aim to automatize it, simplifying the
development process. We use ODL [14] as OO formalism and a subset of OWL-
DL [20] (represented by the constructs in Table 1 and disjointness, as explained
below) as the ontology language. The schema mapping is described in Table 1.

Table 1. Schema mapping

Concept ODL OWL-DL

Class class owl:Class
Subclass class A extends B rdfs:subClassOf
Property attribute/relationship owl:DatatypeProperty/ObjectProperty
Inverse relationship inverse owl:inverseOf
Property domain implicit rdfs:domain
Property range property type rdfs:range
Primitive types int, double,. . . XSD datatypes
Functional property non-collection types owl:FunctionalProperty
Non-functional prop. set<T>6 implicit

In addition to these correspondences, we add disjoint constraints to the ontology
because objects can belong only to a single OO class (with its parents):

∀ class C1, C2 :� ∃ class C subClassOf C1, C2,

generate 〈C1 owl:disjointWith C2〉

Moving from schema to instance mapping, primitive instances are mapped to
RDF literals, while to map objects we need a way to create URIs for them
(because they become RDF resources). The simplest approach we adopt is to
combine a fixed namespace with a variable local name, formed by the values of
a particular ID property; we prefer not to use the OIDs commonly employed
in OODBMS, due to their limited support among ORMs. Object attributes
and relationships are then translated into RDF triples, using the corresponding
predicates as defined by the schema mapping.

To keep the mapping simple and ease its automatization, we introduce some
constraints on the OO model:

– all classes have to contain an alphanumeric property ID, with a unique value
(in class hierarchies it can be inherited from a parent class).

– OO properties having the same name in unrelated classes can only be mapped
to different ontological predicates, thus having distinct semantics.

– collection properties are limited to the set type (no bag, list or map).
– interfaces are not supported (and thus multiple inheritance).

6 Set is the collection type and T is the type of the elements contained in the collection.

438 W. Corno et al.

– all classes have an extent in order to be directly used in OO queries (see [14]
for extent definition).

Figure 1 shows the translation to an OWL ontology of a simple ODL schema,
which will be used as a running example throughout the paper.

class Employee (extent Employees) {
attribute string id;
attribute string name;

}

class Researcher extends Employee
(extent Researchers) {

attribute string degree;
l i hi P j j

:Project a owl:Class .

:Employee a owl:Class .

:Researcher a owl:Class ;
rdfs:subClassOf :Employee .

:Manager a owl:Class ;
rdfs:subClassOf :Employee .

:hasName a owl:DatatypeProperty ;
a owl:FunctionalProperty ;
rdfs:domain Employee ;
rdfs:range xsd:string .

:hasDegree a owl:DatatypeProperty;
a owl:FunctionalProperty ;
rdfs:domain :Researcher ;
rdfs:range xsd:string .

:hasYear a owl:DatatypeProperty ;
a owl:FunctionalProperty ;
rdfs:domain Project ;
rdfs:range xsd:integer.

:hasProject a owl:ObjectProperty ;
rdfs:domain :Researcher ;
rdfs:range :Project ;
l

Researcher

degree

Employee

id
name

Manager

Project

id
year

+resources

+project

*

*

pm 1

relationship set<Project> project
inverse Project:resources;

}

class Manager extends Employee
(extent Managers) {

}

class Project (extent Projects) {
attribute string id;
attribute integer year;
attribute Manager pm;
relationship set<Researcher> resources

inverse Researcher::project;
}

owl:inverseOf hasResource .

:hasResource a owl:ObjectProperty ;
rdfs:domain :Project ;
rdfs:range :Researcher ;
owl:inverseOf :hasProject .

:hasPM a owl:ObjectProperty ;
a owl:FunctionalProperty ;
rdfs:domain :Project ;
rdfs:range :Manager .

:hasID a owl:DatatypeProperty ;
a owl:FunctionalProperty ;
rdfs:range xsd:string .

(a) (b)

Fig. 1. Running example schema mapped to the corresponding ontology

4 Query Translation

In this section we present our framework to translate a SPARQL query into
one or a few object queries. The general process is shown in Figure 2, sketched
hereafter and explained in details throughout the whole section.

When a new SPARQL query is sent to our system, first we perform an anal-
ysis process both at the syntactic and semantic levels. During syntactic analysis

Exposing Heterogeneous Data Sources as SPARQL Endpoints 439

Fig. 2. The general query processing framework

the query is parsed, checked for syntactic errors and then translated into its
equivalent SPARQL algebraic form [3], which is then normalized. In this format,
a query is represented as a tree composed of basic graph patterns (BGP) as
leaves and of the algebraic operators filter (σpred), union (∪), join (��), left
join (�pred) and diff (−pred)7 as internal nodes. Then we perform semantic
analysis : we apply some checks and rewriting rules to ensure that the query
can be processed by the next phases. Variables on predicates are resolved and
variables on subjects/objects are assigned to the corresponding OO classes.

The second step is the core one of our framework: the query translation. In
this step the SPARQL algebraic form of the query is translated in a monoid
comprehension calculus [5] expression, so the initial SPARQL query is now ex-
pressed as a query on the OO model. The translation starts processing basic
graph patterns (BGPs) and then translating each SPARQL algebraic operator
we meet when traversing the SPARQL algebraic form of the query in a bottom-up
approach. When this translation is completed, we apply the normalization rules
demonstrated in [5] to the global expression (reduction phase), so that we get a
simpler expression (as we will see, a union of monoid comprehensions).

The last step is the query execution. In this step the obtained union of monoid
comprehensions is translated into queries of the particular OO query language
used for the implementation of the framework and then executed. Eventually the
final result-set is translated into the one compatible with the original SPARQL
query (select, construct, describe, ask).

In the remaining of this section we explain these three steps in detail, contin-
uing the running example introduced in Section 3 with the following SPARQL
query, whose effect is to return the URI, the names and (optionally) the degree
of all the employee related to projects of 2006 and later.

SELECT ?e ?n ?d
WHERE {

?p hasYear ?y ;
?r ?e .

?e hasName ?n .
OPTIONAL { ?e hasDegree ?d }
FILTER (?y >= 2006)

}

7 To ease the notation, we borrow the symbols of relational algebra.

440 W. Corno et al.

4.1 Analysis

The analysis phase takes care of parsing, checking and transforming the SPARQL
query in order to prepare it for the subsequent translation phase. Query analysis
is performed both at the syntactic and semantic levels.

Syntactic analysis. The first step is to parse the input query string, check
its syntax and produce as output its equivalent representation in SPARQL al-
gebra [3], as shown in Figure 4 (a) for the query of the running example. The
parsed algebraic representation is then normalized, in order to “collapse” as far
as possible the BGPs of the query and to reach a form easier to analyse and
translate. The normalization procedure consists of three steps:

1. Left joins replacement, with a combination of union, join, filter and diff
operations, according to the rule [3]:

A �pred B ⇒ σpred(A �� B) ∪ (A−pred B) (1)

2. Variable substitution; for each diff node, change the names of the variables
which appear in the right-hand operand (the “subtrahend”) but not in the
left-hand (the “minuend”) with new, globally unique names.

3. Transformation; the algebraic structure of the query is transformed, by ex-
ploiting the commutativity of �� and ∪, the distributivity of �� and the left
distributivity of −pred with respect to ∪ and the rules listed below, until no
more transformations are possible8:

σpred(A ∪B) ⇒ σpred(A) ∪ σpred(B) (2)
A−pred (B ∪ C) ⇒ (A−pred C)−pred B (3)

σpred(A) �� B ⇒ σpred(A �� B) (4)
σpred1(A)−pred2 B ⇒ σpred1(A−pred2 B) (5)

(A−pred B) �� C ⇒ (A �� C)−pred B (6)
BGP1 �� BGP2 ⇒ merge of BGP1 and BGP2 (7)

The effect of these rules is to rearrange the operators to obtain the following order
(from the top) ∪, σpred,−pred; note that join operators are all removed by rule 7.
As shown in Figure 3, a normalized query consists of an (optional) union of basic
queries each one consisting of a BGP whose results can be filtered by one or more
diff operations. Roughly, each basic query will originate a SELECT . . . FROM . . .
WHERE . . . object query with nested sub-queries for diff operators; the final
result-set will be obtained by executing these queries and merging their results.
Figure 4 (b) shows the normalized algebra for the example query.

Semantic analysis. This step aims at transforming the normalized query so
that (1) constraints on URIs are restated in terms of constraints on the ID
attribute (2) variables on triple predicates are removed (by enumerating the
possible cases) and (3) each URI or non-literal variable is associated to a single
OO class. Each of these goals is addressed in a different analysis step:
8 Rule 6 is only valid thanks to the variable substitution performed in the previous

step, which avoids variable names clashes when moving up the diff node.

Exposing Heterogeneous Data Sources as SPARQL Endpoints 441

σpred

υ1

- pred1

- predn

BGP ... (other basic query)

... (other basic query)

... (other basic query) ... (other basic query)

υm

...

...

Basic query structure

Composed of an optional filter, zero or
more diff nodes and a required BGP

Fig. 3. Normalized query structure

σ?y ≥ 2006

true

?p :hasYear ?y
?p ?r ?e
?e :hasName ?n

?e :hasDegree ?d

(a) (b)

σ?y ≥ 2006

?p :hasYear ?y
?p ?r ?e
?e :hasName ?n
?e :hasDegree ?d

?e :hasDegree ?d?p :hasYear ?y
?p ?r ?e
?e :hasName ?n

σ?y ≥ 2006

- true

υ

σ?y ≥ 2006

?p a :Project
?p :hasYear ?y
?p :hasResource ?e
?e a :Researcher
?e :hasName ?n

?e a :Researcher
?e :hasDegree ?d

?p a :Project
?p :hasYear ?y
?p hasResource ?e

σ?y ≥ 2006

- true ?p a :Project
?p :hasYear ?y
?p :hasPM ?e
?e a :Manager

σ?y ≥ 2006

υ
υ

(c)

?e :hasDegree ?d
?p :hasResource ?e
?e a :Researcher
?e :hasName ?n

g
?e :hasName ?n

Fig. 4. Analysis of the example query: (a) parsed query, (b) normalized query (c)
resulting query

1. Rewriting of URIs ; for each URI 〈x〉 in the query, all of its occurrences are
replaced with a new variable ?x, while a new 〈?x :hasID ID〉 triple is added
to each BGP of the query which uses the variable. Note that the ID can be
extracted from the URI textual representation (see Section 3).

2. Rewriting of variables on predicates ; each BGP containing such variables is
replaced with a union of multiple BGPs, each one corresponding to an ac-
ceptable combination of predicate assignments to these variables. A reasoner
can be used to identify the alternatives, by classifying nodes in the BGP and
exploiting the domain and range constraints of predicates9. The assignment
of predicates to variables is recorded in an auxiliary data structure for each

9 The reasoner can be used as explained in step BGP validation and class assignment;
note, however, that the choice of predicates is not critical, because even if invalid
predicates are considered, the next validation step will remove them.

442 W. Corno et al.

basic query, in order to return them together with the results in case vari-
ables on predicates are included in the SELECT clause (or CONSTRUCT
template) of the query. Finally, since the algebraic structure is modified, at
the end of this step the query may need to be re-normalized again.

3. BGP validation and class assignment. A check is done that each variable is
used only as a literal or URI, but not both. Then, a graph is built for each
BGP by removing all the triples containing literal values, and a blank node
is introduced for each other variable. An OWL DL reasoner is used to (1)
check if this graph is consistent with the ontology and (2) infer new rdf:type
triples for resources and variables (the blank nodes), which allow to associate
an OO class to each node. If any of the checks fails, the BGP is discarded
and the algebraic structure is adjusted accordingly (e.g. by removing parent
diff or filter nodes too).

The query resulting from semantic analysis is ready to be translated. Figure 4 (c)
shows the result of the semantic analysis for the query of the running example.

4.2 Translation

This phase is divided in two steps: translation in monoid comprehension calculus
and normalization of the resulting expression. The first step starts translating the
BGPs and then each SPARQL algebraic operator, using a bottom-up approach;
the second step aims at reaching a normalized form of the expression, through
a set of normalization rules defined in [5].

The monoid comprehension calculus is a framework for object query process-
ing and optimization. We now give a brief overview of this calculus, readers are
referred to [5] for more detailed information.

Object query languages deal with collections of homogeneous (i.e. of the same
type) objects and primitive values such as sets, bags and lists, whose semantics
can be captured by the notion of a monoid. A monoid is an algebraic structure
consisting in a set of elements and a binary operation defined on them having
particular algebraic properties. Collections of objects and operations on them
(such as set and bag union and list concatenation, but also aggregate operations
like max and count) can be represented as collection monoids ; similarly, oper-
ations like conjunctions and disjunctions on booleans and integer addition over
collections can also be expressed in terms of so-called primitive monoids.

The basic structure of the calculus is the monoid comprehension, that can
describe a query or a part of it. This structure takes the form ⊕{e | q̄}, where:

– ⊕ is a function called accumulator, that identifies the type of monoid by
specifying how to compose (i.e. which operation should be used) the elements
obtained by the evaluation of the comprehension;

– e is called head and it is the expression that defines the result;
– q̄ is a sequence of qualifiers ; these can be generators of the form v ← e′,

where v is a variable ranging over the collection produced by the expression e′

(which can be a monoid comprehension too), or filters of the form pred, which
express constraints over the variable bindings produced by the generators.

Exposing Heterogeneous Data Sources as SPARQL Endpoints 443

For instance, this monoid comprehension: {v1, v2|v1 ← X, v2 ← X.y, v2 > n}
can be read as: “for all v1 in X and for all v2 in X.y such that v2 > n consider
the pairs v1, v2 and merge them (by applying the accumulator) to obtain
a bag”. The accumulator functions in our translation are only and ∨: the
former defines a bag of solutions, while the latter is used to define the existential
quantification.

BGP translation. A generic BGP contains a set of triple patterns. At the
beginning of this step we reorder these triples. A set of triple patterns can be
viewed as a directed graph, with vertices corresponding to subjects and objects
and edges between them corresponding to triples and labelled with their predi-
cates; if the graph contains some cycles, we break them by duplicating a vertex,
thus obtaining a directed acyclic graph (DAG). To order the triples we perform
a depth-first visit, starting from the root nodes of the DAG. Triples with rdf:type
as predicate are not considered during the reordering process: they are removed
and used later to resolve the assignment of variables to OO classes (as described
below). Figure 5 shows the reordering process for a BGP of the running example
(the leftmost in Figure 4 (c)).

Fig. 5. Triples reordering

Now the BGP is translated in the corresponding monoid comprehension fol-
lowing these criteria:

1. the accumulator function is always , because a BGP returns a bag of solu-
tions;

2. the set containing all the variables contained in the triples forms the head
of the monoid comprehension;

3. the qualifiers in the body of the comprehension are generated by iterating
over the ordered triples 〈varsub pred obj〉 and applying the following rules
to each one:

– if varsub occurs for the first time, a new generator varsub ← Class
(where Class is the OO class assigned to the variable) is added;

– if obj is a variable varobj occurring for the first time, a generator of the
form varobj ← varsub.pred (the symbol ← is changed with ≡ when pred
is a functional property) is created. If pred is a functional property and

444 W. Corno et al.

varobj does not appear as the subject of other triples, a filter of the form
varobj �= null is added too10;

– if obj is a literal or a variable already encountered, a new filter is created:
• if pred is a functional property, the filter takes the following form:

varsub.pred = obj;
• else the filter takes the form: var′ ← varsub.pred, var′ = obj (where

var′ is a new globally unique variable).
Equation 8 shows the resulting comprehension for the BGP of Figure 5.

 {p, y, e, n, d | p ← Project, y ≡ p.year, y �= null, e ← p.resources,

n ≡ e.name, n �= null, d ≡ e.degree, d �= null} (8)

Compound constructs translation. Each SPARQL algebraic operator can
be translated to a corresponding monoid comprehension expression. Using P to
describe a generic pattern (BGPs or group-graph-patterns, i.e. BGPs composed
with algebraic operators), we indicate with τ(P) the translation of P .

In Table 2 are shown the translation rules. These rules are applied using a
bottom-up approach, starting from the leaves of the tree and moving up towards
the root (see Figure 4(c)). We do not define rules for join (��) and left join (�pred)
because these operators are eliminated in the analysis step (see Section 4.1).

Table 2. Translation of SPARQL Algebra constructs

Rule SPARQL algebra Monoid Comprehension

T1 P τ (P)
T2 σpred(P) �{x|x← τ (P), pred}
T3 ∪(PA, PB) τ (PA) � τ (PB)
T4 −pred(PA, PB) �{x|x← τ (PA),¬ ∨ {pred | y ← τ (PB)}}

Simplification rules. At the end of the translation step, we obtain a compo-
sition of nested monoid comprehensions. In their work [5], Fegaras and Maier
suggest a set of meaning-preserving normalization rules, to unnest many kinds
of nested monoid comprehension. The relevant rules for our approach are shown
in Table 3.

Table 3. Relevant normalization rules

Rule Before After

N1 ⊕{e | q̄, v ← (e1 ⊗ e2), s̄} (⊕{e | q̄, v ← e1, s̄}) ⊕ (⊕{e | q̄, v ← e2, s̄})
for commutative ⊕ or empty q̄

N2 ⊕{e | q̄, v ← ⊗{e′ | r̄}, s̄} ⊕{e | q̄, r̄, v ≡ e′, s̄}

The monoid comprehension expression resulting from the example query (Fig-
ure 4 (c)) is the following:
10 Not null constraints are required because all variables must be bound to a value in

solutions of a BGP pattern.

Exposing Heterogeneous Data Sources as SPARQL Endpoints 445

({p, y, e, n, d | p ← Project, y ≡ p.year, y �= null, e ← p.resources,

n ≡ e.name, n �= null, d ≡ e.degree, d �= null, y ≥ “2006”})

({p, y, e, n | p ← Project, y ≡ p.year, y �= null, e ← p.resources,

n ≡ e.name, n �= null, y ≥ “2006”,¬ ∨ {true | d ≡ e.degree, d �= null}})

({p, y, e, n | p ← Project, y ≡ p.year, y �= null, e ≡ p.pm, n ≡ e.name,

n �= null, y ≥ “2006”}) (9)

The expression obtained at the end of these steps can be already translated
into object queries. However, exploiting the comprehension calculus it can be
further optimized, e.g., simplifying some variables or collapsing some monoid
comprehensions. We do not describe this process here due to limited space and
because we are still working to identify a set of general simplification rules. To
give an idea of the possible improvements, however, we show in Equation 10 the
optimized expression for the example query.

({p, e, n, d | p ← Project, e ← p.resources, e.name �= null,

p.year ≥ “2006”, n ≡ e.name, d ≡ e.degree})

({p, e, n | p ← Project, e ≡ p.pm, e.name �= null,

p.year ≥ “2006”, n ≡ e.name}) (10)

4.3 Execution

In this last step we translate the normalized monoid comprehension expression
into object queries, execute them on the datasource and convert the results in the
format expected by the original SPARQL query. In this section we describe the
translation to OQL; note, however, that the translation to other OQL dialects
(such as JDOQL used by SPOON) is similar.

The normalized expression produced by the translation phase is a union of
monoid comprehensions. Each of these monoid comprehensions is translated to
a separate object query in a straightforward manner: all the expressions for the
variables in the head are returned in the SELECT clause (for object variables we
extract the object IDs, not the full objects), generators become the collections
on which variables iterate in the FROM clause and filters become a conjunction
of constraints in the WHERE clause. The monoid comprehension of the form:
“¬∨{. . .}” (that appears in rule T4 of Table 2) becomes a subquery of the form:
“NOT EXISTS (SELECT. . .)”, also belonging to the WHERE clause.

The OQL translation of the running example query is reported below. We
show the translation of the simplified comprehensions of Equation 10; however,
translation to object queries is applicable starting from the comprehensions of
Equation 9 (but the resulting queries would be not so compact.).

446 W. Corno et al.

SELECT p.id, e.id, e.name, e.degree
FROM Projects p, p.resources e
WHERE e.name != null AND

p.year >= 2006

SELECT p.id, p.pm.id, p.pm.name
FROM Projects p
WHERE p.pm.name != null AND

p.year >= 2006

The queries obtained so far are executed one by one, then the result-sets are
merged together and SPARQL solution sequence modifiers [3] (order by, distinct,
reduced, offset and limit) are applied to the whole result-set. The last thing to
do is the conversion of the obtained result-set in the format expected by the
SPARQL query:

– for SELECT queries, we select from the result-set only the requested vari-
ables and return a table-form result-set;

– for ASK queries, we return true if the result-set is not empty, false otherwise;
– for CONSTRUCT queries, we create an RDF graph with the data from the

result-set;
– DESCRIBE queries are currently not directly supported by our approach,

however a DESCRIBE query can always be translated to a CONSTRUCT
query that asks for all the triples with the desired resource as subject or
object, and this kind of query is supported by our approach.

5 Implementation and Evaluation

With regards to the comprehensive framework we presented in Section 4, to prove
the feasibility of our approach, we implemented SPOON – SParql to Object
Oriented eNgine – a tool based on Jena and JPOX which helps the automatic
mapping between an OO model and the respective ontological abstraction and
translates SPARQL queries in JDOQL [15] queries. The first implementation of
SPOON is focused on the main constructs, namely BGP and FILTER, and it
does not yet support variables on predicates.

In order to compare our approach with existing and competing systems, we
chose to set up an evaluation framework, by applying different approaches to the
same data source. We chose Gene Ontology data source (GO), which is available
in different formats among which a SQL dump and a RDF format11.

Our evaluation, therefore, is conducted as follows: given a SPARQL query,
(1) it is translated by SPOON into JDOQL and executed by JPOX over the
relational source of GO, (2) it is mapped to the GO relational database through
D2R and (3) it is executed directly to the RDF version of GO loaded in a
Sesame Native store (we also used the respective SQL query run on MySQL as

11 We modified a bit the RDF version of GO available at http://www.geneontology.

org/, because it contains some errors that make it not well-formed RDF.

http://www.geneontology.org/
http://www.geneontology.org/

Exposing Heterogeneous Data Sources as SPARQL Endpoints 447

a baseline reference). We stressed the system with three different queries with
increasing complexity; the comparison of results is offered in Table 4, while in
Table 5 we distinguish SPOON performances in translation time (from SPARQL
to JDOQL) and execution time (by JPOX).

Table 4. Response time of the evaluated systems with the test queries

Query SPOON D2R Sesame MySQL

Query nr.1 291ms 695ms 280ms 95ms
Query nr.2 313ms 774ms 281ms 70ms
Query nr.3 540ms 3808ms 63620ms 179ms

Table 5. SPOON response time divided in translation (τ) and execution (χ) time

Query τ χ

Query nr.1 14ms 277ms
Query nr.2 14ms 299ms
Query nr.3 177ms 363ms

The recorded performances, although preliminary and partial, show an evident
advantage in using our approach. A detailed report with more discussion about
SPOON and its evaluation (queries, testing environment, configurations, etc.) is
available at http://swa.cefriel.it/SPOON.

6 Conclusions

In this paper we presented our approach to the wrapping of heterogeneous data
sources to expose them as SPARQL endpoints; we employ an object-oriented
paradigm to abstract from the specific source format, as in ORM solutions, and
we base the run-time translation of SPARQL queries into an OO query language
on the correspondence between SPARQL algebra and monoid comprehension
calculus. Finally, we realized a proof of concept with SPOON, which implements
(a part of) our proposed framework, to evaluate it against competing approaches
and we proved the effectiveness and the potentials of our approach.

Our future work will be devoted to the extension of SPOON implementation
to cover other SPARQL options (like OPTIONAL and UNION); we also plan to
extend the evaluation of our approach, from the point of view of the expressivity
and variance of the automatic mapping between the models.

Acknowledgments

The work described in this paper is the main topic of Walter Corno’s Master
Thesis in Computer Engineering at Politecnico of Milano. The research has been

http://swa.cefriel.it/SPOON

448 W. Corno et al.

partially supported by the NeP4B project, co-funded by the Italian Ministry of
University and Research (MIUR project, FIRB-2005). We would also like to
thank professor Stefano Ceri for his guidance and our colleagues at CEFRIEL
for their support.

References

1. Bizer, C., Cyganiak, R., Heath, T.: How to Publish Linked Data on the Web (2007)
2. Berrueta, D., Phipps, J.: Best Practice Recipes for Publishing RDF Vocabularies

– W3C Working Draft (2008)
3. Seaborne, A., Prud’hommeaux, E.: SPARQL Query Language for RDF – W3C

Recommendation (2008)
4. Torres, E., Feigenbaum, L., Clark, K.G.: SPARQL Protocol for RDF – W3C Rec-

ommendation (2008)
5. Fegaras, L., Maier, D.: Optimizing object queries using an effective calculus. ACM

Trans. Database Syst. 25(4), 457–516 (2000)
6. Cyganiak, R.: A relational algebra for SPARQL. Technical report, HP Labs (2005)
7. D2RQ: The D2RQ Platform - Treating Non-RDF Relational Databases as Virtual

RDF Graphs
8. Prud’hommeaux, E.: Adding SPARQL Support to MySQL (2006)
9. de Laborda, C.P., Conrad, S.: Relational.OWL - A Data and Schema Representa-

tion Format Based on OWL. In: Proceedings of the Second Asia-Pacific Conference
on Conceptual Modelling, APCCM 2005 (2005)

10. Blakeley, C.: Virtuoso RDF Views. OpenLink Software (2007)
11. Barrasa, J., Corcho, O., Gómez-Pérez, A.: R2O, an Extensible and Semantically

Based Database-to-ontology Mapping Language. In: Proceeding of the Second In-
ternational Workshop on Semantic Web and Databases (2004)

12. Cullot, N., Ghawi, R., Yétongnon, K.: DB2OWL: A Tool for Automatic Database-
to-Ontology Mapping. Université de Bourgogne (2007)

13. Atkinson, M., et al.: The Object-Oriented Database Manifesto. In: Proceedings of
the First Intl. Conference on Deductive and Object-Oriented Databases (1989)

14. Cattell, R., Barry, D.K., Berler, M., Eastman, J., Jordan, D., Russell, C., Schadow,
O., Stanienda, T., Velez, F. (eds.): The Object Data Standard: ODMG 3.0. Morgan
Kaufmann, San Francisco (1999)

15. Russell, C.: Java Data Objects 2.0 JSR243. Sun Microsystems Inc. (2006)
16. Peim, M., Franconi, E., Paton, N.W., Goble, C.A.: Querying Objects with Descrip-

tion Logics
17. Oren, E., Delbru, R., Gerke, S., Haller, A., Decker, S.: ActiveRDF: Object-Oriented

Semantic Web Programming. In: Proceedings of the Sixteenth International World
Wide Web Conference (2007)

18. Kalyanpur, A., Pastor, D.J., Battle, S., Padget, J.: Automatic Mapping of OWL
Ontologies into Java. In: Proceedings of the International Conference of Software
Engineering and Knowledge Engineering (2004)

19. Athanasiadis, I.N., Villa, F., Rizzoli, A.E.: Enabling knowledge-based software en-
gineering through semantic-object-relational mappings. In: Proceedings of the 3rd
International Workshop on Semantic Web Enabled Software Engineering (2007)

20. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language (2004)

Integrating Lightweight Reasoning into
Class-Based Query Refinement for Object Search

Gong Cheng and Yuzhong Qu

Institute of Web Science, School of Computer Science and Engineering
Southeast University, Nanjing 210096, P.R. China

{gcheng,yzqu}@seu.edu.cn

Abstract. More and more RDF data have been published online to be
consumed. Ordinary Web users also expect to experience more intelligent
services promised by the Semantic Web, such as object search based on
structured data. We implemented the Falcons search engine to meet the
challenge. To enable keyword search, for each object, we construct and
index a virtual document that includes textual descriptions of its neigh-
boring resources. Typing information is used to serve class-based query
refinement, and class-inclusion reasoning is performed to discover implicit
types of objects. A method of recommending subclasses is implemented
to enable navigating class hierarchies for incremental query refinement.
We also report on lessons learned from Web-scale experiments.

1 Introduction

Recently, a large amount of RDF data have become available online, which is a
significant step towards facilitating the development of the Semantic Web. For
example, the Linking Open Data project1 has published and interlinked RDF
data sets consisting of over two billion RDF triples till October 2007. To exploit
their untapped potential and commercial value, a naturally emerging problem
is how to find needed data. In particular, we focus on how to efficiently find a
Semantic Web object (SW object in short), i.e., a URI that identifies an object
described in RDF, and we call it object search on the Semantic Web.

Object search is a fundamental service on the Semantic Web. It serves both
data producers and consumers. When data producers prepare for publishing
RDF data, they need to know existing URIs of referred objects. They can also
create their own URIs as identifiers to denote the objects they want to refer to.
However, it is likely to lead to the “information islands” and then isolate applica-
tions, which weakens RDF’s power of exchanging data semantics and benefiting
data integration. It should be a best practice to reuse existing URIs as far as
possible. Even if data producers want to create some URIs, they are also encour-
aged to connect them with existing URIs into a Web of data.2 All these activities
1 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/

breakLinkingOpenData
2 http://www.w3.org/DesignIssues/LinkedData.html

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 449–463, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/breakLinkingOpenData
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/breakLinkingOpenData

450 G. Cheng and Y. Qu

need object search. On the consumption side, ordinary users may expect that
Semantic Web technology can improve search engines’ ability to understand and
answer queries. For example, by submitting a keyword query “ESWC 2008 ses-
sion”, can users immediately obtain a list of “sessions” at ESWC2008, rather
than a list of hyperlinks to webpages? It is actually another application of ob-
ject search. Users may also want straightforward ways to refine queries with
more precise semantics, e.g., tell the search engine what type of objects they are
seeking for.

To meet these challenges, several Semantic Web search engines [9,4] have been
developed to serve object search in various ways. Basically, these systems index
local names, labels, and maybe other associated literals of SW objects to enable
keyword search. However, mainly due to the computational complexity, none
of these systems considers reasoning, an attractive feature closely associated
with the birth and growth of the Semantic Web [2,1]. We will later show that
integrating even lightweight reasoning can improve search engines’ ability to
answer queries.

In this paper, we detail the object search service provided by the Falcons
search engine.3 It accepts keyword queries and serves a ranked list of SW ob-
jects. Different from other Semantic Web search engines, to enable keyword
search, Falcons indexes a virtual document for each SW object, which includes
not only its local name, labels, and other associated literals, but also the tex-
tual descriptions of all other neighboring resources. Classes of SW objects are
indexed, and users are served with user-friendly navigation of class hierarchies
to incrementally refine queries and filter results. In particular, class-inclusion
reasoning over thousands of vocabularies is performed. So for SW objects, not
only their explicitly specified classes but also inferred ones are indexed. We also
report on experimental results on Web-scale reasoning. All the developed tech-
niques have been proved to be effective based on a large enough data set collected
from the real Semantic Web and a period of successful running of the system
beginning from February 2008.

The remainder of this paper is structured as follows. We start in Sect. 2 with
a demonstration of provided functions, spotted challenges, and an overview of
the proposed approach. Section 3 elaborates on constructing virtual documents
for SW objects. Section 4 presents the implementation of class-based query re-
finement and class-inclusion reasoning over thousands of vocabularies. Section 5
details how to recommend subclasses to enable navigating class hierarchies for
incremental query refinement. Section 6 reports on Web-scale experiments. Re-
lated work is discussed in Sect. 7. Finally, we conclude the paper with a summary
and suggestions for future work in Sect. 8.

2 Overview

This section firstly demonstrates the functions of the system and spots chal-
lenges. Then we give an overview of the proposed approach.
3 http://iws.seu.edu.cn/services/falcons/

Integrating Lightweight Reasoning into Class-Based Query Refinement 451

2.1 Demonstration of Functions

After a user submits a keyword query “ESWC 2008” to the system, based on an
inverted index, the system serves a ranked list of SW objects of which the textual
descriptions contain all the terms in the keyword query. Meanwhile, based on
the results, the system collects and sorts their classes, and recommends several
ones of which the instances are most probably those the user is seeking for, such
as “Event”. Then the user selects “Event”, which submits a refined query to
the system. The results page is updated to the one shown in Fig. 1. The bottom
part is a filtered list of SW objects of which the textual descriptions contain all
the terms in the query, and all these SW objects are instances of some “Event”
class. At the top of the results page, several classes (different from the previous
ones) are recommended, such as “Conference Event” and “Session Event”, all of

Fig. 1. A screenshot of Falcons Object Search. A user has submitted a query “ESWC
2008” and then has specified that he/she is seeking for an “Event”. The system serves
a list of SW objects of which the virtual documents contain all the terms in the query
and are instances of some “Event” class. Besides, several subclasses of “Event”, such
as “Conference Event”, are recommended to the user for further query refinement.

452 G. Cheng and Y. Qu

which are subclasses of “Event”. The user can click on these classes to further
refine queries and filter results, or trace back to relax restrictions.

2.2 Challenges

To implement the proposed functions, several challenges are to be met. The first
challenge is: which descriptions of SW objects should be indexed. A commonly
adopted method is to, for each SW object, index the terms in its local name and
some/all of its associated literals. It is based on the assumption that terms in a
keyword query indicate some properties of a SW object. However, in RDF, there
are various ways to describe a property of a SW object. As shown in Fig. 2, to
describe that a session is a subevent of ESWC2008, we can associate it with a
literal, connect it to a URI that denotes the conference, or connect it to a blank
node. In the latter two cases, the terms “ESWC 2008” will not be indexed to the
session by the commonly adopted methods, so the session will not be returned
to answer keyword queries like “ESWC 2008 session”.

Fig. 2. Three ways to describe that a session is a subevent of ESWC2008: (a) by
associating a literal, (b) by connecting to a URI, or (c) by connecting to a blank node

Secondly, for the proposed class-based query refinement, SW objects may be
filtered out undesirably. For example, maybe a session is explicitly specified as
an instance of some “SessionEvent” class, but is not explicitly specified as an
instance of some “Event” class. When “Event” is selected to refine the query,
such a session will be filtered out even though it is known that “SessionEvent” is
a subclass of “Event”. Therefore, reasoning techniques are necessary, although
it seems difficult to be performed on the Web scale.

Thirdly, the system should also determine that, out of possibly millions of
classes, which ones will be recommended to users as candidate restrictions. A
similar problem is that, after a class has been selected by a user, which of its

Integrating Lightweight Reasoning into Class-Based Query Refinement 453

subclasses will be recommended. Recommending too many classes is boring,
so the system should only recommend a limited number of ones that can best
capture users’ intentions.

2.3 Overview of the Approach

In this subsection, we present an overview of the proposed approach to meet the
above challenges, as shown in Fig. 3. Details will be separately described in the
next sections.

RDF
documents

Constructing virtual documents

SW object

Combined inverted index

Class Term

...

Query

ResultsClass-inclusion
relation

Instantiation
relation

Reasoning

Fig. 3. Overview of the approach

For each SW object, a virtual document is constructed, which includes not
only its local name and associated literals, but also the textual descriptions of
all other neighboring resources in all the discovered RDF documents. As an
example, in all the three cases shown in Fig. 2, the terms “ESWC 2008” will be
indexed to foo:session. In other words, we expand textual descriptions of SW
objects. Terms are weighted based on their provenance, e.g., terms in labels are
assigned a higher weighting coefficient than those in other literals.

We also extract class inclusion and class equivalence axioms from schema-level
documents (ontologies), write them to database, and perform class-inclusion rea-
soning (lightweight transitive reasoning) to obtain, for each class, all its super-
classes including explicitly specified and inferred ones. For each SW object, we
extract its explicitly specified classes, and look up database to find all their
superclasses.

With the above SW-object-to-term and SW-object-to-class mappings, we
build a combined inverted index, including an inverted index from terms to
SW objects and an inverted index from classes to SW objects.

A query can be viewed as a set of terms and a set of classes (as restrictions).
A SW object satisfies a query iff its virtual document contains all the terms in
the query and it is an instance of at least one class in the query. Each term or
class in a query can be mapped to a set of SW objects based on the combined
inverted index, and the final results can be obtained by computing a conjunction
of these sets of SW objects.

Besides, to recommend classes as further candidate restrictions, we iterate over
the resulting SW objects to collect their classes, and filter them by preserving
only those as subclasses of the current selected classes. The preserved classes are
ranked according to their coverage of the resulting SW objects, and a limited
number of the highest ranked ones will be recommended.

454 G. Cheng and Y. Qu

3 Constructing Virtual Documents for SW Objects

IR technology has been adapted for enabling object search by Semantic Web
search engines [9,4], such as inverted index from terms to SW objects. A SW
object is just a URI, with no persistent-state text except for the URI itself. To
build the inverted index, search engines often use local names and associated
literals of SW objects to construct their virtual documents [15]. It is based on
the assumption that terms in a keyword query indicate some properties of a SW
object, so indexing the terms in their properties can answer keyword queries.
However, in RDF, there are various ways to characterize a property of a SW
object, e.g., by associating a literal or by connecting it to a URI or a blank
node. Therefore, as described in Sect. 2.3, we expand the virtual document of a
SW object to include the textual descriptions of its neighboring resources.

3.1 Neighbors in RDF Graph

In graph theory, the neighbors of a vertex is defined to be the vertices adjacent
to it (excluding itself), i.e., an edge exists between a vertex and its neighbor.
We consider that such definition is not suitable for RDF graph due to the use of
blank nodes. In RDF, blank nodes indicate the existence of things without being
assigned global identifiers, and evidently no terms can be collected from blank
nodes. Actually, blank nodes are created mainly for connecting other resources.
So in the graph view, we collect neighbors for a SW object by starting from it,
traversing the graph, and stopping until reaching URIs or literals (but not blank
nodes).

To formalize, a notion of RDF sentence [17] is used here. In brief, an RDF sen-
tence is a set of RDF triples that contain common blank nodes, as illustrated by
Fig. 2(c). An RDF sentence is still an RDF graph, and is also called a minimum
self-contained graph [13]. An RDF graph g can be decomposed into a unique set
of RDF sentences [13], denoted by Sent(g). Then, let N(o, g) be the neighbors
of a SW object o in g. A resource r ∈ N(o, g) iff ∃s̃ ∈ Sent(g), o ∈ Subj(s̃) and
r ∈ Obj(s̃), or o ∈ Obj(s̃) and r ∈ Subj(s̃), where Subj(s̃) = {s|∃〈s, p, o〉 ∈ s̃}
and Obj(s̃) = {o|∃〈s, p, o〉 ∈ s̃}.

3.2 Construction of Virtual Documents

We use the well-known vector space model to represent virtual documents as
well as keyword queries, i.e., the virtual document of a SW object or a keyword
query is represented as a term vector in the term vector space.

Let U , B, and L be the sets of all URIs, all blank nodes, and all literals, re-
spectively. Let g be the RDF graph serialized by an RDF document. ∀r ∈ U , let
LN(r) be the term vector representing its local name. ∀r ∈ U ∪ B, let Lbl(r, g)
be the term vector representing its labels (values of rdfs:label) in g. ∀r ∈ L,

Integrating Lightweight Reasoning into Class-Based Query Refinement 455

let Lex(r) be the term vector representing its lexical form. Then, ∀r ∈ U ∪B∪L,
define Name(r, g) as the term vector representing its name as follows:

Name(r, g) =

⎧⎪⎨
⎪⎩

LN(r) + Lbl(r, g) r ∈ U

Lbl(r, g) r ∈ B

Lex(r) r ∈ L.

(1)

For a SW object o, its virtual document constructed from an RDF graph g is
defined as follows:

VDoc(o, g) = α · LN(o) + β · Lbl(o, g) + γ ·
∑

r∈N(o,g)

Name(r, g), (2)

where α, β, and γ are the weighting coefficients to be tuned. Evidently, compared
to the commonly adopted methods, more SW objects are indexed from each term
due to the introduction of terms from neighboring resources, which will generally
improve the recall but reduce the precision of the system. If we assume that terms
in queries are biased in indicating names of SW objects, we can set α and β to
higher values than γ, so that those SW objects whose local names and/or labels
contain the terms in a query are ranked higher. Currently, we set α, β, and γ to
10, 5, and 1, respectively.

A SW object may be used by many RDF documents. Different data producers
may describe different properties of a SW object in various aspects. To enable
cross-document search, for a SW object o, its virtual document on the Semantic
Web is constructed by aggregating its virtual documents constructed from all
the RDF documents (discovered by the system):

VDoc(o) =
∑

g

VDoc(o, g). (3)

Finally, an inverted index is built from terms in virtual documents to SW
objects. In particular, for virtual documents (vectors) of SW objects, their com-
ponents are revised by inverse document frequency.

In the system, SW objects in query results are ranked based on a combination
of their relevance to the query and their popularity. The relevance score is calcu-
lated based on the cosine similarity measure. The popularity score is evaluated
according to the number of RDF documents that SW objects are used by.

4 Refining Keyword Queries with Class Restrictions

Compared to the hypertext Web, the Semantic Web brings more structured
data with rich semantics, which cannot be satisfactorily utilized by a purely
IR-based search engine to serve object search. Recently, cognitive science shows
that people are predisposed to use typing information rather than other prop-
erty information to perform human reasoning [16], while typing information
(rdf:type) is also widely used by data producers. Therefore, we exploit typing

456 G. Cheng and Y. Qu

information in the system to improve object search. To be precise, after submit-
ting a keyword query, the user can specify the type of objects they are seeking
for to filter results.

4.1 Class-Based Refinement

In the system, a query q is formulated as 〈Tq, Cq〉, where Tq is a set of query
terms and Cq is a set of classes as restrictions. A SW object o is an answer to q
iff two conditions are satisfied: the virtual document of o contains all the terms
in Tq; and o is an instance of at least one class in Cq. A set of classes, rather
than just one class, are allowed to be specified because, as shown in Fig. 1, users
are served with tags rather than URIs of classes, and one tag may stand for more
than one classes.

As described in Sect. 2.3, we extract typing information of SW objects and
build an inverted index from classes to SW objects. Afterwards, by combining
it with the inverted index from terms to SW objects, the system can enhance
keyword queries with the ability of specifying the class of target SW objects.

Merely using explicitly specified typing information is insufficient. As is often
the case, data producers may only specify that a SW object is an instance of
some class, but search engine users may specify its superclass when submitting
queries. To serve this, class-inclusion reasoning is performed. Afterwards, for
each SW object, we index not only its explicitly specified classes but also their
superclasses inferred by reasoning. Nevertheless, reasoning on the Web scale faces
more difficulties, such as trust. The following presents techniques to address these
problems.

4.2 Filtering Axioms

On the Semantic Web, named classes and properties are identified by URIs, and
they are organized into vocabularies [3]. A vocabulary on the Semantic Web,
such as FOAF, is a non-empty set of URIs with a common URI namespace that
denote classes or properties. A vocabulary v is formulated as 〈id(v), C(v), P(v)〉,
where id(v) is the URI namespace that identifies v, C(v) is the set of classes
in v, and P(v) is the set of properties in v. A URI u ∈ C(v) (or u ∈ P(v))
iff two conditions are satisfied: (a) the URI namespace of u is id(v); (b) the
RDF graph merged from those decoded from the RDF documents obtained by
dereferencing u and id(v) entail the RDF triple 〈u, rdf:type, rdfs:Class〉 (or
〈u, rdf:type, rdf:Property〉).

In this paper, we focus on named classes and class-inclusion reasoning. For
each vocabulary v, let CIR(v) be the explicitly specified class-inclusion relation
decoded from the RDF documents obtained by dereferencing id(v) and every
c ∈ C(v). Each pair 〈c1, c2〉 ∈ CIR(v) should satisfy that c1
 c2 and both c1
and c2 are named classes. Besides, for each class equivalence axiom c1 ≡ c2, we
also include 〈c1, c2〉 and 〈c2, c1〉 in CIR(v). However, not all the pairs in CIR(v)
will be accepted by the following reasoning engine, considering that anyone can
say anything on the real Semantic Web. To ensure the rationality of axioms,

Integrating Lightweight Reasoning into Class-Based Query Refinement 457

CIR(v) is filtered to its subset F-CIR(v) subject to that 〈c1, c2〉 ∈ F-CIR(v)
iff 〈c1, c2〉 ∈ CIR(v) and c1 ∈ C(v). This is inspired by [7] that a vocabulary is
allowed to reuse classes in other vocabularies but can only constrain the meaning
of its own classes. If no such filtering is performed, one can easily mess up the
system (after reasoning) by, e.g., encoding rdfs:Resource
 foaf:Person in
his/her own RDF document.

4.3 Transitive Reasoning

Let F-CIR =
⋃
v

F-CIR(v), v for every vocabulary discovered by the system.

Then the last task is to compute its transitive closure F-CIR+. Initially we store
F-CIR in a two-column table of a relational database. During reasoning, inferred
axioms are also stored in the table, so after reasoning, the table is stored with
F-CIR+.

Computing all the superclasses of a class is to, in the digraph view, find all its
reachable vertices. Based on this, we implement a parallel program to compute
F-CIR+. Each thread starts with a class c, and recursively looks up the table to
obtain all its superclasses Sup(c), and supplements the table with 〈c, c′〉 for all
c′ ∈ Sup(c). In practice, it is not necessary to apply this computation to all the
classes. Clearly, for the system, if a class has never been instantiated, we do not
need to compute all its superclasses since the computational results will not be
used in practice.

With F-CIR+, it is easily to look up superclasses when building the inverted
index from classes to SW objects.

5 Recommending Subclasses for Incremental Query
Refinement

As shown in Sect. 2.1, users can refine queries by navigating class hierarchies.
Class hierarchies on the Semantic Web are different from category hierarchies
used by many E-Commerce sites. On those sites, a category hierarchy is single,
carefully designed, and relatively small-scale, while the whole class hierarchy on
the Semantic Web comprises a large number of class hierarchies from different
vocabularies of different qualities, so techniques will be different. This section
discusses how to implement the proposed mode of user interaction that allows
users to specify class restrictions.

Initially, for a query 〈Tq, Cq〉, no classes have been specified, and Cq is simply
set to { rdfs:Resource}, which is considered as a superclass of all other classes.
Navigation of the class hierarchy is viewed as submitting a sequence of queries
with the same set of query terms but different sets of class restrictions. In par-
ticular, moving down (or up) the hierarchy is to replace the class restrictions
with more specific (or general) ones.

To determine which subclasses should be provided to users as candidate re-
strictions, we devise a method composed of the following steps:

458 G. Cheng and Y. Qu

1. Find out all the answers to a given query 〈Tq, Cq〉;
2. Collect the classes of the answers and rank them;
3. Select the top K ranked classes that satisfy the following conditions: (a) each

selected class must be a strict subclass of some class in Cq, and (b) the class
inclusion relation does not hold between any pair of the selected classes;

4. Map the selected classes to tags and present them to users.

Step 1 is implemented based on the combined inverted index.
In Step 2, for each SW object, all its classes (including explicitly specified

and inferred ones) are physically stored in the index, so we simply iterate over
the answers to collect their classes. However, for some queries, there are a large
amount of answers, and iterating over all of them online takes too much time.
To make a trade-off between coverage and efficiency, the classes of at most the
first 1, 000 answers are considered in the system, and let C be the set of classes
collected from the first 1, 000answers. The ranking of these classes is based on
the consideration that: if a class covers more answers, it will be ranked higher.
For example, out of the first 1, 000 answers, if 600 ones are instances of c1 but
only 300 ones are instances of c2, c1 is ranked higher than c2.

In Step 3, suppose that all the classes in C are sorted according to their ranking
scores in descending order. Let CK be the set of selected classes, which is initially
empty. We scan the sorted list and stop if K classes have been selected based
on the following rules or we reach the end of the list. To be selected, a class c
must satisfy two conditions. Firstly, ∃c′ ∈ Cq, c � c′, i.e., c is a strict subclass
of some class specified by the user. In Sect. 4, we have computed F-CIR+, and
here we can use it to check whether c � c′ is satisfied: c � c′ iff 〈c, c′〉 ∈ F-CIR+

and 〈c′, c〉 /∈ F-CIR+. Secondly, �c′ ∈ CK , c
 c′, i.e., the class inclusion relation
never holds between any pair of selected classes. This is for increasing the variety
of selected classes, whereas their total number is limited.

In Step 4, selected classes are mapped to user-friendly tags, and we simply use
their normalized local names as tags. Tags are sorted in lexicographic order, and
tags with ranking scores higher than a threshold are highlighted, as illustrated
by Fig. 1.

Fig. 4. A class hierarchy sampled from the SWC vocabulary. Each class is associated
with the number of its instances as answers to a query.

Integrating Lightweight Reasoning into Class-Based Query Refinement 459

We illustrate the whole process by an example. Figure. 4 depicts a class hi-
erarchy sampled from the SWC vocabulary.4 Each class is associated with the
number of its instances as answers to a query. Suppose that the user has spec-
ified swc:OrganisedEvent, i.e., Cq = { swc:OrganisedEvent}. The sorted
list C is: swc:OrganisedEvent, swc:AcademicEvent, swc:WorkshopEvent,
swc:NonAcademicEvent, swc:SocialEvent, and swc:ConferenceEvent. Here
the positions of swc:NonAcademicEvent and swc:SocialEvent are in-
terchangeable since they are with the same ranking score. Let K = 2.
Firstly, swc:OrganisedEventwill not be selected again because it is not a
strict subclass of itself. Next, its strict subclass swc:AcademicEvent is se-
lected, but then swc:WorkshopEvent will not be selected because it is a
subclass of swc:AcademicEvent, which has been selected. Similarly, swc:
NonAcademicEvent should be selected but swc:SocialEventshould not. How-
ever, we apply another heuristic here: if two classes are with equal ranking
scores and the class inclusion relation holds between them, the more specific
one of them will be selected. So our algorithm will select swc:SocialEvent in-
stead of swc:NonAcademicEvent. Finally, two classes, swc:AcademicEventand
swc:SocialEvent,have been selected, and the recommended tags are “Academic
Event” and “Social Event”.

6 Experiments

We performed experiments to evaluate the feasibility and performance of the pro-
posed approach. All the experiments were implemented in Java and performed on
a 4-Core Xeon 2.50GHz server with 16GB of main memory. A MySQL database
stored on a RAID-5 disk system was used.

At the time of writing, the crawler of the system has discovered 9.8million
RDF documents. A total of 1, 159, 425classes in 3, 039vocabularies have been
recognized. Figure 5 shows such distribution, which approximates a power law.
About half of the vocabularies (47.58%) contain no more than 10 classes, whereas
the largest vocabulary contains 196, 591 classes.

However, only 37, 208classes (3.2%) in 1, 174vocabularies (38.6 %) were dis-
covered to have been explicitly instantiated. To obtain better performance, fol-
lowing computations only considered these vocabularies as well as those referred
by them (both directly and indirectly).

It took a 10-thread program 44minutes to parse documents by using Jena,5

compute F-CIR, and write F-CIR to database. Most of the time was spent
in parsing documents. In particular, several vocabularies are defined by a large
amount of small documents rather than a single document, resulting in extra I/O
cost. We also observed several large vocabularies, each with tens of thousands
of classes, which are rarely instantiated, but it took a large proportion of time
to process them. So they can be ignored in practice if necessary. Finally, it took
a 10-thread program 3 minutes to compute F-CIR+.
4 http://data.semanticweb.org/ns/swc/ontology#
5 http://jena.sourceforge.net/

460 G. Cheng and Y. Qu

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

number of classes

n
u

m
b

er
 o

f
vo

ca
b

u
la

ri
es

Fig. 5. Distribution of the number of vocabularies versus the number of classes in a
vocabulary

Table 1. Statistics before and after reasoning

#class inclusion relationships
Avg. #classes Avg. #intances
per SW object per class

Before reasoning 302,679 1.74 41.69
After reasoning 2,834,615 4.13 98.96

A comparison of statistical data before and after reasoning is shown in Table 1.
Before reasoning, the cardinality of F-CIR is 302, 679, out of which 10, 394pairs
(3.4%) are with classes in different vocabularies. After reasoning, the cardinality
of the resulting F-CIR+ has increased to 2, 834, 615.

The crawler has discovered 27, 828, 528SW objects that are with explicitly
specified typing information. The average number of explicitly specified classes
of a SW object is 1.74. After reasoning, the average number of classes of a SW
object has increased to 4.13, which is 2.37 times the number before reasoning.
Meanwhile, the average number of instances of a class has increased from 41.69
to 98.96. Such increases promise the usefulness of class-inclusion reasoning in
the case of refining queries with classes, despite the lack of gold standard data
for estimation. And note that it costs only 44+3minutes of offline computation.

7 Related Work

TAP [8] is one of the earliest keyword-based Semantic Web search systems.
It maps keywords to labels of SW objects and serves with a SW object (and

Integrating Lightweight Reasoning into Class-Based Query Refinement 461

its surrounding subgraph) based on popularity, user profile, and search con-
text. Swoogle [5], one of the most popular Semantic Web search engines, serves
class/property search and ontology search, based on a PageRank-like ranking
algorithm. SWSE [9], another keyword-based search engine, enables users to fil-
ter resulting SW objects by specifying a class. Semantic Web Search6 focuses on
specific types of SW objects, such as FOAF Person and RSS Item. It organizes
search results by documents. Similarly, WATSON [4] also organizes results by
documents and highlights mapped SW objects. It enables users to specify the
scope that query terms should be mapped to, such as local name, label, or any
literal. Sindice [12] allows property-value pair look up to find documents know-
ing a property of a SW object, and also allows keyword-based RDF document
and Microformats search.

Different from these search engines, the proposed approach expands textual
descriptions of SW objects in order to improve the recall of the system, while
it also uses a weighting scheme to preserve the precision. Both SWSE and our
Falcons system allow users to specify class restrictions. Falcons further integrates
reasoning techniques to capture implicit instantiation relation, and enables nav-
igating class hierarchies for incremental query refinement.

Semantic search [14,11,18] promises to provide more accurate results than IR-
based search, by translating keyword queries to formal queries, such as SPARQL
queries. However, existing approaches are more suitable for single vocabularies,
and applying semantic search to the Web scale is still a great challenge because
it is difficult to generate a limited number of formal queries that can cover
thousands of vocabularies on overlapped topics. Besides, the performance of
formal queries on the Web scale is another big challenge.

On reasoning, instance Store [10] is an approach to a restricted form of ABox
reasoning that combines a DL reasoner with a database. It can only deal with
a role-free ABox, i.e., an ABox that does not contain any axioms asserting role
relationships between pairs of individuals. The reasoning technique implemented
in this paper can be viewed as a simplified version of instance Store since we
only deal with named classes. However, we further perform axiom filtering, con-
sidering the Web’s characteristics.

8 Conclusion

We have detailed how our Falcons system serves object search. It is designed as
a domain-independent search engine that works on the real Semantic Web. The
main technical contributions of this paper include: (a) constructing virtual doc-
uments for SW objects with textual descriptions of neighboring resources, (b)
supplementing IR-based object search engines with class-based query refinement,
(c) integrating class-inclusion reasoning techniques to uncover implicit instanti-
ation, and (d) recommending subclasses to enable navigating class hierarchies
for incremental query refinement.

6 http://www.semanticwebsearch.com/

462 G. Cheng and Y. Qu

The current research can be extended in several directions. Firstly, ontol-
ogy matching techniques [6] can be integrated to offer additional class inclu-
sion/equivalence axioms, to improve the integration of different vocabularies.
Nevertheless, it requires that generated axioms should be of high precision to
avoid undesirable results after reasoning. Secondly, besides typing information, it
is possible to allow query refinement based on arbitrary properties. One challenge
is how to extend existing faceted search techniques to cover multiple vocabular-
ies with overlapped topics. It is also interesting to investigate other possibilities
of combining IR-based search and formal query, to be adapted to the Web scale.

Acknowledgments. The work is supported in part by the NSFC under Grant
60773106, and in part by the 973 Program of China under Grant 2003CB317004.
We would like to thank Weiyi Ge for his effort in implementing the system. We
would also like to thank Wei Hu for his comments on the manuscript.

References

1. Berners-Lee, T., Hall, W., Hendler, J.A., O’Hara, K., Shadbolt, N., Weitzner, D.J.:
A Framework for Web Science. Foundations and Trends in Web Science 1(1), 1–130
(2006)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Am. 284(5),
34–43 (2001)

3. Berrueta, D., Phipps, J.: Best Practice Recipes for Publishing RDF Vocabularies.
W3C Working Draft (2008)

4. d’Aquin, M., Sabou, M., Dzbor, M., Baldassarre, C., Gridinoc, L., Angeletou, S.,
Motta, E.: WATSON: A Gateway for the Semantic Web. In: Posters of the 6th
International Semantic Web Conference (2007)

5. Ding, L., Pan, R., Finin, T.W., Joshi, A., Peng, Y., Kolari, P.: Finding and ranking
knowledge on the semantic web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 156–170. Springer, Heidelberg (2005)

6. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
7. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A Logical Framework for Mod-

ularity of Ontologies. In: 20th International Joint Conference on Artificial Intelli-
gence, pp. 298–303 (2007)

8. Guha, R., McCool, R., Miller, E.: Semantic Search. In: 12th International World
Wide Web Conference, pp. 700–709. ACM Press, New York (2003)

9. Harth, A., Hogan, A., Delbru, R., Umbrich, J., O’Riain, S., Decker, S.: SWSE:
Answers Before Links! In: Semantic Web Chanllenge (2007)

10. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The Instance Store: DL Reasoning with
Large Numbers of Individuals. In: 2004 International Workshop on Description
Logics, pp. 31–40 (2004)

11. Tran, T., Cimiano, P., Rudolph, S., Studer, R.: Ontology-based interpretation of
keywords for semantic search. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
523–536. Springer, Heidelberg (2007)

12. Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the open linked data.
In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck,

Integrating Lightweight Reasoning into Class-Based Query Refinement 463

J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 552–565. Springer, Heidelberg
(2007)

13. Tummarello, G., Morbidoni, C., Bachmann-Gmür, R., Erling, O.: RDFSync: Effi-
cient remote synchronization of RDF models. In: Aberer, K., Choi, K.-S., Noy, N.,
Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi,
R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS,
vol. 4825, pp. 537–551. Springer, Heidelberg (2007)

14. Wang, H., Zhang, K., Liu, Q., Tran, T., Yu, Y.: Q2Semantic: A lightweight key-
word interface to semantic search. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 584–598. Springer,
Heidelberg (2008)

15. Watters, C.: Information Retrieval and the Virtual Document. J. Am. Soc. Inf.
Sci. 50(11), 1028–1029 (1999)

16. Yamauchi, T.: The semantic web and human inference: A lesson from cognitive
science. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux,
P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 609–622. Springer,
Heidelberg (2007)

17. Zhang, X., Cheng, G., Qu, Y.: Ontology Summarization Based on RDF Sentence
Graph. In: 16th International World Wide Web Conference, pp. 707–716. ACM
Press, New York (2007)

18. Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: SPARK: Adapting keyword
query to semantic search. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
694–707. Springer, Heidelberg (2007)

A Segmentation-Based Approach for Approximate
Query over Distributed Ontologies

Yimin Wang1, Guilin Qi2, and Min Chen3

1 Lilly Singapore Centre for Drug Discovery, #02-04 Biomedical Grove, Singapore
wangyimin@lilly.com

2 Institute AIFB, University of Karlsruhe (TH), Karlsruhe, Germany
gqi@aifb.uni-karlsruhe.de

3 Boston University, One Silber Way, Boston, MA 02215, USA
anthem16@bu.edu

Abstract. With the popularity of semantic information systems distributed on
the Web, there is an arising challenge to provide efficient query answering support
for these systems. However, common approaches for distributed query answering
either exhibit performance disadvantages or loss of completeness in an unbal-
anced way. In this paper, we introduce a novel approach for segment-based con-
junctive query answering over distributed ontologies. Our approach balances the
trade-off between performance and completeness by introducing segmentation-
based distributed ontology integration. We define the notions of segment and ap-
proximate conjunctive query answering. Corresponding algorithms are designed,
implemented and evaluated. The evaluation results show that our approach is very
promising in processing ontologies in modern semantic information systems.

1 Introduction

Today, many semantic information systems on the Web are going beyond a centralized
setting and working in a distributed scenario. In those systems, ontologies are increas-
ingly applied as the data schemata, sources, mediators, etc. [4,6,9], thus, querying the
distributed ontologies is one major task in distributed semantic information systems.

Let’s first look at a common scenario as a motivated example: Large organizations,
such as international enterprises and universities, often have many departments, main-
taining distributed data that are reasonably interconnected among departments (e.g., the
shared information about people and projects across departments) on their web infor-
mation systems. Query answering over distributed ontologies is a major task in these
web information systems where data schemata and sources are more and more repre-
sented as ontologies. More importantly, people in these organization may like to have
part of query results in an efficient manner, which raises up a new challenge.

There are two extreme situations for query answering over distributed ontologies: (1)
We can integrate the distributed ontologies into a single local node and perform query
answering in a centralized way (e.g. [6,9]). This approach apparently lacks the optimiza-
tion for query answering in the distributed scenario, because queries are not executed in
a distributed way. (2) On the other hand, we can also query over distributed ontologies
without integration. In this case, the ontologies are queried in a pure distributed way

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 464–478, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Segmentation-Based Approach for Approximate Query 465

on an individual ontology in parallel, so overall execution time is reduced. However,
by using this approach, we may lose significant information that is inferred by consid-
ering the interrelationships (e.g. in the form of mappings) between the ontologies. The
first extreme keeps completeness by losing performance, while the second one pursues
performance but loses completeness. Our aim is to find a reasonable balance between
the two extremes: We argue that performance is a critical issue on today’s Web, while
there is often a tradeoff between the completeness and the performance when querying
distributed ontologies.

Because it’s difficult to achieve complete answers and performance advances at the
same time, approximate query answering based on a proper integration of distributed
ontologies but provides quick response times is an important issue to be addressed. This
issue has been widely recognized and discussed in the traditional database community
in order to improve query answering performance [1]. However, there is little existing
work on approximate query answering over distributed ontologies in this field. The
popular description logics (DL) reasoners, such as FaCT++1, Pellet2 and KAON23,
only support exact query answering over ontologies and are not particularly optimized
for a distributed scenario.

In this paper, we introduce a novel approach for approximate conjunctive query an-
swering over distributed ontologies in semantic information systems on the Web. We
focus on improving the overall performance by sacrificing part of the completeness. We
integrate ontologies in a segmentation-based approach, where distributed ontologies are
divided into several groups that are connected via mappings. We also find an appropriate
way to identify the segments of the integrated global ontology. As central contribution
of our approach, we have designed three algorithms for segmentation, query distribu-
tion, and termination and results collection, respectively. They have been implemented
and evaluated within real-life application. The evaluation results show our approach
well meets our target mentioned above.

In the following, we first discuss the related work (Section 2) and introduce some re-
quired preliminaries (Section 3) for understanding the rest of this paper. We then present
the foundations of our approximate conjunctive query answering approach (Section 4)
and describe the algorithms (Section 5). Afterwards we present and discuss the evalu-
ation of our approach (Section 6). Finally, we conclude the major contributions of this
paper and discuss possible future extensions (Section 7).

2 Related Work

The problem of query answering in distributed systems has been discussed in tradi-
tional databases and the Semantic Web. The distributed query answering in traditional
databases simply distributes the queries and aggregates the results [13]. However, if it
is directly applied to process distributed ontologies, then it is very possible to lose re-
sults without a proper integration. In [5], the authors present a logical foundation for
peer-to-peer data integration and query answering using mappings but DL ontologies

1
http://owl.man.ac.uk/factplusplus/

2
http://www.mindswap.org/2003/pellet/

3
http://kaon2.semanticweb.org

http://owl.man.ac.uk/factplusplus/
http://www.mindswap.org/2003/pellet/
http://kaon2.semanticweb.org

466 Y. Wang, G. Qi, and M. Chen

are not considered. Cai and colleagues introduces an approach to managing RDF data
in a scalable manner [3], while still, DL ontologies are not in their scope.

An ontology-based approach for querying distributed data is introduced in [9], where
classic view-based mappings are adopted, but more expressive DL mappings with
proper ontology integration are not introduced. Several work on reasoning with dis-
tributed ontologies has been discussed, such as distributed description logics (DDL)
[21], E-Connections approach [10] and package-based description logics (PDL) [2].
However, DL ontologies can not be directly supported without adding extra syntax and
semantics, such as bridge rules in DDL [21]. The actual implementation of KAONp2p
[12] on query answering over distributed ontologies establishes the distributed process-
ing of ontologies but again integrates schemata information (i.e., TBoxes of ontologies)
upfront. Our approach is different from the approach given in [12] in that we first seg-
ment the distributed ontologies then integrate ontologies in each segment.

Approximate query answering is often discussed in the centralized case. Approx-
imate query answering is introduced to improve the performance [1] for traditional
centralized databases. Approximate reasoning over common OWL DL ontologies is
discussed in many papers, such as in [14] and [19], but they doesn’t concern conjunctive
query answering over distributed ontologies. Although our approach approximates the
conjunctive query answering in distributed systems, the meaning of approximate query
answering in our paper is fundamentally different from that in centralized case. That
is, we do not change the semantics of the local ontologies in the distributed system. In-
stead, our approach optimizes the query answering procedure for distributed ontologies
by segmenting the integrated ontologies into several subsets that can be distributively
processed.

3 Preliminaries

We first introduce some prerequisite knowledge about conjunctive query answering [16]
problem over description logics SHIQ KB that is proved to be decidable in [8]. We also
introduce an ontology mapping system by following the definition of conjunctive query.

Let NR be a set of role names with both transitive and normal role names NtR∪NnR =
NR, where NtR∩NnR = ∅. A SHIQ-role is either some R ∈ NR or an inverse role R−

for R ∈ NR. Trans(R) and R
 S represent the transitive and inclusion role axioms,
respectively, where R and S are roles. R as a finite set of transitive and inclusion role
axioms. A simple role is a SHIQ-role that neither its sub-roles nor itself is transitive.
Given a set of concept names NC, the set of SHIQ-concepts is the smallest set such
that: (1) Every concept name is a concept; (2) if C and D are concepts, R is a role, S is a
simple role, and n is a positive integer, then the following expressions are also concepts:
(�), (⊥), (¬C), (C�D), (C�D), (∃R.C), (∀R.C), (� nSC) and (� nSC). A TBox T
is a finite set of axioms with the form C
 D where C and D are SHIQ-concepts, and
an ABox A is a finite set of axioms with the form C(x), R(x, y), and x ≈ y (x�≈y). A
SHIQ knowledge base (KB) is a triple (R, T ,A) which is also considered as ontology
in the semantic information systems here.

The semantics of SHIQ KB is given by the interpretation I = (∆I , ·I) that consists
of a non-empty set ∆I (the domain of I) and the function ·I as usual (e.g., see [15]).

A Segmentation-Based Approach for Approximate Query 467

The reasoning and decidability of SHIQ is also introduced in [15]. The interpretation
I is the model ofR and T if for each R
 S ∈ R, RI ⊆ SI and for each C
 D ∈ T ,
CI ⊆ DI .

Let KB be a SHIQ knowledge base, NP be a set of names such that all concepts and
roles are in NP. An atom P (s1, ..., sn) has the form P (s1, . . . , sn), denoted as P (s),
where P ∈ NP, and si are either variables or individuals from KB. An atom is called a
DL-atom if P is a SHIQ-concept or role; it is called non-DL-atom otherwise.

Definition 1 (Conjunctive Queries) . Let x1, . . . , xn and y1, . . . , ym be sets of distin-
guished and non-distinguished variables, denoted as x and y, respectively. A conjunc-
tive query Q(x,y) over a KB is a conjunction of atoms

∧
Pi(si), where the variables

in si are contained in either x or y. We denote operator π [18] to translate Q(x,y)
into a first-order formula with free variables x: π(Q(x,y))=∃y:

∧
(Pi(si)). �

For Q1(x,y1) and Q2(x,y2) conjunctive queries, a query containment axiom
Q2(x,y2)
 Q1(x,y1) has the following semantics:

π(Q2(x,y2)
 Q1(x,y1)) = ∀x : π(Q1(x,y1)) ← π(Q2(x,y2))

Definition 2 (Conjunctive Query Answering) . An answer of a conjunctive query
Q(x,y) w.r.t. KB is an assignment θ of individuals to distinguished variables, using
Ans(Q, KB) as a function, such that π(KB) |= π(Q(xθ,y)). �

We refer readers to [8,18,16] for further issues in conjunctive query answering for
ontologies.

We follow the general framework of [17] to formalize the notion of a mapping sys-
tem for DL ontologies, where mappings are expressed as correspondences between
conjunctive queries4 over ontologies.

Definition 3 (Ontology Mapping System) . An ontology mapping system MS is a
triple (O1,O2,M), where

– O1 is the source ontology,O2 is the target ontology,
– M is the mapping between O1 and O2, i.e. a set of assertions qS � qT , where qS

and qT are conjunctive queries over O1 and O2, respectively, with the same set of
distinguished variables x, and � ∈ {
,&,≡}.

An assertion qS
 qT is called a sound mapping, requiring that qS is contained by qT

w.r.t.O1∪O2; an assertion qS & qT is called a complete mapping, requiring that qT is
contained by qS w.r.t. O1 ∪ O2; and an assertion qS ≡ qT is called an exact mapping,
requiring it to be sound and complete. �

To have the same segmentation result for ontology integration system introduced later,
we do not consider mapping transitivity here, i.e., ifO1 andO2 have mappingM12;O2
and O3 have mapping M23, it does not imply the existence of mapping M13 between

4 We denote a conjunctive query as q(x,y), with x and y sets of distinguished and non-
distinguished variables, respectively.

468 Y. Wang, G. Qi, and M. Chen

O1 and O3. Furthermore, several mappings between two ontologies are considered as
one single mapping. This form of mapping is decidable in inferencing while it is re-
stricted to DL-safe mappings [11]. Mappings discussed in this paper are referred as
DL-safe mapping by default. Further details about semantics and restrictions of ontol-
ogy mapping system can be found in [11].

4 Segment-Based Conjunctive Query Answering over Distributed
Ontologies

To discover the possible optimizations using approximate conjunctive query answer-
ing in the distributed environment, we need to analyze the distributed ontologies by
considering their integration via mappings. We here define ontology integration sys-
tem using mappings for distributed networking scenario. In the following, we denote
I = {1, . . . , n}, n ∈ N and i �= j; i, j ∈ I .

Definition 4 (Distributed Ontology Integration System (DOIS)) . A distributed on-
tology integration system (DOIS) is a triple ({MSi},N , Loc), where

1. {MSi} is a set of mapping systems. We denote O and M as the ontologies and
mappings included in {MSi}, respectively.

2. N is a set of distributed nodes where the ontologies and mappings reside;
3. Loc : O ∪ M → N is a location function such that Ni = Loc(Oi) and Nij =

Loc(Mij), where Ni, Nij ∈ N and Oi∈O,Mij∈M. This function aims to relate
an ontology or mapping to a specific distributed node. �

Given DOIS ({MSi},N , Loc) overO, we use Anse(Q, {MSi},O) to denote the com-
plete set of answers for conjunctive query Q(x,y) over O ∪M.

To simplify the presentation, in the following we introduce the notion of distributed
system, which is inspired from [23] but not exactly the same.

Definition 5 (Distributed System) . Distributed system D is a set of mapping systems
{MSi}. Or equivalently, D = (O,M) where O = {Oi} is a set of ontologies and
M = {Mij} is a set of mappings between Oi and Oj in O. �

We introduce the notion of distributed system in addition to Definition 4 for better un-
derstanding our graph-based segmentation approach and algorithms, because by look-
ing at Example 6, it is very easy to see D is a graph with ontologies as vertex and
mappings as edges.

Example 6. The DOIS depicted in Figure 1 contains five ontologies distributed over
five nodes, where Ot is the target ontology that has non-empty mappings with all other
source ontologies.O1,O2 andO3 are connected by mappings, presented as dotted line.

Given a DOIS, we know the following information: (1) A mapping M and its source
and target ontologies; (2) the locations of those mappings or ontologies in the distributed
network. Now the we are able to query over distributed ontologies that are integrated as
a global ontology in mapping systems.

A Segmentation-Based Approach for Approximate Query 469

O1

O2

O3

O4

Ot

Fig. 1. Figure for Example 6. Given D = (O,M), source ontology Oi ∈ O, target ontology
Ot ∈ O and mappings (light-dot lines) between them. Circles are ontologies distributed on
different nodes. �

Because a DOIS consists of different ontologies, it is possible to improve the overall
performance by dividing the distributed system of a DOIS into several segments (Ex-
ample 9). Let’s consider a simple example: The Law School and Faculty of Physics
normally do not share projects or professors, or the shared information is not usually
recognized by people. Therefore, ontologies describing these two departments are going
to be grouped into different segments.

Definition 7 (Distributed Subsystem) . Given a distributed system D, distributed sub-
system of D is a pair (O′,M′), denoted as D′
 D, iff O′ ⊆ O and M′ = {Mij ∈
M : Oi,Oj ∈ O′}. A distributed subsystem is also a distributed system. �

Definition 8 (Segment) . Given a distributed system D = (O,M), a segment of D is
distributed subsystem S = (O′,M′) such that

1. for all Mij ∈ M′, we have Mij �= ∅;
2. for any distributed subsystem S′ of D, if S � S′, then S′ does not satisfy 1. �

Different from [20], which aims to generate segments from a large domain ontology to
facilitate ontology engineering, we can see a segment here is distributed subsystem S of
D which satisfies the condition that all the ontologies in it are connected by non-empty
mappings and any other distributed subsystem of D which strictly includes S does not
satisfy this condition. This has two benefits:

1. If the ontologies of a distributed subsystem are not all connected by non-empty
mappings, then this distributed subsystem can be divided into smaller distributed
subsystems to improve performance.

2. We achieve completeness of answers as much as possible after segmentation by
requiring the segment to be the inclusion maximal distributed subsystem which
satisfies Condition 1 in Definition 8.

Therefore, our definition of segment perfectly captures the idea of balancing the trade-
off between performance and completeness in querying distributed ontologies – the
Example 9 presents how the segmentation is processed.

We are able to develop an algorithm for segmenting a distributed system D directly
based on existing algorithms (e.g., union-find algorithm [7]) to process graphs. Note that
not all the complete subgraphs of G can be interpreted to segments, e.g., assuming a
segment ({O1,O2,O3}, {M12,M13,M23}), apparently, ({O1,O2}, {M12}) forms
a complete graph but it doesn’t satisfy Definition 8. Let’s see an example about how
mappings affect segmenting result to form DOISs with different distributed nodes.

470 Y. Wang, G. Qi, and M. Chen

O6

O5

4 Nodes

6 Nodes

O1

O2

O3

O4

Ot

O1

O2

O3

O4

Ot

O1

O2

O3

O4

Ot

O6

O5

O1

O2

O3

O4

Ot

Fig. 2. Figure for Example 9. Given D = (O,M), source ontology Oi ∈ O, target ontology
Ot ∈ O and mappings (light-dot lines) between them.

Example 9. In this example, we use 5 and 7 distributed ontologies for each DOIS,
respectively. Next we will segment the DOIS to show how our segmenting approach
works based on definitions above.

1. Let’s first look at the case of four distributed nodes with one ontology on each node.
Before segmenting the DOIS, we have mappingsM12, M13 andM23 between on-
tologies O1 and O2, O1 and O3, O2 and O3, respectively. We also have mappings
from target ontology to each source ontologyMt1,Mt2,Mt3 andMt4. According
to the definition of segments, we have the segmentation result depicted by following
the arrow:

(a) ({O1,O2,O3,Ot}, {Mt1,Mt2,Mt3,M13,M12,M23})
(b) ({O4,Ot}, {Mt4}).
So there are two segments in this case.

2. It is very often the case that the distributed nodes and extra mappings are added
into the current system. Our seven nodes example indicates the segmentation status
if we add O5 and O6 with mappings M24 and M56 to the five nodes distributed
system. Mappings between target ontology and O5 and O6 are Mt5 and Mt6,
respectively. Then we have the following segmentation result:

(c) ({O1,O2,O3,Ot}, {Mt1,Mt2,Mt3,M13,M12,M23})
(d) ({O2,O4,Ot}, {Mt2,Mt4,M24})
(e) ({O5,O6,Ot}, {Mt5,Mt6,M56})
So there are three segments in this case. '

As mentioned in the introduction, our aim is to find a balance between the completeness
and performance for query answering over distributed ontologies by using segments of
distributed systems. Thus, the union of the individual query answering result of each
segment obviously may not be equal to the exact answers. We therefore introduce our
approach to find out segment-based answers in querying distributed ontologies. In the
mean time, for users who want to achieve complete answers, we also provide an alter-
native approach to compute them (Algorithm 2).

A Segmentation-Based Approach for Approximate Query 471

Definition 10 (Segment-based Query Answering) . Given a DOIS with D = (O,M)
and a conjunctive query Q, let S = {Si}i=1,...,n; n∈I and Anse(Q, D,O) be complete
answers to query over O, where O is the target ontology and O ∈ O. Segment-based
Query Answering in DOIS is defined as:

Ansa(Q, D,O) =
⋃

i∈{1,...,n}
Anse(Q, Si,O)

where Ansa stands for segment-based query answering. �

Obviously, the set of segment-based answers are subset of the set of complete answers
because the number of answers monotonically increases. Let’s illustrate this by an
example.

Example 11. Assume ontologies from different departments O1, O2 and mapping M
bridging them:

– O1={Professor
 Faculty � ∃teach.Course}
– O2={Professor
 Staff � ∃teach.Lecture}
– M={1:Professor
 2:Professor, 1:Faculty
 2:Staff, 2:Lecture
 1:Course}

Here, 1:Professor means concept Professor in O1. If M holds and we ask for profes-
sors who teaches a certain course, we get complete answers because O1 and O2 are
integrated with M as a global ontology. However, if M does not exist, then we can ask
for segment-based answers (i.e.,O1 andO2 are divided into different segments). In this
case the professors who give lectures with other departments are not included in the
answers but can be computed in the end of our algorithm. '

5 Algorithms for Segment-Based Query Answering

There are three algorithms in this segment-based conjunctive query answering ap-
proach: (1) Segmentation, (2) query distribution and answering, and (3) termination
and results collection. Different query distribution approaches are adopted for segments
with different number of mapping elements for better allocating computing resources.
The cardinality of S is Card(S) = |M| that indicates the number of elements contained
in M. Then,

– a segment is called single-element segment, denoted as Ss, iff Card(Ss) = 1;
– a segment is called multiple-element segment, denoted as Sm, iff Card(Sm) > 1.

The single-element segment is a segment which contains only two ontologies (i.e.,
a target ontology Ot and a source ontology Oi with mapping Mti between them,
e.g., segment (b) in Example 6 is a single-element segment). On the other hand, the
multiple-element segment consists more than one mapping ontologies connecting more
than two ontologies (e.g., all segments in Example 6 except (b) are multiple-element
segments). The exact conjunctive query answering are denoted as Anse(Q, Ss,O) and
Anse(Q, Sm,O) for single/multiple-element segments, respectively, where Q is a con-
junctive query over a common target ontology shared by all the segments of D.

472 Y. Wang, G. Qi, and M. Chen

Algorithm 1. Segmentation
Require: a DOIS (D,N , Loc), a target ontology Ot, empty ontology set O, empty mapping set

M and empty graph set G.
1: get all ontologies that have non-empty mappings withOt and put them to O
2: get all mappings related Ot to O and put them to Mt

3: get all mappings among ontologies in O and put them to M, add Ot to O, add Mt to M
4: establish graph G with n vertices O and edges M, where n is the number of ontologies in O
5: for k = n; k � 2; k −− do
6: get all complete subgraphs of G with number of vertices k and put them to Gk

7: remove all subgraphs that are already in G from Gk

8: add Gk to G
9: end for

10: establish a set of segments S of D based on G
11: for all Sl ∈ S do
12: put Sl into Ss if Sl is a single-element segment, else, put Sl into Sm

13: end for
14: output Ss and Sm

Algorithm 1 starts with input of a DOIS with distributed system D and a target on-
tology Ot over which the query is about to be executed. The system gets all ontologies
connected toOt and the corresponding mappings to establish a graph G (Step 1–4), and
then it extracts the segments with k number of ontologies (2 � k � n) iteratively by
computing the complete subgraphs of G with k vertices using classic union-find algo-
rithm [7] (Step 5–12, this is exactly the segmentation procedure presented in Example
6). In the meanwhile, we need to eliminate those subgraphs of complete subgraphs of
G with higher number vertices to make sure all the generated subgraphs are maximal
complete subgraphs (Step 8). Then, we interpret the generated set of maximal complete
subgraphs G back to a set of segments, written as S (Step 10). To facilitate query distri-
bution, we classify the segments into single and multiple-element segments as input of
the consequent Algorithm 2 (Step 11–14). We show all segments should contain Ot.

Proposition 12. Given a DOIS (D,N , Loc), a target ontologyOt and a set of segments
S generated in the Step 14 of Algorithm 1, the target ontology Ot is included in all the
segments in S.

Proof sketch. If G is complete graph without vertexOt, then G andOt forms a complete
graph. According to Definition 8, G can not be interpreted as a segment. �

In Algorithm 2, for a single-element segment, the system sends the query to the dis-
tributed node where the source ontology in Ssi resides (Step 2–5, please note there
is only one source ontology in each Ssi so the nodes are not occupied at this stage);
for multiple-element segment, the system sends the query to an arbitrary unused node
where an arbitrary source ontology resides (Step 6–11). To achieve exact query answer-
ing (Step 12) as supplement, the algorithm simply integrates all ontologies and map-
ping in D on an unused remote node without segmentation and query over D. In Step
6–12, if all nodes are occupied, the algorithm waits until an arbitrary node finishes its

A Segmentation-Based Approach for Approximate Query 473

Algorithm 2. Query distribution and answering
Require: a DOIS (D,N , Loc), a conjunctive query Q, a target ontology Ot, segments Ss and

Sm

1: create an empty list LN for nodes that are idle (i.e., nodes that are not involved in executing
query answering tasks).

2: for all Ssi ∈ Ss do
3: get ontology source ontologies Oi of Ot in Ssi ; get remote node Ni = Loc(Oi), put Ni

into LN

4: compute Ansa(Q, Ssi ,O) on node Ni in parallel (i.e., parallel processing means this task
is executed in parallel in different nodes over distributed network)

5: end for
6: for all Smj ∈ Sm do
7: get source ontology set Oj of Ot in Smj

8: find an arbitrary idle node Nj = Loc(Oj), where Oj ∈ Oj

9: put Nj into LN

10: compute Ansa(Q,Smj ,O) on node Nj in parallel
11: end for
12: get a random idle node Ni, compute Anse(Q, D,O) on Ni in parallel

Algorithm 3. Termination and results collection
Require: list of nodes LN that is in-use (not idle), termination boolean signal U , timeout preset

T

1: while LN = ∅ and U =FALSE and T = TIMEOUT do
2: if Ni returns anwser then
3: send out the answer from Ni, remove Ni from LN

4: end if
5: end while
6: final results collection

querying task and put the next query answering task to this node – this procedure man-
aged independently by Algorithm 3 for termination and result collection.

Algorithm 3 returns the real time segment-based answers, manages the distributed
nodes and monitors the terminating signal. Once all distributed nodes are not in use,
or querying process are terminated. The system also terminates in a preset, maximum
allowed execution time, considering one or several distributed tasks doesn’t respond
due to possible system or network failures.

In Algorithm 1, the optimized clique discovery problem to find complete subgraphs
in graphs with size n, which is the number of ontologies, has complexity LOG-TIME

[7]. The complexity of conjunctive query answering overSHIQKB with size m, which
is the number of concepts, is CO-NP-COMPLETE [8], which is the major computation
in Algorithm 2. Our algorithms don’t intend to reduce the computational complexity
of query answering over distributed ontologies. Because the cope of our approach is
to balance the trade-off between completeness and performance in distributed ontology
query answering for actual web information systems, but not to optimize the query
processing algorithms in local query processing.

474 Y. Wang, G. Qi, and M. Chen

6 Evaluation and Discussion

We have implemented our approach using KAON2 as the query answering engine for
this evaluation5. Since our approach aims to improve the overall performance in query-
ing distributed ontologies approximately, we need to evaluate the performance increases
(presented by time saved) against the loss of completeness (presented by rates of the
cardinality of the set of segment-based answers to that of the set of complete answers).
The hypothesis for this evaluation is that the time saved outweighs the rates of approxi-
mation to complete answers. We show our evaluation by first introducing the setting for
experiments, presenting and discussing the results afterwards.

6.1 Experiment Settings

We used 17 virtual distributed nodes to simulate a distributed network. The nodes are
“virtual” because virtual machines were deployed on four actual computers, therefore
the CPU power was shared. Each node held an ontology instance data set with fixed size.
The instance data have different schemata that are either heterogeneous or homogenous.
In our experiment, we are using four ontology schemata: (1) The Lehigh University
Benchmark (LUBM) ontology6; (2) Proton ontology7; (3) SWRC ontology [22]; (4)
FOAF ontology.8 The instance data includes the following:

1. LUBM automatically generated ontologies that includes instance data of informa-
tion about university life

2. Digital library data in Proton schema
3. Documents and publication data in Institute AIFB, University of Karlsruhe
4. Project and personal contacting information in FOAF schema

The ontology mappings were created manually for actual use in different projects (e.g.,
Proton–SWRC mapping was created for EU IST SEKT project9, FOAF–LUBM map-
ping was created for Traditional Chinese Medicine project [6].)

Each node held a data set with either SWRC, Proton, LUBM or FOAF schema with
corresponding ontology instance data with size approximately 1MB. Let’s look at a
5 segments example of our experiment setting to see how the data and schemata are
allocated. The 17 ontologies and the mappings between them constitute a distributed
system D, whereas the segmentation process only applies to those ontologies that hold
mappings with target ontology.

We used two conjunctive queries: One was to search the documents with their corre-
sponding authors who were professors; the other was to find out all the abstracts of the
documents written by Yimin Wang in 2006 with the associated projects. The data had
many schemata created for different purpose, for example, data in SWRC schema were
created for the local research group website portal, data in FOAF schema were created

5 The experimental implementation is available upon request
6
http://swat.cse.lehigh.edu/projects/lubm/

7
http://proton.semanticweb.org/

8
http://xmlns.com/foaf/0.1/

9
http://www.sekt-project.com

http://swat.cse.lehigh.edu/projects/lubm/
http://proton.semanticweb.org/
http://xmlns.com/foaf/0.1/
http://www.sekt-project.com

A Segmentation-Based Approach for Approximate Query 475

Fig. 3. Example of data allocation in 5 segments case. The circles stand for distributed ontologies
with different schemata; O-Target means the target ontology.

for the Chinese Traditional Medicine project management, etc. Therefore, it was possi-
ble that Yimin Wang was working for a project information in FAOF schema and has
publication information in SWRC schema – the mapping was used to infer complete
information in this case.

1. SELECT ?x ?y
WHERE { ?x rdf:type Professor . ?y rdf:type Document . ?y publicationAuthor ?x }

2. SELECT ?x ?y ?k
WHERE { ?x year "2006". ?x author ?z . ?x abstract ?y .

?z name "Yimin Wang" . ?z worksFor ?k . ?k rdf:type Project}

An experiment unit was one execution of one query over a certain setting with dif-
ferent mappings covered. Based on Definition 8, it’s easy to find when the number of
mappings changes, the segmentation results are different. In this experiment, we set the
DOISs to have four different settings with 16, 12, 9, 5 segments (Figure 3 depicts the
5 segments case), respectively. The two queries above were executed for 20 times for
each experiment unit and the average execution time was computed, recorded and com-
pared with the execution time held by exact query answering over same size of data. We
compared times saved by using segment-based approach against the rates of approxi-
mation in different stages. We present both the time costs using global integration with
and without segmentation approach applied.

6.2 Results and Discussions

In the experiments, the two queries above were executed in the distributed network and
the results were collected and presented in Figure 4.

The X axis presents the time costs and the Y axis shows the corresponding rates
of approximation (i.e. rate of approximation equals to Na

Ne
, where Na and Ne are the

numbers of segment-based and all answers, respectively).
The system computes the answers of segments on each distributed node and returns

the answers one by one incrementally. Thus, in Figure 4, there are 16 points indicating
the time saved against the rates of approximation. Similarly, DOIS2, DOIS3 and DOIS4
have 12, 9 and 5 points in the figures, respectively. The black star and diamond symbols
in two figures are time costs of querying global integration of all ontologies in D in

476 Y. Wang, G. Qi, and M. Chen

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 3 6 9 12 15 18 21 24 27

Time costs (Seconds) Q1

A
p

p
r
o

x
.

a
n

s
./

E
x
a
c
t

a
n

s
.

(
P

e
r
c
e
n

ta
g

e
)
 Q

1

DOIS1 DOIS2 DOIS3 DOIS4 Local Distributed

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 3 6 9 12 15 18 21 24 27

Time costs (Seconds) Q2

A
p

p
r
o

x
.

a
n

s
./

E
x
a
c
t

a
n

s
.

(
P

e
r
c
e
n

ta
g

e
)
 Q

2

DOIS1 DOIS2 DOIS3 DOIS4 Local Distributed

Fig. 4. Experiment results for the two queries. respectively.

local space, and querying complete distributed without considering mappings and in-
tegration. We can obviously see these two extreme situations are significantly short of
either performance or completeness.

By aligning to the motivated scenario in Section 1 that is considered to be common
on today’s Web, there are three major messages delivered by this evaluation: First, in
the motivated scenario, data in individual departments of a big organizations are usu-
ally reasonably (not heavily) interconnected. Moreover, the mapping among the depart-
ments are usually under control to avoid unintended information sharing. In this case,
our approach have good rates of approximation with remarkable time saved. Taking
DOIS1 in Figure 4 for example, when the results have more than 80% rate of approxi-
mation to the set of complete answers by using fully global integration in local space,
up to 85%(15.7−2.3

15.7) and 68% (23.8−7.5
23.8) execution time has been saved for the first

and second queries respectively. Compare to the case without considering mappings
and integration, we see the completeness is only about 25%. This is quite obvious: We
have ontologies with four different schemata, so we can approximately get one of four
answers if we do not integrate the distributed ontologies using mappings.

Second, however, we have also realized the rate of approximation relies on the
queries. For instance, in Figure 4, the first query has better rate of approximation than
the second one because the first query is less possible to access remote ontologies:
The information about professors and their publications usually reside in individual

A Segmentation-Based Approach for Approximate Query 477

departments, whereas in the second query the projects are very likely to be shared across
departments or universities, resulting frequent usage of mappings. For certain queries,
it is possible that the approximate process returns the complete answers, or doesn’t give
any result at all – that’s why we also provide the exact query answering functionality.

Last but not least, personalization of query answering task is a key issue in our ap-
proach. It’s configurable to make certain mappings integrated or not. People just need to
tune the parameters to terminate the query answering procedure if they are satisfied with
the segment-based answers, or wait for all the answers. Figure 4 indicates the perfor-
mance is very promising if anticipated answers are achieved and process is terminated
in the middle of runtime.

In a nutshell, our approach, which addresses segment-based conjunctive query an-
swering over distributed ontologies, well meets our target, resulting in sound but may
incomplete answers in a very efficient manner, especially when the answers are accept-
able in practical scenarios.

7 Conclusions and Outlook

In this paper, we described a novel approach to address the problem of balancing the
trade-off between completeness and performance in conjunctive query answering over
distributed ontologies. The major contributions of this paper is following: (1) We in-
troduced the notions of segment-based conjunctive query answering to achieve better
performance with acceptable completeness by introducing distributed system segmen-
tation for query distribution. (2) We designed and implemented three algorithms to
support our approach. (3) We also evaluated the performance against the rate of ap-
proximation to the exact answers. The evaluation results indicated that our approach is
very promising in the motivated scenario. We argued that this scenario is general on
today’s Web.

For future work, we plan to analyze the semantics of different ontology mappings to
seek for other possible segmenting approaches to improve overall performance. There
is also a potential opportunity for optimization if we employ a preprocessing procedure
for identifying homogenous or redundant ontologies in DOIS.

References

1. Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: Join synopses for approximate
query answering. In: Proc. of SIGMOD Conference, pp. 275–286 (1999)

2. Bao, J., Caragea, D., Honavar, V.G.: On the semantics of linking and importing in mod-
ular ontologies. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P.,
Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 72–86. Springer, Hei-
delberg (2006)

3. Cai, M., Frank, M.: Rdfpeers: a scalable distributed rdf repository based on a structured peer-
to-peer network. In: Proceedings of the 13th international conference on World Wide Web,
pp. 650–657 (2004)

4. Calvanese, D., Giacomo, G.D., Lenzerini, M.: A framework for ontology integration. In:
Proceedings of the First Semantic Web Working Symposium, pp. 303–316 (2001)

478 Y. Wang, G. Qi, and M. Chen

5. Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Logical foundations of peer-to-peer
data integration. In: Proc. of PODS 2004, pp. 241–251 (2004)

6. Chen, H., Wang, Y., Wang, H., Mao, Y., Tang, J., Zhou, C., Yin, A., Wu, Z.: Towards a
semantic web of relational databases: A practical semantic toolkit and an in-use case from
traditional chinese medicine. In: Proc. of the 5th International Semantic Web Conference,
pp. 750–763 (2006)

7. Galil, Z., Italiano, G.F.: Data structures and algorithms for disjoint set union problems. ACM
Comput. Surv. 23, 319–344 (1991)

8. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the descrip-
tion logic SHIQ. In: Proc. of IJCAI 2007. AAAI Press, Menlo Park (2007)

9. Goasdoue, F., Rousset, M.C.: Querying distributed data through distributed ontologies: A
simple but scalable approach. IEEE Intelligent Systems 18, 60–65 (2003)

10. Grau, B.C., Parsia, B., Sirin, E.: Combining OWL ontologies using epsilon-connections. J.
Web Sem. 4(1), 40–59 (2006)

11. Haase, P., Motik, B.: A mapping system for the integration of OWL-DL ontologies. In: IHIS
2005, November 2005, pp. 9–16. ACM Press, New York (2005)

12. Haase, P., Wang, Y.: A decentralized infrastructure for query answering over distributed on-
tologies. In: Proc. of ACM Symp. on Appl. Comp., Seoul, Korea. ACM Press, New York
(2007)

13. Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The Piazza peer
data management system. IEEE Trans. Knowl. Data Eng (TKDE) 16, 787–798 (2004)

14. Hitzler, P., Vrandecic, D.: Resolution-based approximate reasoning for OWL DL. In: Cruz,
I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M.
(eds.) ISWC 2006. LNCS, vol. 4273, pp. 383–397. Springer, Heidelberg (2006)

15. Horrocks, I., Sattler, U.: Decidability of SHIQ with complex role inclusion axioms. Artifi-
cial Intelligence 160, 79–104 (2004)

16. Horrocks, I., Tessaris, S.: A conjunctive query language for description logic Aboxes. In:
Proc. of AAAI/IAAI 2006, pp. 399–404. AAAI Press, Menlo Park (2000)

17. Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, Madison,
Wisconsin, pp. 233–246. ACM Press, New York (2002)

18. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with rules. J. of Web Se-
mantics 3(1), 41–60 (2005)

19. Pan, J.Z., Thomas, E.: Approximating owl-dl ontologies. In: Proc. of AAAI 2007, pp. 1434–
1439 (2007)

20. Seidenberg, J., Rector, A.: Web ontology segmentation: Analysis, classification and use. In:
Proc. of the 15th International World Wide Web Conference, Edinburgh (2006)

21. Serafini, L., Borgida, A., Tamilin, A.: Aspects of distributed and modular ontology reasoning.
In: Proc. of IJCAI 2005, pp. 570–575 (2005)

22. Sure, Y., Bloehdorn, S., Haase, P., Hartmann, J., Oberle, D.: The SWRC ontology - semantic
web for research communities. In: Jajodia, S., Mazumdar, C. (eds.) ICISS 2005. LNCS,
vol. 3803, pp. 218–231. Springer, Heidelberg (2005)

23. Zimmermann, A., Euzenat, J.: Three semantics for distributed systems and their relations
with alignment composition. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe,
D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 16–29.
Springer, Heidelberg (2006)

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 479–492, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Robust Ontology-Based Method for Translating
Natural Language Queries to Conceptual Graphs

Tru H. Cao, Truong D. Cao, and Thang L. Tran

Faculty of Computer Science and Engineering
Ho Chi Minh City University of Technology

Vietnam
tru@cse.hcmut.edu.vn

Abstract. A natural language interface is always desirable for a search system.
While performance of machine translation for general texts with acceptable
computational costs seems to reach a limit, narrowing down the domain to one
of queries reduces the complexity and enables better translation correctness.
This paper proposes a query translation method that is robust to ill-formed
questions and exploits knowledge of an ontology for semantic search. It uses
conceptual graphs as the target language for the translation. As a logical inter-
lingua with smooth mapping to and from natural language, conceptual graphs
simplify translation rules and can be easily converted to other formal query lan-
guages. Experiment results of the method on the TREC 2002 and TREC 2007
data sets are also presented and discussed.

1 Introduction

A search engine has been an indispensable tool of computer users in the age of infor-
mation technology, especially with the explosion of information on the World Wide
Web. Although keyword-based search systems like Google and Yahoo have been
really useful, a natural language query interface is still desirable and attracts much
research effort. That is because it supports more natural and more precise query ex-
pressions by humans. To that end it resorts to the problem of automatic conversion of
natural language queries into a logical form or to another formal query language sen-
tences. It might be considered as a machine translation problem, whose solutions’
performance for the general case appears to be saturated after many years of research.
However, what can make the difference is limiting the domain of discourse. In par-
ticular, if only questions and querying phrases are considered, better performance can
be achieved than for the domain of general texts.

Even for the limited input of query expressions, there are different approaches to
the translation problem regarding the two following issues. First, it is about whether
rigorous syntactic parsing is applied to a query expression before it is translated into a
target language sentence. The disadvantages of the parsing approach are time con-
suming and requiring grammatically correct inputs, which is thus not robust to ill-
formed queries. It is also not practical to require a user to always input a question
without grammatical errors. Moreover, it may still face to the problem of syntactic

480 T.H. Cao, T.D. Cao, and T.L. Tran

ambiguity, i.e., one sentence having more than one applicable syntax tree. Second, it
is about whether a knowledge base (KB) is employed in the translation. For example,
with the query “What county is Modesto, California in?”, given no knowledge base,
Modesto and California can be tagged only as proper nouns and thus the implicit rela-
tion expressed by the comma between them cannot be interpreted. In contrast, with a
knowledge base, they can be recognized as named entities (NE) of the types CITY and
PROVINCE, respectively, whence the relation can be translated into one being a sub-
region of the other.

Our proposed method in this paper does not rely on a strict grammar of querying
sentences but does use an ontology and knowledge base for the translation. It provides
knowledge not only for answering queries but also for their conceptual understanding,
before they can be mapped to a formal language. There have been recent works on
natural language interfaces for question answering systems. For instance, [11] imple-
mented an ontology-based search system whose queries were lists of classes and in-
stances and translated into expressions of SeRQL1. They were better than lists of
normal keywords, but not as natural as human expressions. Meanwhile, accepting
natural language queries, [4] followed the rigorous parsing approach using lambda
calculus as an intermediate formal language for the translation. However, the focus of
that work was on efficient porting interfaces between different domains rather on the
translation itself.

The approach in [9] could be considered as closer to the syntax-free one. It used
pattern matching of a natural language query to subject-property-object triples in a
knowledge base, before converting the query to one of SPARQL2. For the example
query therein “What is a restaurant in San Francisco that serves good French food?”,
it first searched for those triples whose subjects, properties, and objects could match
with “restaurant”, “in”, and “San Francisco”. That method thus could not produce a
translation if the KB did not contain such a triple for the named entity San Francisco,
although it existed in the KB. We argue that the translation step should not be mixed
up with the answering step. That is, a query can have a translation in a target language
although there is no matched answer to it in a knowledge base of discourse.

A closely related work to ours was [15], which followed the syntax-free approach
to translate natural language queries into SeRQL expressions. It used the named entity
recognition engine of GATE ([5]) and the PROTON ontology of KIM ([10]), but sup-
plemented it with more entity types and relation types. The method was however just
tested on the authors’ manually collected 36 questions. In contrast, our method pro-
poses conceptual graphs (CG [13]) as the target language and its robustness has been
tested on the text retrieval data sets TREC 2002 and TREC 2007 with hundreds of
diverse questions.

Conceptual graphs, based on semantic networks and Peirce’s existential graphs,
combine the visual advantage of graphical languages and the expressive power of
logic. On the one hand, unlike many other graph-based languages, the formal order-
sorted logic foundation of conceptual graphs offers it as a well-defined logical inter-
lingua for translation to and from different formal languages (e.g. [2] mapping CGs to
SeRQL). On the other hand, unlike many other formal languages, conceptual graphs

1 http://www.openrdf.org/doc/sesame/users/ch06.html
2 http://www.w3.org/TR/rdf-sparql-query/

 A Robust Ontology-Based Method for Translating Natural Language Queries 481

could be mapped smoothly to and from natural language ([14]). These are two salient
points for which we propose conceptual graphs for translating and answering natural
language queries.

Conceptual graphs have been used for solving problems in several areas such as,
but not limited to, natural language processing, knowledge acquisition and manage-
ment, database design and interface, and information systems. Tim Berners-Lee, the
inventor of the World Wide Web, concluded in [1] that CGs could be easily integrated
with the Semantic Web. It was also shown in [16] that there was a close mapping be-
tween CGs and RDF language. Regarding recent development of some CG systems,
CGWorld ([7]) used CGs for queries, storage, and operations. In WebKB-2 ([12]),
knowledge was stored in an extended model of CG, RDF, and terminological logics,
and knowledge retrieval was performed as graph operations. In Corese ([3]), both
knowledge and queries were represented in RDF extended with some CG features,
which were then converted into CGs for matching using CG operations. There has
been also research on automatic generation of CGs from general text in a specific
domain, e.g. the rule-based method in [8] and the machine learning-based one in [17].
However, both of the works required syntactic parsing of input sentences and were
evaluated mainly on semantic roles rather than whole sentences.

Next, for the paper being self-contained, Section 2 summarizes the basic notions of
conceptual graphs. Section 3 presents in detail our proposed method for translating
queries in English into conceptual graphs. Section 4 evaluates the performance of the
method with experiment results. Finally, Section 5 sums up the paper and outlines our
further work.

2 Basic Notions of Conceptual Graphs

A conceptual graph is a bipartite graph of concept vertices alternate with (conceptual)
relation vertices, where edges connect relation vertices to concept vertices. Each con-
cept vertex, drawn as a box and labelled by a pair of a concept type and a concept
referent, represents an entity whose type and referent are respectively defined by the
concept type and the concept referent in the pair. Each relation vertex, drawn as a
circle and labelled by a relation type, represents a relation of the entities represented
by the concept vertices connected to it. For brevity, we may call a concept or relation
vertex a concept or relation, respectively. Concepts connected to a relation are called
neighbour concepts of the relation. Each edge is labelled by a positive integer and, in
practice, may be directed just for readability.

PRODUCT: Cognac PRODUCEDIN PROVINCE: *
1 2 1 2

SUBREGIONOF COUNTRY: France

Fig. 1. An example conceptual graph

For example, the CG in Figure 1. says “Cognac is a product. There is a province.
France is a country. The province is a sub-region of France. Cognac is produced in
the province.”, or briefly, “Cognac is produced in a province in France”. In a textual
format, concepts and relations can be respectively written in square and round brack-
ets as follows:

482 T.H. Cao, T.D. Cao, and T.L. Tran

[PRODUCT: Cognac]→(PRODUCEDIN)→[PROVINCE: ∗]→(SUBREGIONOF)→[COUNTRY:
France]

Here, for simplicity, the labels of the edges are not shown.

In this example, [PRODUCT: Cognac], [PROVINCE: ∗], [COUNTRY: France] are con-
cepts with PRODUCT, PROVINCE and COUNTRY being concept types, whereas (PRO-

DUCEDIN) and (SUBREGIONOF) are relations with PRODUCEDIN and SUBREGIONOF
being relation types. The referents Cognac and France of the concepts [PRODUCT:
Cognac] and [COUNTRY: France] are individual markers. The referent “*” of the con-
cept [PROVINCE: ∗] is the generic marker referring to an unspecified entity.

In the textual format, a CG can also be split into sub-graphs containing only one re-
lation for each, using variable symbols to link identical concepts with the generic
marker. For example, the above CG can be written as follows:

[PRODUCT: Cognac]→(PRODUCEDIN)→[PROVINCE: ∗x], and

[PROVINCE: ∗x]→(SUBREGIONOF)→[COUNTRY: France].

Corresponding to the notion of sorts in order-sorted predicate logic, concept types
are partially ordered by the concept subtype order. For example, PROVINCE is a sub-
type of POLITICALREGION. Relation types can also be partially ordered. For example,
SUBREGIONOF is a subtype of LOCATEDIN. Moreover, just as the notion of signature
for a predicate in order-sorted predicate logic, which defines the sequence of its ar-
gument sorts (i.e., types), each relation type t has a signature denoted by (t1, t2, ..., tn)
where n is its arity and ti’s are its argument types, which are concept types. Then a
relation of type t in a CG is said to be well-typed only if, for every i from 1 to n, the
type of the concept connected to the relation by the edge labelled i is more specific
than ti. A hierarchy of concept types and a hierarchy of relation types with signatures
form a particular CG ontology. In this paper, we use interchangeably the terms class,
entity type and concept type.

The semantics of CGs can be defined through the operator Φ that maps a CG to a
first-order predicate logic formula. Basically, Φ maps each vertex of a CG to an
atomic formula of first-order predicate logic, and maps the whole CG to the conjunc-
tion of those atomic formulas with all variables being existentially quantified. Each
individual marker is mapped to a constant, each generic marker is mapped to a vari-
able, and each concept or relation type is mapped to a predicate symbol.

Each concept of type t and referent m is mapped to:

p(Φ(m))
where p = Φ(t).

Each relation of type t and neighbour concept referents m1, m2, ..., mn is mapped to:

p(Φ(m1), Φ(m2), ..., Φ(mn))
where p = Φ(t).
For example, let G be the CG in Figure 2.1, then Φ(G) is:
∃x (product(Cognac) ∧ province(x) ∧ country(France) ∧

producedIn(Cognac, x) ∧ subRegionOf(x, France))
Partially ordered sets of concept and relation types are also mapped to formulas of

first-order predicate logic. Each pair of a concept type t1 and its super-type t2 is
mapped to:

 A Robust Ontology-Based Method for Translating Natural Language Queries 483

∀x (p1(x) ⇒ p2(x))
where p1 = Φ(t1) and p2 = Φ(t2).
Each pair of a relation type t1 of arity n and its super-type t2 is mapped to:
∀x1∀x2 ... ∀xn (t1(x1, x2, ..., xn) ⇒ t2(x1, x2, ..., xn))
where p1 = Φ(t1) and p2 = Φ(t2).

Using CGs for information retrieval, besides individual referents and the generic
referent, we extend them with the queried referent denoted by “?”, representing the
named entities to be searched for. The generic referent in a query CG means that it
does not care about a matched entity.

3 Construction of Query Conceptual Graphs

A query can be seen as expressing constraints in terms of relations between the que-
ried entities and known ones. For example, consider the query “What was the name of
the movie that starred Sharon Stone and Arnold Schwarzenegger?”. Sharon Stone and
Arnold Schwarzenegger are NEs of the types WOMAN and MAN, respectively; “the
movie” represents an unspecified entity of the type MOVIE; and the interrogative word
What represents the queried NE of the type ALIAS. There are relations between the
queried name and the movie, and between the movie and the two persons. As such,
each NE can be mapped to a concept of the corresponding concept type and the whole
query mapped to a query CG. Figure 2. show the query CG corresponding to this ex-
ample query.

MOVIE: *
2 1

ALIAS: ? HASALIAS WOMAN: Sharon Stone
1 2

HASACTOR

MAN: A. Schwarzenegger

1

2

HASACTOR

Fig. 2. An example query conceptual graph

As mentioned above, our proposed method to construct the CG corresponding to a
query does not rely on a rigorous syntax of the query. The main task and focus is only
to correctly recognize entities and their relations expressed by the query. The method
composes of the following nine steps:

1. Recognizing specified entities: this step recognizes entities specified by names in
a query. For instance, in the query “What is the capital of Mongolia?”, Mongo-
lia is a specified entity.

2. Recognizing unspecified entities: this step recognizes entities represented by
only words expressing entity types. For instance, in the example query “How
many counties are in Indiana?”, “counties” represents unspecified entities of the
type COUNTY.

3. Extracting relational phrases: this step finds out the phrases that represent rela-
tions between the entities in a query. For example, in the query “What state is
Niagara Falls located in?”, “located in” is a phrase representing a relation be-
tween Niagara Falls and a state, which is the queried entity.

484 T.H. Cao, T.D. Cao, and T.L. Tran

4. Determining the type of queried entities: this step determines the type of un-
known entities represented by interrogative words such as What or Which. For
example, in the query “What is WWE short for?”, the relation word “short for”
corresponds to the relation type HASALIAS, which requires the range entity type
ALIAS for the queried entity.

5. Unifying identical entities: this step groups the occurrences of the same entity
into one. For example, in the query “Who is the president of Bolivia?” there are
two identical entities represented by Who and “the president” to be grouped.

6. Discovering implicit relations: this step adds in relations that are not explicitly
expressed by words in a query. For example, in the query “What county is Mo-
desto, California in?”, there is an implicit relation between Modesto and Cali-
fornia, meaning the former is a sub-region of the latter.

7. Determining the types of relations: this step maps the extracted relational
phrases and discovered implicit relations to the appropriate relation types in the
ontology of discourse. For instance, in the example query “When was Microsoft
established?”, ESTABLISHMENTDATE is the suitable relation type for the rela-
tional word “established” in this query about time.

8. Removing improper relations: this step checks and removes improper relations
constructed between entities in the previous steps. For example, in the query “What
city in Florida is Sea World in?”, there are three entities represented by “city”,
“Florida”, and “Sea World”. Without strict syntactic parsing, relations of the type
LOCATEDIN may connect both the first two entities and the third one. However, that
relation between “Florida” and “Sea World” is redundant in this case.

9. Constructing the final CG: this final step produces the CG corresponding to a
query with respect to the ontology and KB of discourse.

Details of these steps are presented next.

3.1 Recognizing Specified Entities

There are various tools with respective ontologies and KBs that can be used for NE
recognition, such as GATE, KIM, SemTag ([6]), ESPotter ([18]). Obviously, the per-
formance of any system relying on named entities to solve a particular problem incurs
errors of the NE recognition tool employed. However, in research for models or
methods, the two problems should be separated. This work is not about NE recogni-
tion and we use GATE’s semantic annotation tool OCAT and KIM’s ontology PRO-
TON and KB for experiments.

3.2 Recognizing Unspecified Entities

Unspecified entities are those that are not expressed by names in a query. However,
they are represented by phrases implying entity types and thus can be recognized. We
employ the ANNIE tool of GATE for this task by building a gazetteer of phrases and
their corresponding entity types in the ontology of discourse.

3.3 Extracting Relational Phrases

Words or phrases expressing relations between entities are propositional and verbal ones
like “in”, “on”, “of”, “born”, “has”, “is”, “located in”, etc. They can also be extracted by

 A Robust Ontology-Based Method for Translating Natural Language Queries 485

ANNIE based on a gazetteer of phrases and their possible corresponding relation types
in the ontology of discourse. For example, “publish” in a question can be mapped to the
relation type DATEPUBLISH or HASPUBLISHER, and the suitable one depends on whether
the question is about time (e.g. “When was the first Wall Street Journal published?”) or
not (e.g. “What company published Jasper Fforde's first book?”).

3.4 Determining the Type of Queried Entities

The type of the entity represented by the interrogative word What (or Which) is de-
termined by the following rules:

1. If What is followed by an entity type, then the type of the queried entity is that
entity type. For example, in the query “What province is Montreal in?”, the
word “province” specifies that the type of the queried entity is PROVINCE in the
ontology of discourse.

2. Otherwise, the type is determined by the first NE after What and the relational
phrase at the end of the query. For example, in the query “What does Knight
Ridder publish?”, Knight Ridder is recognized as a company and the word “pub-
lish” entails that the queried entity is of the type PUBLISHEDMATERIAL.

The interrogative word Who may represent either a person or an organization. For
example, in the query “Who wrote the book Huckleberry Finn?”, it represents a per-
son. However, in the query “Who provides telephone service in Orange County, Cali-
fornia?”, it means an organization. The appropriate entity type is determined on the
basis of the involved relational phrases (e.g. “wrote” or “provides” in these examples)
and the types of the entities after them (e.g. the book “Huckleberry Finn” or the ser-
vice “telephone”).

Questions with the interrogative word How has two typical patterns. The first one
is with an adjective to ask about a certain property of an entity. An example query of
this pattern is “How tall is the Sears Building?”. Values of such properties are often
represented by strings of the type STRING in an ontology like PROTON. In this exam-
ple, the adjective is mapped to the corresponding property type HASHEIGHT. The
second pattern is with “many” followed by an entity type to ask about the number of
entities of that type involved in some relation. An example query of this pattern is
“How many counties are in Indiana?”. Answering to such a query requires counting.
One exception is queries asking about the population of a country, e.g. “How many
people live in Chile?”, which is mapped to the property type POPULATIONCOUNT.

Time is also often represented by strings in data and knowledge bases. So, the in-
terrogative word When in a query is mapped to a concept of the type STRING. For ex-
ample, the signature of the relation type ESTABLISHMENTDATE is (ORGANIZATION,
STRING).

3.5 Unifying Identical Entities

Two entities are considered as identical and unified under the following conditions:

1. One of them is an unspecified entity, and
2. The type of the unspecified entity is the same as, or a super-type of, the other

entity, and

486 T.H. Cao, T.D. Cao, and T.L. Tran

3. Between the two entities is the verb “be” in a particular form and tense such as
“is”, “are”, “was”, “were”, etc.

For example, in the query “Who is the president of Bolivia?”, Who represents an
unspecified entity of the type PERSON and “president” represents an entity of the type
PRESIDENT, which is a subtype of PERSON. There is the relational word “is” between
the two entities, so they are identical and can be unified.

3.6 Discovering Implicit Relations

If two entities are next to each other or separated by a comma, then there is an im-
plicit relation between them. That relation is determined by the types of the entities
and the relation types permitted for those two entity types in the ontology of dis-
course. For example, in the query “In which US states has Barack Obama lived?”, the
type of US is COUNTRY and that of the unspecified entities represented by “states” is
PROVINCE. Therefore, the appropriate type of the implicit relation between them is
SUBREGIONOF.

3.7 Determining the Types of Relations

After the previous steps, the specified entities, unspecified entities, and relational
phrases in a query are already recognized. The remaining task is to determine which
relational phrase is between which two of the entities and what is the type of that rela-
tion. First, we present our approach to determine the appropriate relation type for a
certain relational phrase in a query, with respect to the ontology of discourse. Let PR
be the relational phrase representing the relation between two entities of the types C1
and C2, and S1 and S2 be the original strings representing the two entities. We define
the following sets of possible relation types:

1. R1 is the set of possible relation types that correspond to PR in the built-in gazet-
teer of relational phrases. For example, if PR = “publish”, then R1 includes
DATEPUBLISH and HASPUBLISHER.

2. R2 is the set of possible relation types between the entity types C1 and C2 as
given in the ontology of discourse. For example, if C1 = ORGANIZATION and C2 =
PERSON, then R2 includes HASEMPLOYEE and HASFOUNDER.

3. R3 is the set of possible relation types with respect to S1 and PR. For example, in
the query “Who is the founder of the Wal-Mart stores?”, S1 = “founder” and PR
= “of”, which derives HASFOUNDER as a possible relation type between Wal-
Mart stores and the queried entity.

4. R4 is the set of possible relation types with respect to PR and S2. For example, in
the query “Who was Charles Lindbergh’s wife?”, PR = “’s” and S2 = “wife”,
which derives HASWIFE as a possible relation type between Charles Lindbergh
and the queried entity.

The suitable relation types are then constrained within R1∩R2∩R3∩R4. For effi-
ciency, we incorporate and encode all of these constraints into rules mapping rela-
tional phrases to suitable relation types in the ontology of discourse.

Second, we note that the phrase representing the relation between two entities can
stand in different positions relative to those of the entities:

 A Robust Ontology-Based Method for Translating Natural Language Queries 487

1. In the middle: for example, in the query “Where is the location of the Orange
Bowl?”, the relational word “of” is in the middle of the two entities represented
by “location” and “Orange Bowl”.

2. After: for example, in the query “What state is the Filenes store located in?”, the
relational word “located in” is after the second entity represented by “Filenes
store”.

3. Before: for example, in the query “In what country is Angkor Wat?”, the rela-
tional word “in” is before the first entity represented by “country”.

Therefore, for each pair of entities in a query, it is first checked if the relational
phrase in the middle forms a proper relation between the two entities. If not, the rela-
tional phrases after and before the two entities are further checked.

3.8 Removing Improper Relations

Let E1, E2, …, and EN be the entities occurring in the left-to-right order in a query. We
propose the following heuristic rules to remove improper relations extracted in the
previous steps:

1. If Ei and Ei+1 (1 ≤ i ≤ N−1) are next to each other, then Ei has only a relation
with Ei+1, and all relations if assigned to Ei and other entities will be removed.
For example, in the query “In which US states has Barack Obama lived?” (E1 =
“US”, E2 = “states”, E3 = “Barack Obama”), there are three following possible
relations extracted in the previous steps:

[PROVINCE: ?x]→(SUBREGIONOF)→[COUNTRY: US], and
[PERSON: Barack Obama]→(LIVEIN)→[PROVINCE: ?x], and
[PERSON: Barack Obama]→(LIVEIN)→[COUNTRY: US],

but the last one is to be removed.
2. If Ei and Ei+1 (1 ≤ i ≤ N−1) are separated by a comma, then Ei+1 has only a rela-

tion with Ei, and all relations if assigned to Ei+1 and other entities will be re-
moved. For example, in the query “Who provides telephone service in Orange
County, California?” (E1 = “Who”, E2 = “telephone service”, E3 = “Orange
County”, E4 = “California”), there are four following possible relations extracted
in the previous steps:

[COUNTY: Orange]→(SUBREGIONOF)→[PROVINCE: California], and
[TELEPHONESERVICE: *x]→(HASPROVIDER)→[COMPANY: ?], and
[TELEPHONESERVICE: *x]→(LOCATEDIN)→[COUNTY: Orange], and
[TELEPHONESERVICE: *x]→(LOCATEDIN)→[PROVINCE: California],

but the last one is to be removed.
3. If there is the relational symbol “’s” between Ei and Ei+1 (1 ≤ i ≤ N−1), then Ei

has only a relation with Ei+1, and all relations if assigned to Ei and other entities
will be removed. For example, in the query “What is the name of Neil Arm-
strong's wife?” (E1 = “name”, E2 = “Neil Armstrong”, E3 = “wife”), there are
three following possible relations extracted in the previous steps:

[MAN: Armstrong]→(HASWIFE)→[WOMAN: *x], and
[WOMAN: *x]→(HASALIAS)→[ALIAS: ?y], and
[MAN: Armstrong]→(HASALIAS)→[ALIAS: ?y],

but the last one is to be removed.

488 T.H. Cao, T.D. Cao, and T.L. Tran

4. If an entity is assigned relations to more than one entity standing before it, then
only the relation with the nearest unspecified entity is retained. For example, in
the query “What city in Florida is Sea World in?” (E1 = “city”, E2 = “Florida”,
E3 = “Sea World”), there are three following possible relations extracted in the
previous steps:

[CITY: ?x]→(SUBREGIONOF)→[PROVINCE: Florida], and
[COMPANY: Sea World]→(LOCATEDIN)→[CITY: ?x], and
[COMPANY: Sea World]→(LOCATEDIN)→[PROVINCE: Florida].
However, since the entity Florida is already identified, the entity Sea World

actually modifies the identity of the queried city, rather than Florida. Therefore,
the last relation above is redundant and to be removed.

4 Evaluation Experiments

We have tested the proposed method on the data set TREC 2002 with 440 queries.
The test uses the PROTON ontology with about 300 entity types, 100 relation and
property types, and KIM World KB with over 77,000 named entities. The correctness
of each constructed CG is manually justified with respect to the employed ontology
and KB and the actual meaning of the corresponding query in natural language.
Translation errors may occur due to one of the following causes:

1. The employed NE recognition engine like GATE’s does not recognize all the
named entities in a query precisely and completely. We call this an R-error.

2. The ontology and KB of discourse lack certain entity types, relation types, or
named entities mentioned in a query. We call this an O-error.

3. The current CG query language is not expressive enough to represent certain
queries. We call this an Q-error.

4. The proposed method itself does not construct of a correct CG. We call this an
M-error.

Table 1. shows the number and percentage of each error type on the data set. The
type Other is for those queries that do not have interrogative words, e.g. “Name an art
gallery in New York”. With the original PROTON and KIM KB, there are 47 R-errors
and 269 O-errors. In order to test the actual accuracy of the proposed translation
method, we have then manually corrected the wrongly recognized NEs due to GATE,
and supplemented PROTON and KIM KB with 27 entity types, 72 relation types, and
288 named entities. After that, there are only 22 O-errors left. The method itself
causes 15 M-errors. The number of Q-errors is 57 in both cases.

Since we have used TREC 2002 queries as samples for analysis, there might be
some bias in development of the translation rules. Therefore, we have had another test
of the proposed method on TREC 2007. Table 2. presents the results on this data set.
Before the wrongly recognized NEs are fixed and the ontology and KB are further
enriched, there are 22 R-errors and 273 O-errors. After the R-errors are fixed and 18
more entity types, 67 more relation types, and 63 more named entities are added, the
number of O-errors is reduced to 59. There are more Q-errors for TREC 2007 as
compared with those for TREC 2002. However, the defined translation rules are still
robust with only 5 M-errors. If not counting queries with O-errors and Q-errors, then

 A Robust Ontology-Based Method for Translating Natural Language Queries 489

Table 1. Performance of the proposed method on TREC 2002, before and after wrongly recog-
nized named entities fixed and ontology and knowledge base enriched

a. Before
Query
Type

Number of
Queries

Correct CGs R-errors O-errors Q-errors M-errors

What 201 38 32 113 18 0
Which 3 0 0 3 0 0
Where 62 21 7 33 1 0
Who 67 5 2 48 12 0
When 45 2 5 31 7 0
How 38 1 1 20 16 0
Other 24 0 0 21 3 0

Total 440 67
(15.23%)

47
(10.68%)

269
(61.14%)

57
(12.95%)

0
(0%)

b. After
Query
Type

Number of
Queries

Correct
CGs

R-errors O-errors Q-errors M-errors

What 201 162 0 11 18 10
Which 3 2 0 0 0 1
Where 62 61 0 0 1 0
Who 67 54 0 0 12 1
When 45 33 0 4 7 1
How 38 18 0 4 16 0
Other 24 16 0 3 3 2

Total 440 346
(78.64%)

0
(0%)

22
(5%)

57
(12.95%)

15
(3.41%)

Table 2. Performance of the proposed method on TREC 2007, before and after wrongly recog-
nized named entities fixed and ontology and knowledge base enriched

a. Before
Query
Type

Number of
Queries

Correct
CGs

R-errors O-errors Q-errors M-errors

What 173 20 8 117 28 0
Which 15 1 2 8 4 0
Where 13 3 2 8 0 0
Who 57 8 1 37 11 0
When 13 1 0 11 1 0
How 56 0 1 5 50 0
Other 118 5 8 87 18 0

Total 445 38
(8.54%)

22
(4.94%)

273
(61.35%)

112
(25.17%)

0
(0%)

b. After
Query
Type

Number of
Queries

Correct
CGs R-errors O-errors Q-errors M-errors

What 173 120 0 23 28 2
Which 15 9 0 2 4 0
Where 13 9 0 2 0 2
Who 57 36 0 9 11 1
When 13 10 0 2 1 0
How 56 4 0 2 50 0
Other 118 81 0 19 18 0

Total 445 269
(60.45%)

0
(0%)

59
(13.26%)

112
(25.17%)

5
(1.12%)

490 T.H. Cao, T.D. Cao, and T.L. Tran

the translation accuracies are 346/(346+15) ≈ 96% and 269/(269+5) ≈ 98% for TREC
2002 and TREC 2007, respectively.

On the basis of the experiment results, we now analyse and discuss on the above
mentioned four types of translation errors and how they can be overcome. Firstly, R-
errors solely depend on the accuracy of an employed NE recognition engine, whose
improvement is a separate problem. Whereas, the proposed method is robust to the
test data sets, so the small number of M-errors is not of primary concern now. The
others, O-errors and Q-errors, are addressed below.

Completeness of an ontology and knowledge base
Certain missing named entities and entity types can be easily supplemented to cover
entities occurring in queries on a particular domain. Meanwhile, there are two follow-
ing shortcoming cases of relation types in an ontology to be considered:

1. Qualitative properties of entities: Values of some properties of an entity are rep-
resented by adjectives in natural language. For example, answering the query
“What famous model was married to Billy Joel?” requires the ontology of dis-
course to be able to represent the fame property of models. One way is to define
the class FAMOUSMODEL, for instance, for those models who are famous. It
would create various subclasses of models for different degrees on a fame scale.
Another way is to define the relation type FAMEPROPERTY whose domain class
is MODEL and range class is STRING, for instance. This way would raise the
problem of matching string values later on. A choice depends on a consistent
design of the whole ontology right at the beginning.

2. Non-binary relation types: In practice, there are relations with arities greater
than two. An example is the query “What year did the U.S. buy Alaska?”, where
“buy” actually is a 3-ary relation of U.S., Alaska, and the queried year. How-
ever, in ontology and KB languages, such as RDF and OWL, only binary rela-
tions are directly supported. So, in order to represent an n-ary relation, one way
is to define a reified relation type, which is an entity type that has n binary rela-
tion types with n entity types of that relation3. Then, for instance, this example
query can be represented by the following query CG:

[COUNTRY: U.S.]←(SUBJECT)←[BUY: *]→(OBJECT)→[PROVINCE: Alaska]
 ↓

 (TIME)
 ↓

 [YEAR: ?]

Correspondingly, our proposed method needs to be extended to recognize if a
relation in a query is reified or not.

Expressiveness of the CG query language
In this paper, the introduced CG query language is still simple and can represent only
basic relational constraints. It is not expressive enough to represent queries like “How
many counties are in Indiana?” or “What is the longest suspension bridge in the
U.S.?”. For the former query, the current language can represent the relation between
a county and Indiana by the CG:

3 http://www.w3.org/TR/swbp-n-aryRelations/

 A Robust Ontology-Based Method for Translating Natural Language Queries 491

[COUNTY: *]→(SUBREGIONOF)→[PROVINCE: Indiana]

For the latter query, the current language can represent the relation between a sus-
pension bridge and U.S. by the CG:

[STRING:*]←(HASLENGTH)←[SUSPENSIONBRIDGE:?]→(LOCATEDIN)→[COUNTRY:US]

To obtain complete query CGs, it needs aggregate functions such as COUNT and
MAX applied to these basic CGs, respectively. Queries involving logical disjunction
and negation connectives are also out of the scope of this paper.

5 Conclusion

We have presented our method to translate natural language queries into conceptual
graphs with three following salient points. First, the method does not require gram-
matically correct querying sentences. In fact, it only concerns what are entities and
relations in a query, whereas their relative positions are not too important. Second, it
exploits an ontology to identify entities and their respective relations in a query. Since
the ontology constraints valid relation types between certain entity types, it makes the
method robust to ill-formed queries, not too dependent on relative positions of rela-
tions and entities. Third, we use conceptual graphs as the target formal language for
the translation. With smooth mapping to and from natural language, conceptual
graphs simplify the translation rules. As an interlingua, conceptual graphs can also be
further translated to other formal query languages.

The experiment statistics show that the proposed method is robust to diverse struc-
tures and contents of questions in the test data sets, provided that the ontology and
knowledge base of discourse cover well entities and relations in the domain. Still, as
analysed above, to handle more query patterns, the ontology needs to be enriched to
support qualitative properties and n-ary relations. The constructed translation rules
then need to be revised to recognize relations that are reified in a query. Furthermore,
the introduced CG query language needs to be extended with aggregate functions and
logical connectives. These are the primary issues that we are currently investigating.

References

1. Berners-Lee, T.: Conceptual Graphs and the Semantic Web (Initially created: January
2001, Last change: April 2008), http://www.w3.org/DesignIssues/CG.html

2. Cao, T.H., Do, H.T., Pham, B.T.N., Huynh, T.N., Vu, D.Q.: Conceptual Graphs for
Knowledge Querying in VN-KIM. In: Contributions of the 13th International Conference
on Conceptual Structures, pp. 27–40. Kassel University Press (2005)

3. Corby, O., Dieng-Kuntz, R., Faron-Zucker, C.: Querying the Semantic Web with Corese
Search Engine. In: Proceedings of the 3rd Prestigious Applications Intelligent Systems
Conference (2004)

4. Cimiano, P., Haase, P., Heizmann, J.: Porting Natural Language Interfaces between Do-
mains – An Experimental User Study with the ORAKEL System. In: Proceedings of the
12th ACM International Conference on Intelligent User Interfaces, pp. 180–189 (2007)

5. Cunningham, H., et al.: Developing Language Processing Components with GATE Ver-
sion 3 (a User Guide). University of Sheffield (2006)

492 T.H. Cao, T.D. Cao, and T.L. Tran

6. Dill, S., et al.: SemTag and Seeker: Bootstrapping the Semantic Web via Automated Se-
mantic Annotation. In: Proceedings of the 12th International Conference on the World
Wide Web, pp. 178–186 (2003)

7. Dobrev, P., Toutanova, K.: CGWorld - architecture and features. In: Priss, U., Corbett,
D.R., Angelova, G. (eds.) ICCS 2002. LNCS, vol. 2393, pp. 261–270. Springer, Heidel-
berg (2002)

8. Hensman, S., Dunnion, J.: Using linguistic resources to construct conceptual graph rep-
resentation of texts. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2004. LNCS, vol. 3206,
pp. 81–88. Springer, Heidelberg (2004)

9. Kaufmann, E., Bernstein, A., Fischer, L.: A Naïve but Domain-Independent Natural Lan-
guage Interface for Querying Ontologies. In: The 4th European Semantic Web Conference,
pp. 1–2 (2007)

10. Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic Annotation, In-
dexing, and Retrieval. Journal of Web Semantics 2 (2005)

11. Lei, Y., Uren, V.S., Motta, E.: SemSearch: A search engine for the semantic web. In:
Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS, vol. 4248, pp. 238–245. Springer, Hei-
delberg (2006)

12. Martin, P., Eklund, P.: Knowledge Representation, Sharing and Retrieval on the Web. In:
Zhong, N., Liu, J., Yao, Y.Y. (eds.) Web Intelligence, pp. 243–276. Springer, Heidelberg
(2003)

13. Sowa, J.F.: Conceptual Structures – Information Processing in Mind and Machine. Addi-
son-Wesley, Reading (1984)

14. Sowa, J.F.: Matching Logical Structure to Linguistic Structure. In: Houser, N., Roberts,
D.D., Van Evra, J. (eds.) Studies in the Logic of Charles Sanders Peirce, pp. 418–444.
Indiana University Press (1997)

15. Tablan, V., Damljanovic, D., Bontcheva, K.: A natural language query interface to struc-
tured information. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.)
ESWC 2008. LNCS, vol. 5021, pp. 361–375. Springer, Heidelberg (2008)

16. Yao, H., Etzkorn, L.: Conversion from the Conceptual Graph (CG) Model to the Resource
Description Framework (RDF) Model. In: Contributions of the 12th International Confer-
ence on Conceptual Structures, pp. 98–114 (2004)

17. Zhang, L., Yu, Y.: Learning to generate cGs from domain specific sentences. In: Delugach,
H.S., Stumme, G. (eds.) ICCS 2001. LNCS, vol. 2120, pp. 44–57. Springer, Heidelberg
(2001)

18. Zhu, J., Uren, V.S., Motta, E.: ESpotter: Adaptive named entity recognition for web
browsing. In: Althoff, K.-D., Dengel, A.R., Bergmann, R., Nick, M., Roth-Berghofer, T.R.
(eds.) WM 2005. LNCS, vol. 3782, pp. 518–529. Springer, Heidelberg (2005)

Snippet Generation for Semantic Web Search
Engines

Thomas Penin1, Haofen Wang1, Thanh Tran2, and Yong Yu1

1 Department of Computer Science & Engineering
Shanghai Jiao Tong University, Shanghai, 200240, China

{tpenin,whfcarter,yyu}@apex.sjtu.edu.cn
2 Institute AIFB, Universität Karlsruhe, Germany

{dtr}@aifb.uni-karlsruhe.de

Abstract. With the development of the Semantic Web, more and more
ontologies are available for exploitation by semantic search engines. How-
ever, while semantic search engines support the retrieval of candidate
ontologies, the final selection of the most appropriate ontology is still
difficult for the end users. In this paper, we extend existing work on on-
tology summarization to support the presentation of ontology snippets.
The proposed solution leverages a new semantic similarity measure to
generate snippets that are based on the given query. Experimental re-
sults have shown the potential of our solution in this problem domain
that is largely unexplored so far.

Keywords: Snippet, Ontology summarization, Semantic measure.

1 Introduction

More and more ontologies are available on the Semantic Web. A significantly
growing part is concerned with specific domains comprising ontologies designed
to be useful to companies. To develop a semantic application, an engineer can
draw from a large set of reusable ontologies. However, a main question remains:
how to find and select the exact ontology matching the requirements? While the
retrieval of potential candidate ontologies can be conveniently achieved through
semantic search engines such as Sindice1, Falcons2, Swoogle3, Watson4, etc., the
final selection still presents to be a difficult problem.

Our engineer can be considered as a content curator [1]. While he may be
an expert in his domain, he does not necessarily have a deep understanding of
Semantic Web technologies. When considering the result page of a search engine,
his concern is to find out how these documents representing ontologies entail the
query, which topics are covered, and if there are classes missing or that should
not be included in the solution.
1 http://www.sindice.com/
2 http://iws.seu.edu.cn/services/falcons/objectsearch/index.jsp
3 http://swoogle.umbc.edu/
4 http://watson.kmi.open.ac.uk/WatsonWUI/

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 493–507, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

494 T. Penin et al.

To avoid the burden of downloading all potentially interesting documents and
to be confronted to the even more laborious process of opening them with an
ontology visualization tool to examine their internal organization, most of the
search engines offer certain facilities to get an idea of the ontology content from
the result page. Sindice provides for example the main topic and metadata that
can be explored by the user. Falcons associates labels with every document, while
Swoogle displays an extract of the classes’ names related to the searched terms.
Watson offers a list of instances and classes matching the query.

Despite these features, these systems do not seem to exactly match the needs
of the engineer. Sindice is limited to one topic per ontology and often only
presents the document title. While the extracted classes’ names in Swoogle can
provide useful information, they can not serve as an adequate overview of the
given ontology. Labels provided by Falcons are simply derived from the file name
while Watson does not consider other resources than those related to the query.

To address the needs of our engineer, we propose a new snippet genera-
tion system for semantic web documents (ontologies), that brings the following
contributions:

– A new measure for assessing the similarity of RDF sentences which is ex-
ploited for topic identification. Contrary to most of the measures we are
aware of, this measure does not limit its scope to nouns from entities and
class names but includes verbs and adjectives from triple’s subjects, predi-
cates, and objects. It does also not only consider sentences as bags of words,
but use their internal structure to improve its accuracy.

– An extension of the work of [2] on ontology summarization and [3] on seman-
tic similarity between words, showing that both can be successfully applied
to the problem of snippet generation.

– A snippet generation system that can be tested through the web interface
at http://snippet.apexlab.org.

– A user evaluation shows that our approach to snippet generation brings
about promising results.

This paper will be organized as follows. In section 2, we will describe the
elements and structures that will be used to define our semantic similarity mea-
sure in section 3. Section 4 will then describe the snippet generation process
and present the structure of our system and its test interface. The quality and
the efficiency of our solution will be explored in section 5. Finally, section 6 will
discuss the related research and section 7 will conclude about the future work.

2 RDF Sentence Graph and Topic Graph

In this section, we present the definitions of RDF sentences and RDF sentence
graphs, as discussed in [2]. Then, we extend this work to define RDF topics and
RDF topic graphs.

Let O be an ontology, we call T the set of its RDF triples and B the set of its
blank nodes. For t ∈ T , we note by subj(t), pred(t) and obj(t) the subject, the

Snippet Generation for Semantic Web Search Engines 495

predicate and the object of t respectively. We define the set of triples of O that
contains blank nodes by TB = {t ∈ T , subj(t) ∈ B or obj(t) ∈ B}. It is clear
that TB ⊆ T . For b ∈ B, let Tb ⊆ TB be the subset of triples containing b.

We say that ti, tj ∈ T are b-connected if they satisfy one of the following
conditions:

– ∃ b ∈ B such that ti, tj ∈ Tb;
– ∃ tk ∈ T , such that ti and tk are b-connected and tj and tk are b-connected.

Definition 1. An RDF sentence s is a set of triples such that:

1. ∀i, j ∈ s, i and j are b-connected;
2. ∀i ∈ s, ∀j /∈ s, i and j are not b-connected.

Intuitively, a RDF sentence is formed by a main RDF statement and all the
other RDF statements b-connected to it. In particular, a RDF statement whose
subject is not a blank node is called a main RDF statement. We call S the set
of RDF sentences of O. For all s ∈ S, we define:

– Subj(s) = {subj(t) such that t ∈ s and subj(t) /∈ B};
– Pred(s) = {pred(t) such that t ∈ s};
– Obj(s) = {obj(t) such that t ∈ s and obj(t) /∈ B}.

A reason to choose sentences rather than triples is to avoid the case of subjects
and objects that are blank nodes. This would have made it more difficult to
paraphrase them with natural language.

RDF sentences preserve the connections of the initial RDF graph. In order to
rank RDF sentences, we can define links between them, based on their common
nodes. [2] proposed to consider two kind of links (sequential – predicate or object
of a sentences being the subject of another – and coordinate – several sentences
with the same subject) and defined a parameter p to assign importance to each
of them.

We reuse these notions of links to obtain what is called an RDF sentence
graph. Like [2], we define the weight of the link from s1 ∈ S to s2 ∈ S by

w(s1, s2) = p ∗ seq(s1, s2) + (1− p) ∗ cor(s1, s2), (1)

where seq(s1, s2) and cor(s1, s2) are equal to 0 or 1, respectively depending on
the existence or not of a sequential and a coordinate link between both sentences.

In an ontology, it is often possible to identify several topics. In a text document,
a topic can be defined as a set of words or sentences sharing a certain semantic
proximity. Similarly, we extend [2] and come with the following definition:

Definition 2. Given a threshold θ, an RDF topic is defined as a set of RDF
sentences such that the pairwise semantic similarity between these sentences is
greater than or equal to θ.

A definition of the similarity considered here is given in section 3.

496 T. Penin et al.

As for sentences, we build an RDF topic graph. Let T1 and T2 be two topics
and |Ti| the number of sentences of Ti. Using equation 1, we define the weight
of the link between T1 and T2 by

w(T1, T2) =
1

|T1|+ |T2|
∗

∑
(si,sj)∈T1×T2

w(si, sj). (2)

The main idea behind this definition is to be able to transfer the weight of
the links between sentences to their topics. Note that we make use of an average
weight.

3 Semantic Similarity Measure

Our main goal is to derive the aboutness of an ontology, i.e. the topics covered
by an ontology. To do so, there is the need for a semantic similarity measure
that can be used to decide whether two given RDF sentences belong to the same
topic or not.

There already exist a lot of measures computing the similarity between onto-
logical structures in order to achieve tasks such as ontology selection or align-
ment. Two commonly taken approaches are a comparison at the conceptual level
(ontological structure) or at the lexical level (vocabulary). In some work, e.g. [4],
both these levels are leveraged. Among the drawbacks of comparing ontologies
at the conceptual level, there is the fact that structures depend on the way
the ontologies are built. Patterns can differ and do not always reflect the com-
plete meaning since concepts are usually not only expressed by logical structures
but also by the choice of the vocabulary. Moreover, it is often required to con-
sider structures complex enough to draw meaningful conclusions. To improve the
relevance, works like [4] introduce lexical level comparison, using string [5] or se-
mantic [6,3,7] similarity metrics. Such propositions rely however on taxonomies
and often only compare class and instance names, and consider them as simple
bags of words.

We propose another solution gathering both approaches, based on the defini-
tion of RDF sentence given in section 2. This choice allows a comparison between
structures that have the same pattern whatever the ontology and whatever its
size through the definition of subjects, predicates and objects for RDF sentences.
Conceptualization is embedded within each sentence and concepts are not lim-
ited to class and instance names. Instead, the whole content of the ontology is
available. Moreover, as explained in the current section, sentences are not limited
to bags of words and their internal semantics is used to measure their similarity.
Rather than relying on a basic string similarity, we use the semantic similarity
defined between two words by [3]. Our choice was based on the performance of
their solution compared with other propositions like [6] and [7]. However, we
slightly extended its functionalities to be able not only to compare nouns, but
also verbs, adjectives and adverbs, which is something commonly ignored by the
state-of-the-art.

Snippet Generation for Semantic Web Search Engines 497

To design our measure, we try to apply some principles proposed by [8]: con-
sider both commonalities and differences between sentences and ensure that the
maximum is reached when they are identical. [5] gave other interesting features.
A measure shall be fast (polynomial), stable, intelligent and discriminating. Sec-
tion 5 shows how much we achieved these goals.

3.1 Similarity between Two Lists of Words

To compare sentences, we first need to be able to compute similarity between
lists of words, considered as bags of words. Lists of words may or may not share
common concepts and can have different length. Our idea, following [8], is to
consider both commonalities and differences.

Let w be a given word and w1, · · · , wn be a series of words belonging to a list
L. We define the semantic similarity between w and L by

sim(w, L) = max {sim(w, wi) for i = 1..n} , (3)

where sim(w, wi) is the result returned by the measure defined by [3].
The word w is related to concepts that may or may not be found in L. By

computing the similarity with any word of L, we will get a high score if the list
contains a concept close to w. If not, the score will be low, even with the max
function. The maximum allows to prove that w and L share commonalities or
differences, without actually considering their respective weight.

To improve the efficiency of the measure, we decided not only to consider
nouns but also verbs, adjectives and adverbs. We used the WordNet taxonomy
to find the noun and the verbal base corresponding to each given adjective,
adverb or conjugated verb. This approach consisting to only compare nouns and
verbal base can be considered as a certain loss of semantic meaning. However, we
consider that it is far better than simply ignore these words and that a significant
part of the meaning is still conveyed by the nouns.

Let L1 and L2 be two lists of words with respective length n1 and n2. Let wij

be the ith element of the list Lj. The semantic similarity between L1 and L2 is
defined by

sim(L1, L2) =
1

n1 + n2

⎛
⎝ n1∑

i=1

sim(wi1, L2) +
n2∑

j=1

sim(wj2, L1)

⎞
⎠ , (4)

where sim is defined by equation 3.
Now, if k pairs of words share the same semantic meaning, they will account

for k times in the overall semantic similarity, which ensures that the weight of
the different concepts is taken into consideration. We can see that if a concept
is only present in one list and not in the other, it will tend to reduce the overall
result. Finally, the average function keeps our measure between 0 and 1. We can
clearly see that if the two lists have nothing in common, their similarity will be
0 and that it will be 1 if and only if they exactly share the same concepts.

498 T. Penin et al.

3.2 RDF Sentence Semantic Similarity

According to section 2, an RDF sentence s can be seen as a virtual triple consti-
tuted of three elements: its subject Subj(s), its predicate Pred(s), and its object
Obj(s). Each of these elements is a list of words. An immediate benefit is that
it is possible to consider RDF sentences for what they really are: sentences that
have a meaning, and that similarly to natural language sentences have a subject
and an object linked by a predicate.

In natural languages however, subject, predicate, and object do not share
the same importance. This seems to offer interesting perspectives if we consider
the opportunity to modify the different coefficients to give to different possible
matches: subject-subject, object-object, predicate-predicate, or subject-object.
Subject-object comparison is important to apprehend chiasms. Consider the
sentences Alice hasMother Anne and Anne hasDaughter Alice. Direct subject-
subject and object-object matches would lead to the conclusion that they are
not semantically close, which is a mistake. Comparing their subjects with their
objects shows that they are in fact very similar.

We define wss, wpp, woo, and wso as being the respective weights attributed
to subject-subject, predicate-predicate, object-object, and subject-object com-
parisons. To ensure that our measure will stay between 0 and 1, we assume
that

wss + wpp + woo = wpp + 2 ∗ wso = 1. (5)

Let s1, s2 ∈ S. Let simss(s1, s2), simpp(s1, s2), simoo(s1, s2), sims1o2(s1, s2),
and sims2o1(s1, s2) be respectively the similarity between Subj(s1) and Subj(s2),
Pred(s1) and Pred(s2), Obj(s1) and Obj(s2), Subj(s1) and Obj(s2), and
Subj(s2) and Obj(s1). Since subjects, objects and predicates are lists of words,
this similarity is computed like explained in section 3.1.

Definition 3. To be able to handle chiasms, we consider that if simss(s1, s2)+
simoo(s1, s2) ≥ sims1o2(s1, s2)+sims2o1(s1, s2), the semantic similarity between
s1 and s2 is defined by

sim(s1, s2) = wss ∗ simss(s1, s2) + wpp ∗ simpp(s1, s2) + woo ∗ simoo(s1, s2).

Otherwise, it is defined by

sim(s1, s2) = wso ∗ (sims1o2(s1, s2) + sims2o1(s1, s2)) + wpp ∗ simpp(s1, s2).

In our system, very common words such as RDF keywords are excluded, since
they can give a high similarity to sentences that significantly differ in their
meaning.

3.3 Topic Similarity

Topics are lists of semantically close RDF sentences. As such, semantic similarity
between two topics is obtained like that between two lists of words:

Snippet Generation for Semantic Web Search Engines 499

Fig. 1. Architecture of our snippet generation system

Definition 4. Let T1 and T2 be two topics. Let L1 and L2 be the lists of their
RDF sentences, with respective length n1 and n2. Let sij be the ith element of
the list Lj. The semantic similarity between T1 and T2 is defined by

sim(T1, T2) =
1

n1 + n2

⎛
⎝ n1∑

i=1

sim(si1, L2) +
n2∑

j=1

sim(sj2, L1)

⎞
⎠

where the similarity between a sentence and a list of sentences is the maximum
similarity between this sentence and all the sentences of the list.

4 Snippet Generation Process

As explained in section 1, our system was designed to give the user ways to
quickly find out whether an ontology suits his needs or not. It required the
determination of the different topics and a ranking of both topics and RDF sen-
tences in a snippet matching user preference. The determination of the different
topics is achieved thanks to a hierarchical clustering algorithm. This choice was
made since no knowledge of the number of topics is required in advance (the
topic threshold is enough) while still being simple to implement. Some perfor-
mance issues (see section 5) were however raised by experimental results, making
it incompatible with the generation of a snippet that should almost instantly dis-
played once the results found by the search engine are known. Operations needed
are more complex than in the case of traditional snippets for text documents [9].

Since most of the work of ontology summarization is unrelated to the query
provided by the user, we increased the response time of our interface by splitting
the process into two steps: one off-line and one online. The parsing of the ontology
file is achieved by the Jena library5.

The figure 1 shows the general organization of our system.

4.1 Off-Line Step

The sentence builder creates RDF sentences from the triples of an ontology. The
topic builder gathers semantically similar sentences, given a threshold θ. Two

5 http://jena.sourceforge.net/

500 T. Penin et al.

sentences or two topics with a similarity higher than θ will be merged into the
same topic.

The sentence graph builder takes then the sentences and build the sentence
graph. The topic graph builder is in charge of building a topic graph using the
sentence graph.

The sentence ranker ranks sentences within each topic, using the in-degree
centrality in the sentence graph as salience criteria. [2] have shown that the in-
degree centrality gave the best ranking results as soon as p ≥ 0.3 in the sentence
graph (see section 2). We take p ≥ 0.7 and apply their algorithm. Even if a
module of our demo system allows the user to change p, this is in practice not
necessary. The topic ranker ranks the topics considering the topic graph and the
in-degree centrality of its nodes.

The formatter takes the RDF sentences and apply natural language processing
techniques in order to make them more easily readable by the final user. The
result is output to the disk for further use. In our demonstration system, pre-
processed snippet are stored under XML format and loaded for the online step
of the snippet generation process.

4.2 Online Step

The snippet bias is applied when the snippet is generated. Sentences matching
the user’s query are selected. It is made sure that they will be visible in the final
snippet, while respecting the user preference. As described in the section 4.4,
several options are available to customize both the length of the snippet as well
as the relevance of its content.

4.3 Natural Language Output

To improve the readability of the snippet, a system inspired from [10] and [11]
was implemented to generate NL sentences. RDF sentences themselves are trans-
formed into triples composed of a subject, a predicate and an object, obtained
by considering all possible path in the sentence and by aggregating successive
predicates.

RDF keywords are replaced by more natural formulations. X subClassOf Y
becomes for instance X is a kind of Y. Sentences matching certain patterns
are also transformed. The patterns are obtained by parsing the sentence using
WordNet.

4.4 Snippets

In section 1, we considered some questions that the snippet shall answer.
For the user to identify the topics, they are clearly separated, their respec-

tive weight is given and their importance is shown by their rank. Within each
topic, sentences are written using NL techniques and ranked according to their
salience. The user has the possibility to choose the maximum number of topics

Snippet Generation for Semantic Web Search Engines 501

Fig. 2. Sample snippet for Travel.rdf for the query travel

and sentences per topic to display. Different degrees of summarization can then
be proposed. Finally, only query-related topics and sentences can be displayed
or a rule can be applied, ensuring that the most salient topics and sentences will
always be shown as soon as at least half of them are related to the query.

Figure 2 shows an example of snippet.

4.5 Test Interface

A demonstration system was implemented6 as a Java web application. It sim-
ulates a search engine result page for predefined queries, allows the upload of
an ontology, the personalization of all the parameters of the process to get a
query-biased snippet and provides a test component for our semantic similarity
measure.

5 Evaluation

To assess the quality of the system, we successively investigated the performance
of our similarity measure, the quality of the snippets and to what extend the
solution was promising from a user point of view.

The tests were carried out through our demonstration interface (see section
4.5) on our local gigabyte network. The server was a 2.4 GHz personal computer,
with 1 GB memory, running Microsoft Windows XP.

Our test panel was composed of nine members from our laboratory. They have
a certain familiarity with ontologies without being experts, and as such were
more interested in technical details than the end-users targeted by our solution.
This choice was made because the technical capacities required by the tests did
not match those of casual end-users. Since our system is not yet integrated into
a functional semantic search engine, we could not really test according to the
use case as defined in section 1. As a result, the bias was not considered as too
important.

6 http://snippet.apexlab.org. Tested with Firefox.

502 T. Penin et al.

5.1 Semantic Similarity Measure

This evaluation aimed both at assessing that our measure can match the appre-
ciation of our test panel and at finding the right parameters to do so.

We selected six ontologies , as shown by table 1. To get close to the diversity
of the real Semantic Web, they were chosen to exhibit different characteristics:

– Topic number. Since the overall semantic of the ontology is not considered
to express the similarity between sentences, this aimed at investigating the
stability of the measure and its coherence with the user opinion for different
levels of homogeneity. We considered ontologies with more than 30 topics as
having a high number of topics.

– Vocabulary complexity. It ranges from commonly used words to highly spe-
cific terms. This was thought to make sure that our measure stay coherent
when considering sentences containing numerous unknown words. We con-
sidered vocabulary to be complex when more than 10% of the words were
unknown.

– The internal structure of the ontology. While some contain complex relations
between classes and entities, some offer a catalog-like organization (qualified
here as simple). Ontologies from DBpedia for instance contain RDF sentences
that often have very similar objects (category name). This should not harm
the capacity of the measure to mimic human judgment.

Table 1. Composition and characteristics of the test set

Ontology Topic Number Vocabulary Structure
AKTiveSAOntology.owl High Complex Complex
animalsA.owl Low Simple Complex
cv.rdfs Low Simple Simple
History of China Low Complex Simple
terrorism.owl High Complex Complex
Travel-OilEdExportRDFS.rdfs High Simple Simple

For each ontology, testers were asked to estimate the similarity between pairs
of randomly-extracted sentences. They had the choice between “nothing in com-
mon”, “somewhat related”, “rather similar” and “very close”. Simultaneously,
the system computed the similarity for different parameter configurations �1, �2,
�3 and �4, defined with wss, wpp, woo and wso values respectively equals to 0.7,
0.1, 0.2 and 0.45 (strong subject, weak predicate), 0.3, 0.4, 0.3 and 0.3 (strong
predicate), 0.45, 0.1, 0.45 and 0.45 (weak predicate) and 0.6, 0.2, 0.2 and 0.4
(strong subject).

Figure 3 (a) describes the opinion of the user and the system judgment for
the different configurations. All results between 0.0 and 0.25 were considered as
having “nothing in common”, between 0.25 and 0.5 as being “somewhat related”,
between 0.5 and 0.75 as being “rather similar” and between 0.75 and 1.0 as being
“very close”.

Snippet Generation for Semantic Web Search Engines 503

0

100

200

300

400

500

User #1 #2 #3 #4

Nothing in
common

Somewhat
related

Rather similar

Very close
0

100

200

300

400

500

600

User #1 #2 #3 #4

Nothing in
common

Somewhat
related

Rather similar

Very close

(a) (b)

Fig. 3. Results (a) before and (b) after interval adjustment

The system appears more optimistic than users. This is apparently due to the
max functions in our measure and to the fact that it does not know the context
and may consider some words as semantically close even if the user disagrees.
If we except the sentences having “nothing in common”, we can notice that
configurations �1 and �4 have a behavior somewhat similar to that of the user.

We focused on these two candidates. To assess their quality, we refined our
results – without changing user judgment – by redefining the intervals repre-
senting the similarity appreciation. Figure 3 (b) shows the results obtained for
[0.0, 0.39],]0.39, 0.58],]0.58, 0.72] and]0.72, 1.0]. �1 and �4 did then match the
appreciation of the users rather well. To check that they really were good pa-
rameters, we separately considered the results for the different ontologies. These
are shown by figure 4.

0

50

100

150

User #1 #2 #3 #4

Nothing in
common

Somewhat
related

Rather similar

Very close
0

20

40

60

80

100

User #1 #2 #3 #4

Nothing in
common

Somewhat
related

Rather similar

Very close
0

20

40

60

80

100

120

User #1 #2 #3 #4

Nothing in
common

Somewhat
related

Rather similar

Very close

(a) AKTiveSAOntology.owl (b) animalsA.owl (c) Travel-OilEdExportRDFS.rdfs

0

50

100

150

User #1 #2 #3 #4

Nothing in
common

Somewhat
related

Rather similar

Very close
0

50

100

150

User #1 #2 #3 #4

Nothing in
common

Somewhat
related

Rather similar

Very close
0

50

100

150

User #1 #2 #3 #4

Nothing in
common

Somewhat
related

Rather similar

Very close

(d) History of China (e) terrorism.owl (f) cv.rdfs

Fig. 4. Results after interval adjustment for each test ontology

Figure 4 (a) and (b) show that both configuration �1 and �4 behave well with
different numbers of topics. The fact to not consider the overall semantics does
not seem to play a too important role.

Results presented by (c) and (d) are more interesting, since they show a strong
difference mainly due to vocabulary complexity. While �1 and �4 behave rather
well with low term complexity, �1 appears to be more unstable than �4 when the
system is confronted to unknown words. This indicates the good potential of �4.

504 T. Penin et al.

Finally, (e) and (f) show that our measure is generally not affected by the
internal complexity of the ontologies, and comfort the choice of �4, which mimics
rather well human judgment. This comfort also our idea to consider all aspects
of the triples and not only subjects, since �1 has more weight on subject-subject
match than �4.

5.2 Snippet Quality

Using configuration �4, we considered three test activities. Users had to first find
the best threshold for the topics. They were then asked to evaluate the quality
of the clustering. Finally, we asked them to rank topics and sentences related to
a query and compared their result with that of the system.

To find the best threshold, we choose three small ontologies and divided our
users into groups of three. Each group was given an ontology. Each person worked
alone and was provided a screen capture of the RDF graph obtained with a
visualization plugin of Protégé7. After studying the ontology, they were asked
to use the upload interface of our demo system repeatedly and to look for the
threshold providing the best clustering. Their answers varied between 0.65 and
0.75, with an average of 0.71.

The quality of the clustering itself was assessed by a questionnaire. Testers
should indicate on a four-level scale if the topics were conformed to the choice
they would have made, if they estimated the topics to be coherent and what
they thought about the overall quality of the clustering. A majority of users
(5 out of 9) considered the result as conform to what they would have done.
Others considered that they would probably have made some adjustments. The
coherence of the topics gave approximately the same result, while everybody
agreed on a good quality of the clustering, two users even considering it as very
good.

It appeared that even with some slight clustering differences, the result of the
biased snippets matched rather well the selection made by the users.

5.3 Performance

Performance for different ontologies is given by figure 5. We can notice the im-
portant time needed by the clustering phase w.r.t. the size. This justifies the
off-line step but will also encourage further optimizations. The comparison be-
tween cv.rdfs and History of China points out the role of the vocabulary
complexity. The more distinct words an ontology contains, the more access to
the WordNet database are needed, which slows down both online and off-line
steps. It appeared during our experiments that the time of the online module
mostly depends on disk and network access speed. The fact to save the pre-
processed snippet and to load it again represents up to a few seconds.

5.4 User Feedback

Our testers were asked some questions and were free to leave comments. While
they all agreed on the readability and accuracy of the snippets, two users were
7 http://protege.stanford.edu/

Snippet Generation for Semantic Web Search Engines 505

Ontology Size Triples Sentences Clustering Total Snippet
Cat health.rdf 5 KB 25 22 3.484 s 4.171 s 0.141 s
animalsA.owl 8 KB 129 89 7.156 s 7.547 s 0.515 s

cv.rdfs 23 KB 419 248 17.03 s 18.343 s 1.110 s
History of China 52 KB 275 272 74.433 s 75.293 s 2.531 s

terrorism.owl 188 KB 2382 1438 737.472 s 754.156 s 0.187 s

Fig. 5. Clustering time, total pre-processing time and snippet generation time

not fully convinced, even if they did not deny the advantages brought by the
system. One of them proposed to further investigate with a larger set of users
and documents, which is in our opinion an interesting further step for our work
along with its integration into a real search engine. Others were rather pleased
with the potential of the proposed solution.

6 Related Work

To the best of our knowledge, query-biased snippet generation from ontologies
is still a largely unexplored field. [12] recently proposed a solution to generate
snippets based on term occurrence. Contrary to our approach, topic identification
or similarity measure were not considered. Without precisely considering the case
of snippets, [13] and [14] investigated ontology evaluation and selection, and
illustrated the importance and the openness of this issue. Snippet generation is
also not limited to ontologies and is still actively discussed. [9] proposed strategies
to increase performance of snippet generation through document caching, which
are interesting for further optimize our system, since disk storage and access
have shown to cost up to a few seconds per snippet.

Document summarization and clustering are two fields closely related. Work
on multiple text documents summarization, like [15] that use a centroid-based
approach for topic determination, comes now along with ontology summarization
like [2]. Our extension of the later with the addition of topics and topic graphs is
inspired by techniques used in text summarization. Ranking ontological structure
is also required to generate snippets of different length that still contain the
essence of the ontology, as discussed by [2]. While we reuse their results, we
also include the possibility to bias the ranking results according to the query
provided by the user.

Similarity between concepts plays an important role in domains such as Infor-
mation Retrieval, Natural Language Processing or even Genetics [16], and has
been studied a lot in the literature. It also aims at facilitating ontology merg-
ing and aligning. [4] proposes an approach to compare ontology structures both
from the conceptual and the lexical point of view. Even if we shared this idea,
we did not separate both aspects like they did, since we considered structure and
meaning to be closely related within the particular structure of RDF sentences.
[8] has considered the similarity from a theoretical point of view and was an
interesting methological help in the design process of our measure.

506 T. Penin et al.

Different methods to measure semantic similarity between words are investi-
gated by [7]. To outperform the traditional edge counting approach, [6] proposed
a semantic similarity measure between terms using WordNet. Inspired by this
work, [3] describes a new measure, used by our system8. However, its limita-
tion to nouns and verbal bases brought us to add the possibility to consider
adjectives, adverbs and conjugation as well. [17] designed a measure to compare
different ontological structures, which differs from our approach since we do not
only consider class names.

Finally, our system includes some characteristics of NL paraphrasing of on-
tologies, as investigated in [10] and proposed by [11]. The ideas described by this
related work on NL go far beyond what we decided to implement but show what
can be achieved in a near future.

7 Conclusion and Future Work

In this paper, we proposed a solution to the problem of ontology selection for non-
specialists. Our system relies on a new semantic similarity measure, that exploits
the semantics of structures called RDF sentences, does not limit its scope to class
or entity names, and considers all words in the ontology resources without being
limited to nouns and verbs. It also extends and gives an application to works like
[2] and [3], and introduces a new and friendly way to consider results returned
by semantic web search engines. A user evaluation assessed its potential and
highlighted a few tracks for further development.

The next steps involve improvements in the clustering process, since our test
data shows that it takes most of the running time. It is also planned to improve
the natural language results, to be closer to the ideas expressed in [11]. The
main future achievement will be the inclusion of the system into a real search
engine, to further improve user support and to benefit from information such as
relevance score computed by the engine.

References

1. Battle, L.: Preliminary inventory of users and tasks for the semantic web. In: 3rd
Intl. Semantic Web User Interaction Workshop (2006)

2. Zhang, X., Cheng, G., Qu, Y.: Ontology summarization based on RDF sentence
graph. In: Proceedings of the 16th international conference on World Wide Web
(2007)

3. Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for semantic
similarity in wordnet. In: Proceedings of 15th ECAI (2004)

4. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Proceedings of
the European Conference on Knowledge Engineering and Knowledge Management
(2002)

5. Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In:
International Semantic Web Conference (2005)

8 http://eden.dei.uc.pt/~nseco/javasimlib.tar.gz

Snippet Generation for Semantic Web Search Engines 507

6. Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and
its application to problems of ambiguity in natural language. Journal of Artificial
Intelligence Research 11 (1999)

7. Petrakis, E.G.M., Varelas, G., Hliaoutakis, A., Raftopoulou, P.: X-similarity: Com-
puting semantic similarity between concepts from different ontologies. Journal of
Digital Information Management (JDIM) (2006)

8. Lin, D.: An information-theoretic definition of similarity. In: Proc. 15th Interna-
tional Conf. on Machine Learning (1998)

9. Turpin, A., Tsegay, Y., Hawking, D., Williams, H.E.: Fast generation of result
snippets in web search. In: Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in information retrieval (2007)

10. Hewlett, D., Kalyanpur, A., Kolovski, V., Halaschek-Wiener, C.: Effective nl para-
phrasing of ontologies on the semantic web. In: Workshop on End-User Semantic
Web Interaction, 4th Int. Semantic Web conference, Galway, Ireland (2005)

11. Wilcock, G.: Talking owls: Towards an ontology verbalizer. In: Proceedings of the
ISWC Workshop on Human Language Technology for the Semantic Web and Web
Services (2003)

12. Huang, Y., Liu, Z., Chen, Y.: Query biased snippet generation in XML search. In:
Proceedings of the ACM SIGMOD International Conference (2008)

13. Sabou, M., Lopez, V., Motta, E., Uren, V.: Ontology selection: Ontology evaluation
on the real semantic web. In: Proceedings of WWW (2006)

14. Alani, H., Brewster, C.: Ontology ranking based on the analysis of concept struc-
tures. In: Proceedings of the 3rd international conference on Knowledge capture
(2005)

15. Radev, D.R., Jing, H., Styś, M., Tam, D.: Centroid-based summarization of mul-
tiple documents. In: Information Processing and Management, vol. 40 (2004)

16. Couto, F.M., Silva, M.J., Coutinho, P.M.: Semantic similarity over the gene ontol-
ogy: Family correlation and selecting disjunctive ancestors. In: Proceedings of the
CIKM Conference (2005)

17. Rodriguez, M.A., Egenhofer, M.J.: Determining semantic similarities among en-
tity classes from different ontologies. IEEE Transactions on Knowledge and Data
Engineering (2003)

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 508–523, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Semantic Telecommunications Network Capability
Services

Xiuquan Qiao, Xiaofeng Li, Tian You, and Lihao Sun

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, 100876, China

{qiaoxq,xfli}@bupt.edu.cn, {youtian1985,leehow.sun}@gmail.com

Abstract. The providing of user-centric services in the B3G/4G network pre-
sents a great challenge in the service architecture. To narrow the semantic gap
of Telecommunications Network and Internet in the service layer, we introduce
the vision of User Centric Intelligent Service Environment (UCISE). The ubiq-
uitous service ecosystem and the semantic service integration architecture of
telecommunications network and Internet are proposed. To provide the seman-
tic Telecommunications Network Capability Services (TNCS), we present a
semantic description approach for TNCS by using the profile hierarchy of
OWL-S. Then based on this approach, we demonstrate the cheapest click-to-
call application case. In this way, the ontology-based accurate discovery,
matching for telecommunication network capability services can be supported.
This will facilitate the semantic convergence of telecommunications network
and Internet in the service layer.

Keywords: User Centric Service, Semantic Parlay X, Semantic Parlay, Seman-
tic Telecommunication Network Capability Service, Telecommunication Ser-
vice Domain Ontology, Service-Oriented Architecture, Ontology, Semantic
Web Service, OWL-S.

1 Introduction

The future ubiquitous convergent network is one user-centric harmony communica-
tion network. It will integrate various heterogeneous networks [1], [2]. The aim of
ubiquitous convergent network is to provide user-centric pervasive service. As the
goal of user-centric service is to facilitate the work and daily life of human, it will
involve with various domain services, such as telecom domain services, financial
services, and transport services. Service will become more intelligent. This requires
that the intelligent service agent could accurately discover, automatically compose
and invoke the services provided by telecommunication network or Internet based on
the service context in the service-oriented architecture [3].

Therefore, the Telecommunications Network Capability Services (TNCS) like call
control and message sending/receiving must be described in the semantic level to
support the accurate service discovery. However, the open interface specifications
(such as Parlay/OSA [4], Parlay X [5]) of telecommunication network are still in the
syntactic description level. The WSDL-based open interface specifications lack a

 Semantic Telecommunications Network Capability Services 509

semantic description for TNCS and contain no information about the capabilities
about the described services. Therefore, the service matchmaking can only be done by
string matching on the defined attributes such as name or address of service provider.
It is very difficult for service agent to achieve the accurate discovery and automatic
invocation of TNCS. So the current TNCS interface specifications based on WSDL
are unable to support the provision of advanced intelligent service.

Today, semantic web service, as a new research paradigm, is generally defined as
the augmentation of web service description through semantic annotation, to facilitate
the higher automation of service discovery, composition, invocation and monitoring
in an open environment. As a submitted draft to W3C, OWL-S [6] is OWL [7] -based
ontology description framework for web service. The integration of Semantic Web
Service (SWS) technology and telecommunications systems is currently the subject of
intensive research. So far, a lot of research activities have been done in applying on-
tology and semantic web service technologies to mobile service domain. To solve the
lack of QoS/QoE considerations of the existing Parlay X web service, Sungjune Hong
[8], [9] presented the extended Parlay X with QoS/QoE for 4G network. In fact, the
authors imported the context-awareness technology into the Parlay X gateway. Song-
tao Lin [10] proposed to provide VHE service by the Intelligent Mobile Service Plat-
form based on semantic web technologies. Tomas Vitvar [11] discussed how semantic
web services technology can facilitate dynamic and optimal integration of voice and
data services with specific characteristics conforming users needs and preferences.
Villalonga, C. [12] provided an overview of the Mobile Ontology based on the need
for a standardized ontology that describes semantic models of the domains relevant
for scalable NGN service delivery platforms. This work, as a part of IST SPICE pro-
ject [13], is a meaningful attempt to establish a standardized ontology for mobile
service delivery in NGN. However, this mobile ontology is used to address the se-
mantic sharing among the distributed components of SPICE service platform. So the
mobile ontology has its limitation. Additionally, Alistair Duke [14] explored the use
of semantic web service within the Operational Support System (OSS). However, this
approach only focuses on the telecommunications management.

From the above analysis, we can see that the existing work has not explored the
semantic description problem of TNCS with the semantic web services and ontology
technology. In addition, the semantic service integration architecture of telecommuni-
cations network and Internet in the service layer has not been discussed so far. In this
article, we introduce the vision of User Centric Intelligent Service Environment
(UCISE). To provide the semantic TNCS in UCISE, we present TelecomOWL-S for
the semantic description of TNCS by using profile hierarchy technology of OWL-S.
Moreover, telecommunication service domain ontology (TSDO) is proposed to sup-
port the nonfunctional properties description for TNCS. TSDO establishes the founda-
tion of ontology-based reasoning and domain knowledge sharing. The proposed
approach enhances the accuracy of telecommunications network capability service
description and matching, and narrows the semantic gap between telecommunications
network and Internet in the service layer.

510 X. Qiao et al.

The rest of this paper is structured as follows. In section 2 we introduce the vision
of UCISE. Section 3 we present the complete semantic description approach for tele-
communications network capability services. In section 4, we introduce the experi-
mental environment and the demo service. Section 5 discusses the relations of the
semantic Parlay X web service and the general Parlay X web service. Finally, conclu-
sions are then drawn.

2 The Vision of User Centric Intelligent Service Environment
(UCISE)

2.1 The Blueprint of UCISE

The goal of UCISE is to provide the user-centric personalized services in the ubiqui-
tous convergent network environment. UCISE will provide a comfortable working
and living space for users, and liberate human from trivial things to pursue more
advanced activities. The loosely-coupled service resources and dynamic binding,
seamless interoperability, and end-to-end network reconfiguration are the main char-
acteristics of UCISE. The application layer can dynamically select the suitable ser-
vices to compose based on the personalized user requirements and current context
environment. According to the service functional and nonfunctional requirements, the
lower network can dynamically perform the resource allocation and scheduling to
complete the end-to-end network reconfiguration. The terminals can freely switch
among the different access networks and achieve the seamless mobility. The intelli-
gent terminals can also be real-time reconfiguration, as well as aggregation with the
ambient devices.

2.2 Ubiquitous Convergent Service Ecosystem

To achieve the aim of UCISE, a ubiquitous convergent service ecosystem is pre-
sented. Service ecosystem (see Fig 1) is one harmony service providing and consum-
ing mechanism, like as the natural food chain. Service providers publish their service
in standard format, and service consumers can easily utilize these published service
information to dynamically select and bind to the concrete service provider. In this
way, the coarse granularity service assembly era comes into being.

As the goal of UCISE is to facilitate the work and daily life of human, it will
involve with various domain services, such as telecom domain service, financial ser-
vice, transportation service. But the heterogeneity is the main feature of various do-
main systems, service network middleware platform technology need to be used to
screen the heterogeneity problem. Service network middleware platform is a kind of
software that lies between domain system software and value-added application soft-
ware. Unified domain services provided by service network middleware platform can
be used to develop various domain-related or cross-domain value-added applications.
For example, telecom service network middleware platform, like Parlay Gateway, can
cover diversified foundation networks (such as, fixed telephone network, mobile
telephone network, as well as various emerging networks, i.e. sensor network etc.) to
provide cross-carriers, cross-networks, seamless-mobility telecom domain service.

 Semantic Telecommunications Network Capability Services 511

Service
Registry/Matching

Center

GSM GPRS 3G WLAN

Domain
Service

Publication

Domain Service Provider
Service

Discovery

Service
Binding

Value-added
Service Provider

Customization

Value-added
Service

Publication Service
Binding

S
e
r
v
i
c
e

E
c
o
s
y
s
t
e
m

Personalized Service Portal based on Terminal or Server Platform

Customization

Personal
Application

Entertainment

Health
Caring

Education

Tour
Scheduling

Work

...

Fig. 1. Ubiquitous Convergent Service Ecosystem

After service providers have developed services, how can service consumers se-
lect and invoke these services according to their requirements? In order to bridge the
gap between service providers and service consumers, one new service trading
mechanism is needed. It’s service-oriented computing architecture. Service providers
(domain service providers and value-added service providers) publish their services to
Service Registry, and Service Requestors find the needed services in Service Registry
according to their requirements, and then bind to Service Provider according to the
service descriptions information. In this way, value-added service providers can use
all kinds of domain services or value-added services provided by other value-added
service providers to compose user-oriented services, and then may publish them
again. Thus, a virtual computing environment that supports dynamic resource alloca-
tion and heterogeneous network collaboration is formed. Nowadays, there are two
problems needed to be resolved. Firstly, a trusty, controllable service management
mechanism is absent; secondly, there is a great semantic gap in the description and
management of service resource as well as service matching. This semantic gap has
result in the inconsistent representations of service that lead to different understand-
ings in both service provider and requestor sides. The absence of semantic info also
causes the interoperation problem among different systems. Now, by combining the
technologies of ontology and web service, semantic web services enable the software
agents to discover, invoke, compose and monitor services automatically. This is one
promising technology approach to address this problem, but it needs related domain
ontology and common ontology to support.

Based on the above semantic service-oriented computing environment, a user-
centric, personalization, intelligent service environment can be created. User can
customize various services by the service portal to satisfy own personalization re-
quirements, such as, education, work, entertainment, daily life. This smart service

512 X. Qiao et al.

environment is characterized by ambience-awareness, personalization, intelligent,
adaptive, consistency.

2.3 The Semantic Service Integration Architecture of Telecommunications
Network and Internet

To complete the aim of UCISE, the intelligent agents need to accurately discover,
automatically compose and invoke the services provided by telecommunications net-
work and Internet based on the current service context. In this article, we import the
semantic web service and ontology technologies into the telecommunications service
domain. A semantic service integration architecture of telecommunications network
and Internet is presented (see Fig 2). This architecture integrates the communication
capabilities of telecom network with the rich information/content of Internet so as to
provide the needed information to users in a suitable way. This will facilitate the se-
mantic integration of telecommunications network and Internet in the service layer.

Computer

Mobile
Phone

TV PDA

Fax

Sensor ...

GSM

GPRS/E
DG

UMTS
UMTS+

DVB-
T/H

Cellular Network

DABBroadcast
Network

Satellite

WLAN
Bluetooth

WiMAX Personal Area
Network

Body Network

Sensor Network

Home Network

Car-beared
Network

LAN

WAN

Internet

Fixed
NeworkPSTNSoftwtich

MAN

Other Domain Services Semantic Telecommunication Network
Capability Services

Session Call Message Location

Presence Charging Account
Terminal

Capapbiltiy

Travel GIS Finance

IPV6/IPV4+MPLS/GMPLS

Ticket

Service
Discovery

Service
Publication

Service
Binding

Service
Monitoring

Service
Deployment

Service
Testing

Serach Weather

User Centric Intelligent Application

Common
Service

Facilities and
Value-added
service Layer

Semantic
web service-

based
Unified
Service

Architecture

Intelligent
Terminal

Collaboration
Environment
and Access
Networks

Transport
Nework

Network Control & Service Enabler Layer

Intelligent Service /Content Delivery PlatformCommon Service Facilities

Authentication User Data E-Business Information Telecom Value-
added Service

Personalized
Application

Network Control
and Service

Enabler Layer

Ontology
Knowledge

Base

Fig. 2. The Semantic Service Integration Architecture of Telecommunication Network and
Internet

The establishment of semantic service integration architecture will involved with
the following aspects:

(1) The provision of semantic telecommunications network capability services:
At present, semantic web has become the development trend of Internet, and se-
mantic web service technology is applied to a variety of industry areas, such as
travel services, search services, geographic information services, financial services,

 Semantic Telecommunications Network Capability Services 513

meteorological services. Consequently, the telecommunication network capability
services, such as call services, message services, positioning services, also need to
evolve from WSDL-based specifications to semantic web service-based specifica-
tions. This will facilitate the semantic convergence of telecom network and Internet
in the service layer.

(2) The provision of value-added services/content: Using the fundamental network
services, the service platform can provide the user-oriented value-added services.
The service platform needs to support the service development, deployment,
management in the semantic web service environment.

(3) The provision of service trading infrastructure: In order to support this open,
loosely coupled service computing environment, a public service trade mecha-
nism is needed, which supports the service publication, discovery and invocation.
In addition, some public service facilities are also indispensable, such as security
authentication mechanism to ensure the security and the reliable service transac-
tions, unified user data management mechanism to support the sharing of user
data in heterogeneous domains.

(4) The construction of ontology facilities: To support the semantic interoperability
in the service layer, a convergent service network related ontology knowledge base
is needed. By defining the unified concepts and knowledge in the formal way, the
heterogeneous systems can achieve the sharing of knowledge. This sharing ontol-
ogy mainly consists of device ontology (such as the various terminals, telecommu-
nications network equipment), network ontology (such as core network ontology,
the access network ontology, service network ontology), service ontology (such as
OWL-S, WSMO), network capacity service application ontology, as well as some
application layer ontologies (such as the user profile, context ontology).

This innovative service integration architecture provides the new supporting envi-
ronment and executing mechanism. And it laid the foundation for dynamic service
adaption. Some old obstacles can be addressed, for example:

(1) The loosely coupled problem of service logic and service resource: In the
traditional telecommunications networks, the service logic and its involved re-
sources are tightly coupled. In this way, when users move to a new network do-
main, the service logic still need to use the specified resources in the procedure of
the home network and can not use the resources which provide the same func-
tionality of ambient network. This problem wastes the valuable network re-
sources (such as network bandwidth) and increases the control complexity. In
UCISE, the application logic can dynamically discover the satisfied service and
invoke it. This architecture can satisfy the requirements of the context-awareness
personalized service.

(2) The sharing and unification of user data: In the traditional telecommunications
networks, user data and service specific data are the proprietary data of the con-
crete carrier. It brings the difficulty of application migration among different op-
erators, and constraints the sharing of user data among different domain (such as
telecom network, enterprise network). This service integration architecture com-
pletes the unification of user data and service personalized data. The user data is
independent of the concrete domain and operators. For example, each user of
UCISE will have a unique semantic identifier. When you call a friend with this

514 X. Qiao et al.

identifier, if he is in outdoors, the mobile phone number of this identifier will be
used; if he is at home, the fixed phone number of this identifier will be used. In
this way, the application system will have no need to concern the change of user
data (such as the change of phone number or email address). This laid the founda-
tion for the service mobility and the information consistency.

3 Semantic Description Approach for Telecommunications
Network Capability Services (TNCS)

3.1 The Differences between TNCS and the Plain Web Services

Compared with the plain web services, the TNCS, especially that provided by mobile
network, have some distinct domain-related characteristics.

From the terminals aspect, the TNCS provided by different networks maybe have
different terminal requirements. The provision of telecommunication service is greatly
dependent on the capabilities of terminals. As communication network technologies are
evolving constantly, there are great capability differences among the different terminals,
such as terminal browser, communication protocol. For example, the location service
provided by CDMA network requires that the terminals support the GPSOne position-
ing technology. However, the location service provided by GSM network based on
Cell-ID positioning technology almost has no special requirements for terminals. In
order to deliver the seamless service on the user’s different terminals, the service deliv-
ery platform must discover the appropriate TNCS based on the service context. So the
semantic description of TNCS should consider the requirements on terminals.

From the network aspect, currently, there are a variety of communication net-
works, such as GSM, CDMA, fixed network, WLAN. The different networks have
the different service quality. For example, the wireless networks are less reliable than
line-based networks. To meet the different user’s needs, service delivery platform
should select the appropriate TNCS based on the Service Level Agreement (SLA). So
the non-functional features like network type, service bandwidth, and communication
mode are important for the semantic description of TNCS.

In addition, a significant difference between telecom service and Internet service is
the charging pattern. Internet services are often free, however telecom services have
various charging model, such as event-based, session-based, time, volume. In order to
satisfy the different consuming levels of users, the intelligent agent or service delivery
platform should query the suitable TNCS based on the user’s cost preference. So, the
charging model should be the important part of the semantic description of TNCS.

From the above analysis, we can see that the provision of TNCS is greatly con-
strained by the network condition, terminal capability and other non-functional features.
The TNCS provided by a concrete network has its own using scope and conditions.
Therefore, in order to provide the personalized services, the intelligent service platform
should dynamically select the appropriate TNCS or other value-added services based on
the service context info. To achieve this goal, the TNCS need to be accurately described
in the semantic level so that the annotated semantic information can fully reflect its
characteristics.

 Semantic Telecommunications Network Capability Services 515

3.2 The Problem Statement of the Semantic Description of TNCS

In order to enable the service agent to accurately discover and automatically invoke
the TNCS based on the service context, TNCS should be described in the semantic
level, not the syntactic level. This work needs to solve two issues:

(1) A Tailored Semantic Description Ontology for TNCS: TNCS, especially that
provided by mobile network, has some special non-functional features, such as net-
work characteristics, billing policy, terminal capability requirements, and quality of
service. These non-functional features are very important for context awareness mo-
bile service. Currently, OWL-S provides a high-level ontology description framework
for the general semantic web service. However, OWL-S is unable to fully support the
important characteristics description of TNCS. In order to fully reflect the important
features of TNCS, a tailored semantic description ontology for TNCS is needed. In
this paper, we present TelecomOWL-S, which is a domain application of OWL-S, to
solve this issue, see section 3.3.

(2) The Ontology-based Formal Description of TNCS-Related Domain Concepts
and Knowledge: When semantically describing TNCS, its input/output parameters
and some important service features like network type and terminal requirements
involve with a lot of domain concepts and knowledge. In order to support the ontol-
ogy-based reasoning and knowledge sharing, these concepts must be modeled in the
formal way. However, telecommunications service domain includes a large number of
concepts and terminology. How to organize these concepts and finally form a knowl-
edge system is a great challenge. In this paper, we present Telecommunication Ser-
vice Domain Ontology (TSDO) and TNCS-related Application Ontology to solve this
issue, see section 3.4 and section 3.5.

3.3 Prescribing OWL-S for the TNCS Description

The semantic description of TNCS is the formal specification of the open interfaces
provided by the telecommunications network. The concrete logic implementation of
TNCS is not involved. So the ServiceModel and ServiceGrounding of OWL-S are
sufficient for the semantic description of TNCS. Specifically, the atomic process
ontology of ServiceModel can be directly used to model the network operations such
as MakeACall, CancelCall. The ServiceGrounding ontology can be used to mapping
the atomic process of ServiceModel to the operation of WSDL-based open interface
specification like Parlay X. Therefore, the ServiceProfile of OWL-S needs to be ex-
tended to describe the related important features of TNCS.

In fact, the service profile is used to characterize a service for purposes such as ad-
vertisement, discovery, and selection. Service profiles may be published in various
kinds of registries, discovered using various tools, and selected using various kinds of
matchmaking techniques. OWL-S does not prescribe or limit the ways in which profiles
may be used, but rather, seeks to provide a basis for their construction that is flexible
enough to accommodate many different contexts and methods of use. In order to accu-
rately describe the important features of TNCS, we present a tailored service ontology--
TelecomOWL-S, which mainly extends the ServiceProfile ontology of OWL-S.

Similar to OWL-S, TelecomOWL-S also has three parts: TelecomServiceProfile,
ServiceModel, and ServiceGrounding. As the semantic description of TNCS does not

516 X. Qiao et al.

involve the complex service logic control, TelecomOWL-S adopts the same Ser-
viceModel and ServiceGrounding ontology as those of OWL-S. The difference is that
TelecomOWL-S redefines a new TelecomServiceProfile by extending ServiceProfile
of OWL-S based on the characteristics of TNCS. Fig.3. depicts the high-level ontol-
ogy overview of TelecomOWL-S.

Fig. 3. The High-level Ontology of TelecomOWL-S

The TelecomServiceProfile is directly derived from the ServiceProfile of OWL-S.
The extension ways mainly include two kinds, one is to limit the range of the existing
property, and the other is to define the new special properties. Specifically, the classes
and properties of TelecomServiceProfile ontology are shown in Fig.4.

Fig. 4. TelecomServiceProfile Ontology

The TelecomServiceProfile mainly consists of 4 parts: Service Functional Descrip-
tion, Service Provider Information, Service Feature Description and Telecom Service-
related Non-functional Feature. The former three parts mainly inherits from OWL-S.
Only the value ranges of some properties like serviceClassification, contactInforma-
tion are constrained by the specific domain concepts defined in the TSDO. The last
part is mainly used to describe some peculiar features of TNCS. Currently, four new
object properties are defined.

 Semantic Telecommunications Network Capability Services 517

(1) needForTerminal: This property can be used to depict the service requirements
for user’s terminal capabilities, such as terminal browser, terminal hardware, terminal
software and WAP. The concepts and terminology about terminal capability are from
the Terminal Capability Ontology of TSDO.

(2) useChargingWay: This property is defined to describe the service-related various
billing policies and corresponding tariffs, such as time-based, volume-based, event-
based, and flat fee. The concepts and terminology about charging are from the Charg-
ing Ontology of TSDO.

(3) needForNetwork: The characteristics of network providing service can be de-
scribed by this property, such as the network type, network bandwidth. The concepts
and terminology about charging are from the Network Ontology of TSDO.

(4) hasQuality: This property can describe the service quality, such as response time,
connectivity, delay. The relevant concepts and terminology are from the Service
Quality Ontology of TSDO.

3.4 Telecommunication Service Domain Ontology (TSDO)

The semantic descriptions of TNCS need the support of telecommunications service
domain concepts and knowledge. Telecommunication Service Domain Ontology
(TSDO) provides some shared domain concepts and knowledge about telecom ser-
vice. This will facilitate the semantic sharing and interoperability of heterogeneous
communication entities.

Considering the scalability and flexibility of TSDO, we construct the domain on-
tology in a hierarchical structure. TSDO only provides some core domain concepts.
Based on these core domain ontologies, we can construct various concrete applica-
tion-related ontologies, such as TNCS-related application ontology or service context
ontology. Based on a modular design principle, it mainly comprises six sub-
ontologies. Fig.5. shows the overview of TSDO. In addition, the construction of
TSDO needs the support of some Common Ontology and other domain ontology,
such as time ontology, location ontology.

Fig. 5. Telecommunication Service Domain Ontology

(1)Terminal Capability Ontology: defines some main concepts about terminal soft-
ware, terminal hardware, terminal browser and network characteristics supported by
terminal. Currently, the UAProf [15] based on the W3C Composite Capabili-
ties/Preferences Profile (CC/PP), which are defined by RDF (Resource Description
Framework) language, are used to describe the mobile terminal capability. They cannot

518 X. Qiao et al.

be directly used to describe the semantic TNCS. So we create the Terminal Capability
Ontology by OWL language based on CC/PP and UAProf specifications.

(2)Network Ontology: mainly specifies the network concepts, network category,
network features, as well as the relationships of various networks, such as mobile
network, internet, and fixed network, GSM, CDMA, UMTS, WCDMA, WLAN.

(3) Service Role Ontology: describes the stakeholders’ concepts of the service supply
chain, for example, service provider, content provider, network operator, service user.

(4)Service Category Ontology: descriptions of telecommunication service classifica-
tion. As a proposed service category standard by OWL-S, the UNSPSC (United Na-
tions Standard Products and Services Code) [16] provides an open, global multi-
sector standard for efficient, accurate classification of products and services. It often
used in the E-commerce field. However, on the one hand, UNSPSC is not based on
ontology, so it is only suitable for the serviceCategory property of ServiceProfile, not
the serviceClassification property of ServiceProfile. On the other hand, UNSPSC has
no concrete telecommunications service classification, only to Telecommunication
Services (code: 81161700) level. Therefore, UNSPSC has no ability to enable the
accurate telecommunications service query. So we construct the Service Category
Ontology in TSDO to enable the accurate description of TNCS. It defines the rela-
tionship between various telecommunications services, like basic service, value-added
service, voice service, data service, conference service, telecommunication network
capability service, download service, browsing service, messaging service.

(5)Charging Ontology: defines the charging-related concepts about telecommunica-
tion service, includes payment way (such as prepaid and postpaid), charging type
(such as time-based, volume-based, event-based, content-based), billing rate, as well
as account balance.

(6) Service Quality Ontology: Telecommunication network must provide the ser-
vices which have the end-to-end QoS guarantee. As the technical differences, the
quality of service provided by different networks is different. Service Quality Ontol-
ogy mainly defines the QoS-related concepts about telecommunication service, in-
cluding access network QoS, core network QoS and user’s QoE, such as call delay,
message size, call through rate, positioning accuracy, network bandwidth.

As the length limit of this article, a part of Network Ontology is shown in Fig.6.

Fig. 6. A part of Network Ontology

 Semantic Telecommunications Network Capability Services 519

3.5 The Application Ontology of TNCS

The different TNCS has the different interface parameters, i.e. input/output. In order
to describe the semantic TNCS, theses interface parameters must be described in the
ontology format. Therefore, the related application ontology needs to be created, such
as Parlay X Application Ontology or Parlay Application Ontology, see Fig.7.

Fig. 7. The Application Ontology Overview of TNCS

4 The Experimental Environment and the Demo Service

4.1 The Prototype of Experimental Environment

We implemented an experimental prototype to validate the proposed approach. The
framework of this environment is shown in Fig. 8.

Fig. 8. The Experimental Environment Framework

In the experimental environment, we use two different ways to provide the semantic
Parlay X services. ① The existing integrated service platform of our lab, which can
support the voice and data value-added service, is extended. It can provide the seman-
tic ThirdPartyCall, SMS, Conference service of Parlay X specification in this platform.
② We develop a semantic Parlay X gateway prototype using Parlay X SDK called

520 X. Qiao et al.

Gbox [17]. As Gbox can directly provide Parlay X web service, we only need to add
the semantic description part.

To enable the publication of semantic Parlay X services, an enhanced semantic
UDDI prototype is developed. With the comparison of the existing OWL-S/UDDI
such as matchmaker [18], this semantic UDDI is a pure semantic UDDI. On the capa-
bility aspect, it can also support the registration of TelecomServiceProfile which is an
extended OWL-S profile, besides OWL-S profile. In addition, this enhanced semantic
UDDI can enable not only the matching of IOPE, but also the ontology-based match-
ing of nonfunctional properties by extending OWL-S API toolkit.

The intelligent service agent is responsible for the execution of service logic.
When received the service request, the intelligent service agent will acquire the user
context information from service context process module. Then service agent will
construct the service request based on the user preferences or profile, and send the
request to the semantic UDDI. When received the returned service, the service agent
will invoke semantic web services by service URI based on OWL-S API. Currently,
this service agent cannot support the automatic service composition.

To facilitate the service access and service customization, we developed a service
portal based on JSP/Servlet technology. This web portal provides a bridge between
the service users and the intelligent service agent. The service users can login the
service portal, initiate the service invocation and maintain own personalized prefer-
ences data.

Service context process module and user context simulation environment are used
to provide the service context information. User context simulation environment pro-
vide a graphic interface and some service context information, such as network type,
terminal type, location, activities, can be configured.

To enable the sharing of telecom service-related ontology knowledge among the
service requester, semantic UDDI and service provider, we construct an ontology
knowledge repository which consists of the telecommunication service domain ontol-
ogy, Parlay X application ontology. All these ontologies are stored in the OWL file
format and have the unified namespace. Currently, there are 320 telecom service-
related ontology concepts and terminologies in this repository.

4.2 The Demo Service: The Context-Awareness Cheapest Click-to-Call Service

Now, the click-to-call service is becoming increasingly popular in Internet. The users
can easily use a computer to initiate a telephone call by entering the caller and the
callee number. However, the existing click-to-call services are always statically bun-
dled with the call service provided by a concrete network operator. In technical as-
pect, the click-to-call services are generally based on the ThirdPartyCall service of
Parlay X provided by the network carriers. As the different carriers have the different
pricing policy, it is difficult for users to enjoy the cheapest click-to-call service. Gen-
erally speaking, the users always expect to enjoy the cheapest call service anywhere
and any time. In addition, the existing click-to-call service needs to input the specific
phone number. If this phone number (such as fixed phone) can not be connected, user
must change the phone number (such as phone number) to try again. So the existing
click-to-call service has no context-awareness feature.

 Semantic Telecommunications Network Capability Services 521

In this experimental environment, the network operators publish their ThirdParty-
Call service of the semantic Parlay X web service with detailed charging info on the
semantic UDDI. Once the user initiates the service request, the service agent is re-
sponsible for submitting the request service profile to the UDDI behalf on the user.
The semantic UDDI will match the service request with the service info stored in the
repository and return the corresponding results. And then the service agent selects the
appropriate service from the service list and dynamically invokes it. In addition, as we
use the unique identifier to mark user. When using our context-awareness click-to-call
service, user only needs to input this unique identifier and the service agent will select
the corresponding phone number of this identifier to invoke the ThirdPartyCall ser-
vice according to the user context information.

Compared with the existing Parlay X web services, the semantic Parlay X web ser-
vices have the rich semantic description info, such as price policy, QoS, terminal
capability requirement. All these added features unambiguously state the capabilities
of TNCS and laid the foundation for the provision of the personalized intelligent ser-
vices. In the experiment, we simulate four mobile operators to provide the semantic
ThirdPartyCall services. The different charging policies are adopted during the differ-
ent time periods. We publish these semantic ThirdPartyCall services on the semantic
UDDI. The service agent queries the cheapest services on the UDDI, and then dy-
namically invokes the satisfied services provided by an operator. We play the role of
users to initiate the Click-to-Call service on the service portal at different time. The
results show that the operator which has the lowest charging rates is selected. Com-
pared with the static binding and invoking way of the general Parlay X service, the
user cost significantly reduces in the dynamically binding way.

5 Discussions

From the above analysis we can see that the semantic Parlay X web services have the
rich semantic info. This is the foundation of the service precise matching and dynamic
discovering. The semantic telecommunications network capability service is one of
the key enabling technologies for the intelligent “user-centric” applications which
have the context-awareness and self-adaptive features. The existing Parlay X web
service is the cornerstone of the semantic Parlay X web service. Although the per-
formance is reduced to some extent because of the introduction of the ontology proc-
ess and the service matching, the influence will be reduce to a minimum degree by
adopting the new computing technology or improving the equipment performance.
Additionally, the general Parlay X web service and the semantic Parlay X web service
are not conflict, but complementary. The telecommunication network capability ser-
vice gateway can provide both the semantic Parlay X web service and the general
Parlay X service.

In this article, we mainly researched the semantic description of TNCS based on
OWL-S. Vitvar, T. [19] mentioned that WSMO-Lite also have begun to consider the
description of domain-specific nonfunctional properties. In the following work, we
will explore how to describe the TNCS by WSMO.

522 X. Qiao et al.

6 Conclusions

In this paper we introduced the vision of user centric intelligent service environment
(UCISE) and discussed the service ecosystem as well as the semantic service integra-
tion of telecommunications network and Internet. To enable the provision of semantic
telecommunications domain services, a semantic description approach for telecommu-
nication network capability services is presented. In this way, the network operators
can accurately describe the service capability based on the network and the operating
conditions. This laid the foundation for the precise service discovery and the dynamic
service invocation. Like the existing Parlay X or Parlay gateway, the new semantic
Parlay X/Parlay gateway can provide the semantic TNCS. This will greatly eliminate
the semantic gap between telecom network and Internet in the service layer. So far, we
have implemented a prototype system, including semantic Parlay X gateway, telecom
service domain ontology repository, Parlay X application ontology, semantic UDDI,
intelligent agent. The cheapest third party call service is developed.

However, the research of semantic TNCS is still in an early phase. The TSDO need
to be further enhanced. The standardization of semantic TNCS is still a long way.
Currently, we are cooperating with Huawei Corp. to promote this work.

Acknowledgments. This work is performed in the Project “Service Intelligence for
Convergent Network Environment” (No. 60672122) and “The Study of Service Con-
text Prediction Theory and Key Technologies based on Human Cognitive Mecha-
nism” (No. 60802034) supported by National Natural Science Foundation of China,
as well as Specialized Research Fund for the Doctoral Program of Higher Education
(No. 20070013026).

References

1. Zahariadis, T.: Trends in the Path to 4G. IEEE Communications Engineer. 1, 12–15 (2003)
2. Benali, O., et al.: A Framework for an Evolutionary Path toward 4G by Means of Coopera-

tion of Networks. IEEE Communications Magazine 42, 82–89 (2004)
3. Qiao, X.Q., Li, X.F., Liang, S.Q.: Reference Model of Future Ubiquitous Convergent Net-

work and Context-Aware Telecommunication Service Platform. The Journal of China Uni-
versities of Posts and Telecommunications 13, 50–56 (2006)

4. Parlay Group, Parlay API 4.0, http://www.parlay.org
5. Parlay x, http://www.parlay.org/en/specifications/pxws.asp
6. OWL-S.: http://www.w3.org/Submission/2004/07/
7. Web Ontology Language (OWL), http://www.w3.org/2004/OWL
8. Hong, S.J., Han, S.Y., Choi, B., Kim, Y.J., Ahn, C.H.: The semantic PARLAY for 4G net-

work. In: 2nd International Conference on Mobile Technology, Applications and Systems,
pp. 15–17 (2005)

9. Hong, S., Han, S., Song, K.-H.: The extended PARLAY X for an adaptive context-aware
personalized service in a ubiquitous computing environment. In: Enokido, T., Yan, L.,
Xiao, B., Kim, D.Y., Dai, Y.-S., Yang, L.T. (eds.) EUC-WS 2005. LNCS, vol. 3823, pp.
288–297. Springer, Heidelberg (2005)

 Semantic Telecommunications Network Capability Services 523

10. Lin, S.T., Chen, J.L.: Semantic Web Enabled VHE for 3rd Generation Telecommunica-
tions. In: 4th Annual ACIS International Conference on Computer and Information Sci-
ence (2005)

11. Vitvar, T., Viskova, J.: Semantic-enabled Integration of Voice and Data Services: Tele-
communication Use Case. In: Third IEEE European Conference on Web Services,
ECOWS (2005)

12. Villalonga, C., Strohbach, M., Snoeck, N., Sutterer, M., Belaunde, M., Kovacs, E., Zhda-
nova, A.V., Goix, L.W., Droegehorn, O.: Mobile Ontology: Towards a Standardized Se-
mantic Model for the Mobile Domain. In: Proceedings of the 1st International Workshop
on Telecom Service Oriented Architectures (TSOA 2007) at the 5th International Confer-
ence on Service-Oriented Computing, Vienna, Austria, 17 September (2007)

13. IST SPICE project, http://www.ist-spice.org/
14. Duke, A., Richardson, M., Watkins, S., Roberts, M.: Towards B2B integration in tele-

communications with semantic web services. In: Gómez-Pérez, A., Euzenat, J. (eds.)
ESWC 2005. LNCS, vol. 3532, pp. 710–724. Springer, Heidelberg (2005)

15. WAP Forum UAProf (2001),
 http://www.openmobilealliance.org/tech/affiliates/

16. UNSPSC (United Nations Standard Products and Services Code),
 http://www.unspsc.org/

17. PARLAY X Service Creation Environment, http://www.appium.com
18. Matchmaker, http://www.daml.ri.cmu.edu/matchmaker/
19. Vitvar, T., Kopecký, J., Viskova, J., Fensel, D.: WSMO-lite annotations for web services.

In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 674–689. Springer, Heidelberg (2008)

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 524–539, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Understanding Semantic Web Applications

Kouji Kozaki, Yusuke Hayashi, Munehiko Sasajima, Shinya Tarumi,
and Riichiro Mizoguchi

The Institute of Scientific and Industrial Research, Osaka University
8-1, Mihogaoka, Ibaraki, Osaka, Japan

{kozaki,hayashi,msasa,tarumi,miz}@ei.sanken.osaka-u.ac.jp

Abstract. Ten years have passed since the concept of the semantic web was
proposed by Tim Berners-Lee. For these years, basic technologies for them
such as RDF(S) and OWL were published. As a result, many systems using
semantic technologies have been developed. Some of them are not prototype
systems for researches but real systems for practical use. The authors analyzed
semantic web applications published in the semantic web conferences (ISWC,
ESWC, ASWC) and classified them based on ontological engineering. This pa-
per is a review of application papers published in Semantic Web conferences.
We discuss a trend and the future view of them using the results.

Keywords: Ontology, Knowledge modeling, Knowledge Management.

1 Introduction

About 10 years after the birth of Semantic Web (SW), advocated by Tim Berners-Lee,
fundamental technologies such as RDF(S) and OWL have been developed as well as
their application systems. So many research and development projects on the basis of
SW technologies have produced various applications from prototypes at the labora-
tory level to the practical full-scale systems. A survey report [1] says that about 300
companies provide SW technology related products. In spite of so many efforts on
research and development of SW technologies, “Killer Application” of SW is still
unknown [2]. Therefore, it would be beneficial for us to get an overview of the cur-
rent state of SW applications to consider next direction of SW studies to realize
semantic technologies which enhance utilization of knowledge on the web. Some
researchers have already broadcasting information about SW studies (e.g., [3]), ex-
haustive information about each study makes it difficult to see and analyze the state of
SW studies at a glance.

Fundamental features of SW include enabling computers to process semantics on
various resources of WWW annotated by metadata, which is in turn defined by ontol-
ogy. Since ontology is a fundamental and important technology for SW applications,
this paper analyzes them from the view point of ontology. Especially we focus on
“What type of ontologies is used” and “How ontologies are used.” Following sections
analyze the current state of SW applications to propose several directions for future
research. Specifically, we classified 190 SW applications which utilize ontologies

 Understanding Semantic Web Applications 525

Table 1. The number of SW applications which is analyzed in this paper

Conferences Dates Venues Number of Apps

International Semantic Web Conference (ISWC)
ISWC2002 Jun. 9-12, 2002 Sardinia, Italy 9

ISWC2003 Oct.20-23, 2003 Sanibel Island, FL, USA 19

ISWC2004 Nov. 7-11, 2004 Hiroshima, Japan 18

ISWC2005 Nov. 6-10, 2005 Galway, Ireland 25

ISWC2006 Nov.5-9, 2006 Athens, GA, USA 26

ISWC2007&
ASWC2007

Nov.11- 15, 2007 Busan, Korea 18

European Semantic Web Conference (ESWC)
ESWC2005 May29-Jun.1, 2005 Heraklion, Greece 24

ESWC2006 Jun.11-14, 2006 Budva, Montenegro 11

ESWC2007 Jun. 03 - 07, 2007 Innsbruck, Austria 17

Asian Semantic Web Conference (ASWC)
ASWC2006 Sep.3- 7, 2006 Beijing, China 23

extracted from international conferences on SW (Table 1)1. In this paper, SW and
ontology engineering tools such as ontology editors, ontology alignment tool, and so
on, are not the target of the analysis because we focus on applications which utilize
ontologies.

2 Related Work

Some researchers discuss trends and future prospects of Semantic Web and its appli-
cations. Alani et al. consider a killer application for SW from a viewpoint of business
community [2]. They discusses that opportunities to make progress on cost, communi-
ties, creativity and personalization are important for appearance of a killer apps. And
they argue SW researchers should focus on the four important areas. Léger et al. pre-
sent 16 use cases from enterprises which are interested in SW technology and analyze
4 of them in detail [4]. Based on the analysis, they determine 12 knowledge process-
ing tasks required in industry. These researches focus on specifying the requirement
for SW applications in industry. We focus on analysis of the current state of SW ap-
plications in academic communities.

Motta and Sabou examine the current SW applications and introduce seven dimen-
sions for analogizing them [5]. They compare some older and newer systems which
they call the next generation of SW applications. As the result, they conclude that SW
applications will have to deal with increasing heterogeneity of semantic sources and
new web technologies such as social tagging and web services. We focus on usage of
ontologies which are discussed in one of their dimensions because it is a key technol-
ogy for all SW applications.

1 ESWS2004 is excluded because it has been a symposium, not a regular conference.

526 K. Kozaki et al.

Some researchers analyze and classify ontology-based applications. Uschold and Jas-
per classify ontology applications scenarios in three categories: 1)neutral authoring,
2)common access to information, and 3)indexing for search [6]. Mizoguchi enumerates
the role of an ontology as follows: 1)a common vocabulary, 2)data structure,
3)explication of what is left implicit, 4)semantic interoperability, 5)explication of design
rationale, 6)systematization of knowledge, 7)meta-model function, and 8)theory of
content [7]. Kitamura discuss role of ontology of engineering artifacts mainly in knowl-
edge modeling and categorize them into 1)shared vocabulary and taxonomy,
2)conceptual (standard) data schema, 3)metadata schema for documents, 4)semantic
constraints for modeling, 5)generic knowledge and patterns, 6)interoperability and inte-
gration, 7)communication support and querying, 8)capturing implicit knowledge, and
9)basis of knowledge systematization [8]. We refer to these categories to consider types
of usage of ontology and introduce 9 types discussed in next section.

3 The Method for Analyzing SW Applications

Fundamental feature of SW is to enable machines to process semantics on various
resources of WWW by giving machine-readable meta-data, which is defined by on-
tology, to the resources. Since ontology is a fundamental and important technology
for SW applications, we analyze them from the view point of ontology. Ontologies
can be classified into several “types” according to several features: number of con-
cepts, usage of models, target domain, depth of hierarchy, etc. An appropriate type of
ontology for an application is specified by requirements of the application. Especially,
quality of semantic information required for the application, i.e., intended semantic
processing, constrains the type of the ontology.

This research analyzes SW applications from the view point of “Usage of ontol-
ogy” and “Type of ontology used.” In this section, the authors propose several types
for both viewpoints with guidelines and classify ontology-based applications.

3.1 Types of Usage of Ontology for a SW Application

According to the application purpose, usage and requirements of the ontology differ.
Here we introduce 9 types of usages. Basically, a SW application is categorized to
one of the types. Some SW applications which use ontology for multiple ways are
categorized to multiple categories.

(1) Usage as a Common Vocabulary
To enhance interoperability of knowledge content, this type of application uses ontol-
ogy as a common vocabulary. Since this is the most fundamental and common usage
for the following all categories from (2) to (9), applications in which ontologies play
mainly a role to unify the vocabulary are categorized here. In life science, some large
scale ontologies, such as GO2 and SNOMED-CT3 have been developed and used as
common vocabularies for a long time. Recently, many SW applications use Linked
Data4 as represented by DBPedia5 for sharing and connecting information on the SW.

2 http://www.geneontology.org/
3 http://www.ihtsdo.org/
4 http://linkeddata.org/
5 http://wiki.dbpedia.org/

 Understanding Semantic Web Applications 527

Annotation/Description of
knowledge using concepts
defined in ontology

Usage as a common
vocabulary for search,
semantic analysis etc.

Usage of
hierarchical structure
in ontology as an Index

Development of
databases/knowledge
models based on
 ontology

Fig. 1. Usage as a Common Vocabulary / an Index Fig. 2. Usage as a Data Schema / a
Rule Set for Knowledge Models

(2)Usage for Search
With appropriate metadata, we can realize search systems which use semantic infor-
mation for searching. It depends on the metadata and the ontology to what extend the
application can deal with the deep semantics. This is one of the most typical usages,
thus an application whose main function is search will be categorized here. The func-
tion of semantic search is realized in some applications, such as a knowledge portal
[9] and a knowledge management system [10], at early stage of SW. Recently, some
semantic search services for web such as Powerset6 and Hakia7 are published.

(3) Usage as an Index
An application which uses ontologies as indexes for knowledge resources belongs to
this category. An ontology is a system of vocabulary, thus the index becomes systema-
tized one. Difference between this category and the categories (1) and (2) is that appli-
cations of this category utilize not only the index vocabulary but also its structural
information (e.g., an index term’s position in the hierarchical structure) explicitly when
accessing the knowledge resources (Fig.1). For example, a semantic navigation system
for information services [11] and a semantic view-based search engine [12] which
navigates users utilizing such indexes with contextual structures defined by ontology
are categorized here.

(4) Usage as a Data Schema
Applications of this category use ontologies as a data schema to specify data struc-
tures and values for target databases. Hierarchy of the ontologies specifies instances
as data values, and each of the concept definitions specifies data structures (Fig.2).
Typical applications of this category are a system for exchanging bibliography
through network [13], various kinds of data management systems using semantics
defined ontologies [14, 15, 16], and so on.

6 http://www.powerset.com/
7 http://www.hakia.com/

528 K. Kozaki et al.

(5) Usage as a Media for Knowledge Sharing
Applications of this category aim at knowledge sharing among systems, between people
and systems, or among people using ontologies and instance models about the target
knowledge. Generally speaking, almost ontological systems aim at such knowledge
sharing. To avoid confusion, this category includes such applications that stress en-
hancement of interoperability among different systems: applications for knowledge
alignment, systems for knowledge mapping, communication systems among agents,
support systems for communication, etc. From technical viewpoints, both of (i)ontology
mapping systems using a reference ontology (Fig.3(a)), and (ii)systems which align
ontologies behind the target knowledges and map target knowledges via the aligned
ontologies (Fig.3(b)) are categorized here. For example, [17] takes the former approach
to integrate distributed systems using a reference ontology which is called mapping
ontology, and [18] takes the latter method to generate proper queries for web-based
malls which have different product categories.

(6) Usage for a Semantic Analysis
Reasoning and semantic processing on the basis of ontological technologies enable us
to analyze contents which are annotated by metadata. One of the most typical meth-
ods for such analysis is an automatic classifier for concept definitions using inference
engines. For example, [19] discusses how SW technology can be used in biology to
automate the classification of proteins through an experiment. Other examples are
statistical analysis systems, validation system for scientific data (e.g. experimental
result) [20]. Some applications have visualization tools for supporting the analysis
[21]. Among the search systems in category (2), those systems which employ such
ontological analysis belong to this category.

(7) Usage for Information Extraction
Applications which aim at extracting meaningful information from the search result
are categorized here. Recommendation systems [22] which filter search results are
example of the extraction. Other examples are a system extracting product features
from web pages [23], a service which summarizes blogs and get useful information of
products such as the total reputation and related products [24]. Comparing to other

Reference ontology

Knowledge
A

(a) Knowledge Sharing through
 a Reference Ontology

Ontology A Ontology B

Ontology Mapping

Knowledge
B (b) Knowledge Sharing using

Multiple Ontologies

Knowledge
A

Knowledge
B

Mapping to the
Reference Ontology

Fig. 3. Usage as a Media for Knowledge Sharing

 Understanding Semantic Web Applications 529

“search” categories, applications of the category (2) just output search results without
modifications. Applications of the category (6) add some analysis to the output of (2),
while those of this category (7) extract meaningful information before outputting for
users.

(8) Usage as a Rule Set for Knowledge Models
We can use instance models, which are built upon definition of classes in ontologies,
as knowledge models of the target world. In other words, we can use ontologies as
meta-models which rule the knowledge (instance) models (Fig.2). Relations between
the ontologies and the instance models correspond to that of the database and the
database schema of category (4). Compared to the category (4), knowledge models
need more flexible descriptions in terms of meaning of the contents.

From the viewpoint of ontology engineering, one of the most intrinsic roles of on-
tology is to rule knowledge models. For the purpose, a heavy-weight ontology which
models the world appropriately with deep semantics helps the knowledge modeling
and reasoning at a deeper level. For example, enterprise systems for healthcare deliv-
ery [25], scientific knowledge sharing [26], and e-government service [27] are devel-
oped based on ontologies. On the other hand, sometimes light-weight ontology helps
them at a shallow level when the target world is large, shallow model is enough for
reasoning and an efficient processing method is needed. Semantic MediaWiki8 [28] is
a typical example of the application.

(9) Usage for Systematizing Knowledge
Ontology provides semantic relationships among concepts. Putting them as the core
conceptual structure, we can organize concepts of the target world which in turn be-
comes systematized knowledge. Referring to the concepts organized in ontology, we
can build systems for managing knowledge. Typical applications of this category
include integrated knowledge systems of category (1) to (8) such as knowledge man-
agement systems and contents management systems [29, 30].

3.2 Types of Ontology

This section categorizes ontologies without depending on target domains and their
description languages. We introduce 5 categories from the viewpoint of semantic
feature of ontologies. Although this categorization shares the way of thinking with an
ontology spectrum by Lassila and McGuninness [31], our categorization does not
have strict definitions because we focus on rough survey of ontologies used in appli-
cations. We are planning to refine the ontology types in the future.

(A) Simple Schema
This category includes simple schemas such as RSS and FOAF9 for uniform description
of data for SW applications, although they are not called ontology in a strict sense.

8 http://semantic-mediawiki.org/
9 http://www.foaf-project.org/

530 K. Kozaki et al.

(B) Hierarchies of is-a Relationships among Concepts
One of the most fundamental elements of ontologies is a set of concepts identified in the
target world with a hierarchical structure based on “is-a” relationship (rdfs:subClassOf of
RDF(S) and OWL). Some portal sites navigate users by a menu with hierarchically or-
ganized topics, which is a kind of ontologies, is sometimes called light-weight ontology.

(C) Relationships other than “is-a” is Included
Ontologies can define concepts more explicit by using various relationships such as
“part-of” (whole and part) and “attribute-of” (property). Ontologies of this category
contains “is-a” relationships plus other various ones. Properties of RDF(S) or OWL
are used for representing such relationships.

(D) Axioms on Semantics are Included
In addition to descriptions of the relationships of the category (C), ontologies can
specify further constraints among the concepts or instance models by introducing
axioms on such semantic constraints. Axioms on ontologies of this category include
constraints about order such as transitivity and reflexivity, exclusivity of an instance,
and so on. In case of OWL, constraints about relationships such as “transitiveProp-
erty” and “inverseOf”, constraints about sets such as “disjointWith” and “one of” are
categorized to the axioms of ontologies in this category.

(E) Strong Axioms with Rule Descriptions are Included
Some ontologies require strong axioms which are necessary for further description of
constraints on the category (D). Ontologies with rule descriptions, for example, by
KIF or SWRL, are categorized here.

3.3 Steps for Analyzing SW Applications from Ontological Viewpoint

Three of the authors analyzed 190 papers introduced in section 1 according to the
following steps:

(1) Giving short explanations about the application (One sentence for each).
(2) Identifying the usage of ontology (section 3.1)
(3) Identifying the target domain.
(4) Identifying types of ontology (section 3.2)
(5) Identifying the language for description
(6) Identifying the scale of ontology (number of concepts and/or instance models)

On the way of this analysis, the authors discussed about the criteria for classifica-
tion of applications interactively. The rest of this paper describes the result.

4 Results of Analysis and Considerations

4.1 Distribution of Types of Usage of Ontology

Fig.4 shows the distribution of types of usage of ontologies in the systems presented
in the papers surveyed. This graph shows that there is not so big difference among the
ratios of each type of usage. However, comparing the amount of the applications from

 Understanding Semantic Web Applications 531

Fig. 4. The distribution of types of usage of ontology Fig. 5. The proportion of ontol-
ogy description language

types (1) to (7), which deal with “data” processing, and the those from types (8) to
(9), which explicitly deal with “knowledge” processing, most of current studies in the
Semantic Web application deal with “data” processing on structured data.

4.2 A Correlation between the Types of Usage and the Types of Ontology

Table.2 constitutes the relations between the types of usage and the types of ontology.
We see from Table 2 and Fig. 4 that most of the Semantic Web applications use on-
tologies including a variety types of relations, that is, not only is-a relation but also
the other relations. On the other hand, a few ontologies have complex axioms. How-
ever, only based on papers in the proceedings, it was very difficult for authors to
properly assess whether an ontology contains axioms for semantic constraints or not.
On this matter, we need further analysis of the axioms defined by each ontology. In
addition, the more semantic processing the type of usage requires, that is, as the num-
ber of the type of usage raises, the more detailed definition the ontology requires.

Table 2. A Correlation between the Types of Usage and the Types of Ontology

(A) Simple
Schema

(B) Is-a
Hierarchies

(C) Other
Relationship (D)Axioms

(E) Rule
Descriptions

Total

(1) Common Vocabulary 0 4 7 0 0 11

(2) Search 1 2 43 4 1 51

(3) Index 0 3 23 3 0 29

(4) Data Schema 0 0 32 5 0 37

(5) Knowledge Sharing 1 0 31 1 0 33

(6) Semantic Analysis 1 1 21 3 0 26

(7) Information Extraction 1 2 15 3 0 21

(8) Knowledge Modeling 0 1 36 9 8 54

(9) Knowledge Systematization 0 2 8 1 0 11

Total 4 15 216 29 9 273

The Types of Ontology

532 K. Kozaki et al.

Fig. 6. The conference-by-conference transition of the types of usage

Fig. 5 shows the proportion of the usage of ontology description language10. Al-
most half of the systems use OWL or extended OWL. RDF(S) takes second place.
This shows OWL is steadily lying as the foundation of the standard for the ontology
description language. Yet it is unclear which sublanguage of OWL (i.e., Lite, DL or
Full) is used in the ontology because most of papers do not specify the type of sub-
language in them.

4.3 The Conference-by-Conference Transition of the Types of Usage

Fig. 6 shows the conference-by-conference transition of the types of usage in the sys-
tems. In this chart, the conferences are sorted by the date therefore we can see the tran-
sition of semantic web application during the past five years. Although the amount of
papers surveyed in each conference except ISWC2002 and ESWC2007 is about 20 and
not so different from each other, the amount of types of usage are increasing year by
year. This is because the development research of semantic web applications has ma-
tured for several years and still more features have been built in each system. Espe-
cially, while there is no significant change in the use of ontology as vocabulary or for
retrieval ((1)-(3)), the numbers of the use for higher-level semantic processing ((4)-(9))
are increasing gradually.

As discussed in the section 4.1, there is only a moderate increase in the use of on-
tology for knowledge processing. We understand this indicates the difficulty of the

10 An ontology used in an application fall into a single category according to ontology descrip-

tion language. Especially, distinction between the categories of RDF(S) and OWL/OWL-S is
made by the usage of only RDF(S) or including OWL/OWL-S if only a little. If it uses both
of RDFS and OWL, for example, it is classified into OWL/OWL-S.

 Understanding Semantic Web Applications 533

Fig. 7. The combinations of the types of usage

development of applications with knowledge processing. In other words, currently the
mainstream of Semantic Web application development focuses on data processing,
and overcoming the difficulty of knowledge processing might be a key to create killer
applications.

534 K. Kozaki et al.

4.4 The Combinations of the Types of Usage

As mentioned in section 3.1, an SW application might use ontologies for more than
two purposes. However, among the nine types of usage of ontology, not all the com-
binations are found in applications and type-combination appearing in an application
varies according to each type. Fig.7 shows such distributions of usage type combina-
tion for each usage type. For example, Fig.7(a) shows the distributions of the percent-
ages of appearance of usage types (2), (6) and (7) together with type (1)11. Since the 3
types (i.e. (2), (6) and (7)) are usages mainly for semantic retrieval, common vocabu-
laries tend to be used for search systems. However, the pie chart of usage type (2) for
search in Fig.7(b) shows that the usages are combined with also others. For example,
the combinations of usage type (2) for search and type (5) usage as a media for
knowledge sharing imply integrated search across several information resources.
Furthermore, Fig.7(g) shows that type (7) usages for information extraction are com-
bined with type (8) usage as a rule set for knowledge models more frequently in com-
pare with type (2) and (6). It shows that type (7) information extraction needs more
detailed description of semantics than type (2) simple search and type (6) semantic
analysis. The chart of type (9) usage for systematizing knowledge (Fig.7(i)) shows
that the usages are combined with all other types systematically. This trend is consis-
tent with description in section 2.1.

4.5 Application Domains

Fig.8 shows the distribution of the types of usage per a domain. Domains in which
many applications have been developed are multimedia (image, movie, music, etc.),
services (both of web services and services in the real world), software development,
knowledge management, bioinformatics and medical care. In the domains in the busi-
ness area, a variety of systems focusing on a particular subject, for example, product
management, business process, and so on, have been developed. On the other hand,
general-purpose systems, which are not focusing on a particular domain or subject,
have been also developed. In Fig. 8, such systems are distinguished in the following
ways; systems dealing with academic information such as papers and conference, or
systems dealing with web resource and systems dealing with the other information.
The distribution of the types of usage in each domain is not so different from each
other. Therefore, semantic web technology is used in a variety of domains at all levels.

Here, we pick up several domains and discuss the distribution in detail. Fig. 9
shows the percentages of the type of usages in several domains which we can find In
the software and service domains, the percentage of type (8) usage as a rule set for
knowledge models is higher in comparison with scientific domains (scientific infor-
mation, bio and medical). It implies that more heavy weight ontologies are developed
in the software domain.

- In the business and bio domains, the percentage of usages for type (6) semantic
analysis and type (7) information extraction is high. It implies that the needs
of information analysis are higher in the domains than in others.

11 The usage type (1) (usage as common vocaburay) does not cooccur with many of the other

usages because we classified the applications into this type only if ontologies play mainly a
role to unify the vocabulary in it.

 Understanding Semantic Web Applications 535

Fig. 8. The distribution of the types of usage per a domain

Fig. 9. The distribution of the types of usage per a domain
(2)

Table 3. The transition of the type
of usage in multimedia

Confrences
ISWC2002
ISWC2003
ISWC2003
ISWC2003
ISWC2004
ISWC2004
ESWC2005
ESWC2005
ESWC2005
ISWC2005
ISWC2005
ISWC2005
ESWC2006
ASWC2006
ASWC2006
ISWC2006
ISWC2006
ISWC2006
ISWC2006
ESWC2007
ESWC2007
ISWC2007
ISWC2007
ISWC2007

The Type of Usage

Furthermore Table.3 shows the transition of the type of usage in multimedia domain.
We can see a trend that the numbers of the use for higher-level semantic processing
(types (4)-(9)) are increasing gradually.

536 K. Kozaki et al.

4.6 Numbers of Concepts and Instances in Each Ontology

Generally, the size of an ontology and the numbers of instances used as metadata are
expected to vary widely depending on the scale of an application. We cannot analyze
the correlation of them enough because the number of concepts and instances are not
written clearly in each paper surveyed. As far as what can be read out from the pa-
pers, many systems recently developed use the existing large-scale ontologies (or
thesauri) such as DOLCE12, WordNet13 and DBPedia. Some systems use their own
ontologies but it is difficult to analyze them because most of papers state only the
outline of the ontologies. Some ontologies are available on the web so that we will be
able to do further analysis with the ontologies downloaded from the sites.

5 Concluding Remarks and Future Work

For the purpose of providing basis for finding next direction of SW applications, this
paper surveyed and analyzed the present state of SW applications from the viewpoint
of usages and types of ontologies. Since the authors have depicted both strong points
and weak points of current SW applications, we plan to continue additional survey
and analysis of SW applications for future SW conferences and others related to SW,
and report them at http://www.hozo.jp/OntoApps/. At the same time, we also plan to
refine the viewpoints for the analysis proposed in this paper as follows.

1. Refinement of ontology types (cf. Section 3.2)
As described in section 3.2, we focus on semantic components of ontologies for their
classification. To make relationships between type of the ontologies and usage of the
ontologies in SW applications clearer, we need to classify ontologies in more detail.
We plan to introduce a metadata set for such a classification proposed by [32], or
formal types of ontologies in [31, 33], for example. Since applications which use
existing ontologies or “Linked data” are increasing today (cf., section 4.5), survey on
such existing resources is necessary.

2. Analysis on development process of ontologies and instance models
Since development process of ontologies and/or instance models is an important fac-
tor of development of SW applications, we plan to incorporate relevant viewpoints for
further classification. For those applications which require deep and specialized
knowledge (e.g. [19, 25]), domain experts commit ontology development. On the
other hand, ontologies are (semi-)automatically built for those applications which
require both scalability and wide range of knowledge on the web (e.g.[23, 24]).

To maintain SW applications, mechanisms for adding instance data are important
and there are various approaches according to the applications’ domains and/or goals.
In some SW applications, an annotator creates metadata for additional instance data.
While SemanticWiki [28] refers to collaborative knowledge, PiggyBank[34] creates
instance data from existing databases efficiently. Furthermore, some applications aim
at managing the lifecycle of ontologies and instances [35]. Viewpoints which differ-
entiate these methods should give other perspectives for classification.

12 http://www.loa-cnr.it/DOLCE.html
13 http://wordnet.princeton.edu/

 Understanding Semantic Web Applications 537

3. Classification of applied semantic technologies
SW applications require many other technologies: ontology development, semantic
search by ontologies, inference mechanisms for DL, ontology matching, etc. View-
points about the applied technologies should be important issues. As a long term goal,
the authors aim at supporting SW application development by providing an ontology
of SW applications. For the development process, the ontology will help comparison
among existing systems and a new system to be developed. Furthermore, guidelines
for SW application development such as appropriate ontology type, usage and periph-
eral technologies, will be provided by the ontology.The result of our analysis is avail-
able at the URL, http://www.hozo.jp/OntoApps/.

References

1. Davis, M.: Semantic Wave 2008 Report: Industry Roadmap to Web 3.0 & Multibillion
Dollar Market Opportunities (2008), http://www.project10x.com

2. Alani, H., Kalfoglou, Y., O’Hara, K., Shadbolt, N.R.: Towards a Killer App for the Se-
mantic Web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 829–843. Springer, Heidelberg (2005)

3. Möller, K., et al.: Recipes for Semantic Web Dog Food-The ESWC ans ISWC Metadata
Projects. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Gol-
beck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 802–815. Springer, Heidelberg (2007)

4. Léger, A., Nixon, L., Shvaiko, P.: On Identifying Knowledge Processing Requirements. In:
Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 928–943. Springer, Heidelberg (2005)

5. Motta, E., Sabou, M.: Next generation semantic web applications. In: Mizoguchi, R., Shi,
Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 24–29. Springer, Heidel-
berg (2006)

6. Uschold, M.: The Boeing Company: A Framework for Understanding and Classifying On-
tology Applications. In: Proc. of the IJCAI 1999 Workshop on Ontologies and Problem-
Solving Methods, KRR5 (1999)

7. Mizoguchi, R.: Tutorial on ontological engineering - Part 1. New Generation Comput-
ing 21(4), 365–384 (2003)

8. Kitamura, Y.: Roles of Ontologies of Engineering Artifacts For Design Knowledge Model-
ing. In: Proc. EDIProD 2006, pp. 59–69 (2006)

9. Corcho, O., Gómez-Pérez, A., López-Cima, A., López-García, V., del Carmen Suárez-
Figueroa, M.: ODESeW. Automatic Generation of Knowledge Portals for Intranets and
Extranets. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 802–817. Springer, Heidelberg (2003)

10. Popov, B., Kiryakov, A., Kirilov, A., Manov, D., et al.: KIM-Semantic Annotation Plat-
form. In: Proc. of ISWC 2003, pp. 834–849 (2003)

11. Dzbor, M., Domingue, J., Motta, E.: Magpie – Towards a Semantic Web Browser. In:
Proc. of ISWC 2003, pp. 690–705 (2003)

12. Mäkelä, E., Hyvönen, E., Saarela, S.: Ontogator — A semantic view-based search engine
service for web applications. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe,
D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 847–860.
Springer, Heidelberg (2006)

538 K. Kozaki et al.

13. Haase, P., et al.: Bibster – A Semantics-Based Bibliographic Peer-to-Peer System. In:
McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298,
pp. 122–136. Springer, Heidelberg (2004)

14. Sidhu, A.S., Dillon, T.S., Chang, E.: Protein Data Sources Management Using Semantics.
In: Proc. of ASWC2006, pp. 595–601 (2006)

15. Chen, H., et al.: Towards a semantic web of relational databases: A practical semantic
toolkit and an in-use case from traditional chinese medicine. In: Cruz, I., Decker, S., Alle-
mang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006.
LNCS, vol. 4273, pp. 750–763. Springer, Heidelberg (2006)

16. Fox, P., et al.: Semantically-Enabled Large-Scale Science Data Repositories. In: Proc. of
ISWC2006, pp. 792–805 (2006)

17. Dimitrov, D.A., et al.: Information Integration via an End-to-End Distributed Semantic
Web System. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P.,
Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 764–777. Springer,
Heidelberg (2006)

18. Kim, W., et al.: Product information meta-search framework for electronic commerce
through ontology mapping. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS,
vol. 3532, pp. 408–422. Springer, Heidelberg (2005)

19. Wolstencroft, K., et al.: A Little Semantic Web Goes a Long Way in Biology. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 786–800.
Springer, Heidelberg (2005)

20. Wong, S.C., Miles, S., Fang, W., Groth, P.T., Moreau, L.: Provenance-based validation of
E-science experiments. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, pp. 801–815. Springer, Heidelberg (2005)

21. Alani, H., et al.: Monitoring research collaborations using semantic web technologies. In:
Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 664–678.
Springer, Heidelberg (2005)

22. Ghita, S., Nejdl, W., Paiu, R.: Semantically Rich Recommendations in Social Networks for
Sharing, Exchanging and Ranking Semantic Context. In: Gil, Y., Motta, E., Benjamins,
V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 293–307. Springer, Heidel-
berg (2005)

23. Holzinger, W., Krüpl, B., Herzog, M.: Using Ontologies for Extracting Product Features
from Web Pages. In: Proc. of ISWC 2006, pp. 286–299 (2006)

24. Kawamura, T., et al.: Ubiquitous Metadata Scouter – Ontology Brings Blogs Outside. In:
Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 752–761.
Springer, Heidelberg (2006)

25. Kashyap, V., et al.: Definitions Management: A Semantics-Based Approach for Clinical
Documentation in Healthcare Delivery. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 887–901. Springer, Heidelberg (2005)

26. Kraines, S., Guo, W., Kemper, B., Nakamura, Y.: EKOSS: A knowledge-user centered ap-
proach to knowledge sharing, discovery, and integration on the semantic web. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M.
(eds.) ISWC 2006. LNCS, vol. 4273, pp. 833–846. Springer, Heidelberg (2006)

27. Della Valle, E., et al.: SEEMP: An semantic interoperability infrastructure for
e-government services in the employment sector. In: Franconi, E., Kifer, M., May, W.
(eds.) ESWC 2007. LNCS, vol. 4519, pp. 220–234. Springer, Heidelberg (2007)

28. Krötzsch, M., Vrandečić, D., Völkel, M.: Semantic mediaWiki. In: Cruz, I., Decker, S., Al-
lemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC
2006. LNCS, vol. 4273, pp. 935–942. Springer, Heidelberg (2006)

 Understanding Semantic Web Applications 539

29. Keller, R.M., et al.: SemanticOrganizer: A Customizable Semantic Repository for Distrib-
uted NASA Project Teams. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 767–781. Springer, Heidelberg (2004)

30. Sevilmis, N., et al.: Knowledge Sharing by Information Retrieval in the Semantic Web. In:
Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 471–485.
Springer, Heidelberg (2005)

31. Lassila, O., McGuinness, D.: The Role of Frame-Based Representation on the Semantic
Web, Technical Report KSL-01-02, Knowledge Systems Laboratory, Stanford University,
Stanford, California (2001)

32. Hartmann, J., et al.: DEMO - design environment for metadata ontologies. In: Sure, Y.,
Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 427–441. Springer, Heidelberg
(2006)

33. Bechhofer, S., Volz, R.: Patching syntax in OWL ontologies. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 668–682.
Springer, Heidelberg (2004)

34. Huynh, D.F., Mazzocchi, S., Karger, D.R.: Piggy bank: Experience the semantic web in-
side your web browser. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, pp. 413–430. Springer, Heidelberg (2005)

35. Tran, T., Haase, P., Lewen, H., Muñoz-García, Ó., Gómez-Pérez, A., Studer, R.: Lifecy-
cle-support in architectures for ontology-based information systems. In: Aberer, K., Choi,
K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D.,
Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007.
LNCS, vol. 4825, pp. 508–522. Springer, Heidelberg (2007)

J. Domingue and C. Anutariya (Eds.): ASWC 2008, LNCS 5367, pp. 540–554, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Formal Model for Classifying Trusted Semantic Web
Services

Stefania Galizia, Alessio Gugliotta, and Carlos Pedrinaci

Knowledge Media Institute
The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
(S.Galizia,A.Gugliotta,C.Pedrinaci)@open.ac.uk

Abstract. Semantic Web Services (SWS) aim to alleviate Web service limita-
tions, by combining Web service technologies with the potential of Semantic
Web. Several open issues have to be tackled yet, in order to enable a safe and
efficient Web services selection. One of them is represented by trust. In this pa-
per, we introduce a trust definition and formalize a model for managing trust in
SWS. The model approaches the selection of trusted Web services as a classifi-
cation problem, and it is realized by an ontology, which extends WSMO. A pro-
totype is deployed, in order to give a proof of concept of our approach.

Keywords: Semantic Web services, Selection, Trust, Classification.

1 Introduction

Semantic Web services (SWS) research aims at automating the development of Web
service-based applications through semantic Web technology. By providing formal
representation with well-defined semantics, SWS facilitate the machine interpretation
of Web service (WS) descriptions. According to SWS vision, when a client expresses
a goal that it wishes to achieve, the most appropriate Web service is automatically
discovered and selected on the basis of the available semantic descriptions. Since the
user does not know a priori the selected WS, the notion of trust should play an impor-
tant role during the WS selection phase. However, the most common approaches for
describing SWS, such as WSMO [0] or OWL-S [12], do not currently provide ex-
haustive means to model trust, and thus do not support trust-based selection of WS.

Notice that trust is a multifaceted concept. A trust understanding can indeed in-
volve multiple – and not always the same - parameters, such as Quality of Service
(QoS), reputation and security.

In our opinion, the main issue with representing trust in all its faces lies in its con-
textual nature – i.e. the same user may have different trust understandings in different
contexts. For example, a user may trust a WS with a highly rated security certificate
whenever she has to provide her credit card details. Conversely, the same user weights
the opinions of past users about a specific WS in other situations – i.e. the evaluation of
the WS reputation is a priority in the current trust understanding of the user. Moreover,
distinct users may privilege different trust parameters in the same context; in this case,
their priorities may depend on their different personal preferences.

 A Formal Model for Classifying Trusted Semantic Web Services 541

In this paper, we introduce a definition and formalize an abstract model for trust in
SWS that enables interacting participants – i.e. both WS users and providers - to rep-
resent and utilize their own trust understanding with a high level of flexibility, and
thus take the possible multiple interacting contexts into account. The essential contri-
bution of our approach is therefore a generally applicable yet completely automated
mechanism for selecting trusted services according to context-specific criteria.

Specifically, in our model we characterize the trust-based WS selection as a classi-
fication problem. Firstly, all participants specify their own requirements and guaran-
tees about a set of trust parameters. Then, at runtime, our goal is to identify the class
of WS that matches the trust statements of involved participants, according to an es-
tablished classification criterion. To accomplish this, we have based the proposed
model on a general-purpose classification library.

In order to apply our approach to an existing SWS working environment – and thus
verify its benefits - we represented our model within a specific ontology: Web Ser-
vices Trust-management Ontology (WSTO). The latter makes use of WSMO as refer-
ence approach for SWS. WSMO is in fact the underlying model of IRS-III [2], the
SWS execution environment developed within our research group. As a result, we en-
hanced IRS-III with the trust-based selection of WS.

It is worth highlighting that an earlier version of WSTO was described in a previous
work [0]. Whereas in [5] we outlined the idea of characterizing trust as a classification
process, in the present work we propose a more complex model that is able to accom-
modate multiple trust understandings and parameters. Moreover, while in [5] we pro-
posed a general thesis on the different meanings of trust, we did not supply our
definition of trust. We now provide our trust definition as well as its formal semantics.

The paper is organized as follows: Section 2 provides the background knowledge
useful for placing our work; in Section 3, we outline our approach, while in Section 4
we provide the formal details of our methodology; in Section 5, we describe an im-
plemented application; Section 6 compares our approach with related work and, fi-
nally, Section 7 concludes the paper and outlines our future work.

2 Background

In this section, we first outline WSMO, our basic vision of SWS, and its ontological
specification. Then, we outline the different existing approaches on trust.

WSMO
The Web Service Modelling Ontology (WSMO) [3] is a formal ontology for describ-
ing the various aspects of services in order to enable the automation of Web service
discovery, composition, mediation and invocation. The metamodel of WSMO defines
four top level elements:

• Ontologies provide the foundation for describing domains semantically. They are
used by the three other WSMO elements.

• Goals define the tasks that a service requester expects a Web service to fulfill. In
this sense they express the requester’s intent.

• Web Service descriptions represent the functional behavior of an existing de-
ployed web service. The description also outlines how web services communicate
(choreography) and how they are composed (orchestration).

542 S. Galizia, A. Gugliotta, and C. Pedrinaci

• Mediators handle data and process interoperability issues that arise when han-
dling heterogeneous systems.

One of the main characteristic features of WSMO is the linking of ontologies, goals
and web services by mediators which map between different ontological concepts
within specific WSMO entity descriptions. In order to facilitate appropriate mapping
mechanisms, four classes of mediators are considered within WSMO. For example, an
OO-mediator may specify an ontology mapping between two ontologies whereas a
GG-mediator may specify a process or data transformation between two goals.

Classification Library
The classification framework that we use and extend for our work is a library of ge-
neric, reusable components developed within the European project IBROW [9]. Its
purpose is to support the specification of classification problem solvers. The basic
structure is the UPML framework [4], on which WSMO is based. The library has
been specified in the OCML modelling language [8], and implemented in IRS-III [2].

Within the classification framework, we use the term ‘observables’ to refer to the
known facts we have about the object (or event, or phenomenon) that we want to clas-
sify. Each observable is characterized as a pair of the form (f, v), where f is a feature
of the unknown object and v is its value. Here, we take a very generic viewpoint on
the notion of feature. By feature, we mean anything which can be used to characterize
an object, such as a feature which can be directly observed, or derived by inference.
As is common when characterizing classification problems - see, e.g., [19], we as-
sume that each feature of an observable can only have one value. This assumption is
only for convenience and does not restrict the scope of the model.

The solution space specifies a set of predefined classes (solutions) under which an
unknown object may fall. A solution itself can be described as a finite set of feature
specifications, which is a pair of the form (f, c), where f is a feature and c specifies a
condition on the values that the feature can take. Thus, we can say that an observable
(f, v) matches a feature specification (f, c) if v satisfies the condition c.

As we have seen, generally speaking, classification can be characterized as the
problem of explaining observables in terms of predefined solutions. To assess the ex-
planation power of a solution with respect to a set of observables we need to match
the specification of the observables with that of a solution. Given a solution, sol:
((fsol1, c1).....(fsolm, cm)), and a set of observables, obs: ((fob1, v1).....(fobn, vn)), four cases
are possible when trying to match them:

• A feature, say fj, is inconsistent if (fj, vj) ∈ obs, (fj, cj) ∈ sol and vj does not
satisfy cj;

• A feature, say fj, is explained if (fj, vj) ∈ obs, (fj, cj) ∈ sol and vj satisfies cj;
• A feature, say fj, is unexplained if (fj, vj) ∈ obs but fj is not a feature of sol;
• A feature, say fj, is missing if (fj, cj) ∈ sol but fj is not a feature of obs.

Given these four cases, it is possible to envisage different solution criteria. For in-
stance, we may accept any solution, which explains some data and is not inconsistent
with any data. This criterion is called positive coverage [14]. Alternatively, we may
require a complete coverage - i.e., a solution is acceptable if and only if it explains all
data and is not inconsistent with any data. Thus, the specification of a particular clas-
sification task needs to include a solution (admissibility) criterion. This in turn relies

 A Formal Model for Classifying Trusted Semantic Web Services 543

on a match criterion, i.e., a way of measuring the degree of matching between candi-
date solutions and a set of observables. By default, our library provides a match crite-
rion based on the aforementioned model. That is, a match score between a solution
candidate and a set of observables has the form (I, E, U, M), where I denotes the set of
inconsistent features, E the set of explained features, U the set of unexplained features
and M the set of missing features. Of course, users of the library are free to specify
and make use of alternative criteria.

In many situations, specifying the conditions under which a candidate solution is
indeed a satisfactory solution is not enough. In some cases, we may be looking for the
best solution, rather than for any admissible one. In these cases we need to have a
mechanism for comparing match scores and this comparison mechanism becomes
then part of the specification of the match criterion. By default, our library includes
the following score comparison criterion.

Given two scores, S1 = (i1, e1, u1, m1) and S2 = (i2, e2, u2, m2), we say that S2 is a
better score than S1 if and only if:

(i2 < i1) ∨
(i2 = i1 ∧ e1 < e2) ∨
(i2 = i1 ∧ e2 = e1 ∧ u2 < u1) ∨
(i2 = i1 ∧ e2 = e1 ∧ u2 = u1 ∧ m1 < m2)

In the notation above xi < xj indicates that the set xi contains less elements than the
set xj.

In conclusion, our analysis characterizes classification tasks in terms of the follow-
ing concepts: observables, solutions, match criteria, and solution criteria.

Trust Approaches
Since trust can have different meaning in different contexts, several specifications can
be found in literature. We can classify existing models into the following three main
approaches:

• Policy-based. Policies are a set of rules that specify the conditions to disclose
own resources;

• Reputation based. Reputation based approaches make use of rating coming
from other agents or a central engine, by heuristic evaluations;

• Trusted Third Party-based (TTP). Trusted Third Party based models use an
external, trusted, entity that evaluates trust.

These general approaches can be refined and/or combined in order to build a con-
crete trust establishment solution that can be deployed in a real system.

Many models [11, 15] formulate trust policies in semantic Web services by secu-
rity statements, such as confidentiality, authorization, authentication. W3C Web ser-
vice architecture [18 recommendations base trust policies on security consideration,
even if the way to disclose their security policies is still not clear.

Some policy-based models rely on a TTP, which works as a repository of service
description and policies [21] and meanwhile as an external matchmaker that evaluates
service trustworthiness according to given algorithms.

Reputation-based models reuse concepts and approaches taken from Web-based
social networks. In SWS as well as in social networks, trust is a central issue. In both

544 S. Galizia, A. Gugliotta, and C. Pedrinaci

the cases, interactions take place whenever there is trustworthiness. The idea is that
involved participants express their opinion on other participants, by means of a shared
vocabulary. Several algorithms for trust propagation and different metrics have been
defined, most of them are more generically Quality of service (QoS) based [7; 17],
since they consider the service ability the main trust statement.

3 Our Approach

We propose a formal approach for managing trust among semantic Web services,
based on two ontologies: WSMO and the classification task ontology, both introduced
in Section 2. We build an ontology - named Web Service Trust-management Ontology
(WSTO) - that reuses the main concept of those ontologies, and extends them, for sup-
porting SWS trust management. In our model, user preferences are the main elements
on which Web service selection depends. Essentially, the user can decide which pa-
rameters should be considered in order to determine which class of Web services are
trusted, in a given context. We embed trust-based SWS selection in a classification
framework, whereas the classification task ontology provides the overall methodology
that we adopt for managing trust. For our purposes, we classify Web services accord-
ing to both the user and Web services trust requirements and guarantees.

In WSTO, the key concepts are user, ws and goal, where user denotes the service
requester and ws is the service provider. Following the basic WSMO notions, a goal
represents the service requester’s desire or intention. The user usually expresses dif-
ferent trust requirements in achieving different goals. For example, she can be inter-
ested in data accuracy when retrieving timetable information, and security issues
when disclosing her bank accounts. On the other hand, the ws aims to provide a set of
trustworthy statements, in order to reassure the requester as well as to appear as at-
tractive as possible.

The participants (ws and user) are associated with trust profiles, represented in
WSTO by the class trust-participant-profile. A profile is composed of a set of trust
requirements and guarantees. Trust-guarantee represents observables, pairs of feature
and corresponding value (f, v), while trust-requirement represents candidate solutions,
pairs of feature and condition (f, c).

We distinguish three logical elements in trust requirements: (i) a set of candidate
solutions for expressing conditions on guarantees promised by the relevant parties; (ii)
a candidate solution for requesting their reliability; and, (iii) a candidate solution for
requesting their reputation evaluation. In a participant profile, the three elements are
optional; choice depends strictly on the participant preferences in matter of trust.

In turn, the participant trust guarantees have three components: (i) a set of observ-
ables for representing the promised trust guarantees; (ii) an observable corresponding
to the evaluation of the participant reliability; and, (iii) an observable for representing
the reputation level of the participant. Whereas the promised trust guarantees are a set
of promised values stated by the participant - such as (execution-time, 0.9) and (data-
freshness, 0.8) - reliability and reputation guarantees are computed on-the-fly within
dedicated execution environments (IRS-III in our use case, see Section 5). As men-
tioned earlier, a participant profile is composed of requirements as well as guarantees.

 A Formal Model for Classifying Trusted Semantic Web Services 545

For example, a Web service may expose high data-freshness and strong confidential-
ity as guarantees. Moreover, the same Web service may define security requirements,
such as conditions under which a service requester can access it.

Given observables and conditions, a classification criterion is now necessary to
classify Web services and find the appropriate class that addresses both user and Web
service requirements and guarantees. The classification match criterion we apply is
the one described in Section 2, although other classification criteria can be easily rep-
resented in WSTO.

As solution admissibility criteria, we can apply complete coverage and positive
coverage. The former demands that all requirements of the interaction have to be sat-
isfied; the latter accepts that some requirements are fulfilled and no inconsistencies
exist. Our classification library implements two different classification methods: sin-
gle-solution-classification, and optimal-classification. The former implements a hill
climbing algorithm with backtracking to find a suitable solution; the latter executes an
exhaustive search for an optimal solution. We make use of the optimal-classification-
task and redefine it as WSMO goal1, optimal-classification-goal, whose participant-
profiles and trusted-ws represent the pre-conditions and post-conditions of the goal,
respectively.

Notice that the proposed model is comprehensive of all trust approaches listed in
the previous section. In fact, it embeds a policy-based trust management, since the in-
teracting participants express their trust policies in their – semantically described –
profiles, while the adopted SWS broker will behave as a TTP by storing participant
profiles and reasoning on them. Moreover, the reputation module enables a WS selec-
tion based also on reputation ontological statements.

4 The Formal Model

This section provides the formal definition of trust we adopt in our approach, as well
as its semantics. Trust is a binary evaluation of trustworthiness: “trust” or “distrust”.
Whenever conditions for trustworthiness are established, the interaction between par-
ticipants occurs; otherwise, it is not possible.

The trustworthiness ()wsT g
u that a user u perceives towards a Web service ws,

when she invokes a goal g, is given by the expression:

() () ()()ws,uPwsT gg
g

u ΩΨ=

Ψ is a classification operator, that provides a class of Web services matching the
user’s trust requirements, according to the match criterion presented in Section 3. If
trust requirements do not meet any Web service trust guarantees, Ψ returns a null
value. This means that no trusted communication can occur.

Trust as perceived by the user u, can be either strong or weak. It is strong when the
operator Ψ classifies Web services by adopting complete coverage as solution ad-
missibility criterion. When the criterion selected is positive coverage, trust is regarded

as weak. We did consider using two different operators - sΨ for strong trust, and

1 WSMO goals can be seen as an evolution of UPML tasks.

546 S. Galizia, A. Gugliotta, and C. Pedrinaci

wΨ for weak trust - however, we decided against this in order to increase the readabil-

ity of our notations. Without losing generality, in the rest of this section, we assume
only strong trust.

()uPg is a function which selects a profile from the set of trust profiles associated

(provided or accepted) with the user, according to the current goal. As mentioned ear-
lier, a user can have different trust preferences in different contexts. The current-
selected-profile is used to associate a trust-profile with a goal, according to the user’s
ontological statements.

The user trust profile suitable for a given goal is represented by a list of user re-
quirements: (f1, c1), .., (fn, cn), (frL,crL), (fr, cr). The user requirements (f1, c1), .., (fn, cn)
are conditions on WS promised guarantees. They can involve QoS statements, or con-
cern security issues. Moreover, the user could be interested to know more about the
reputation and the reliability of the Web services she will interact with. The require-
ments (frL, crL) and (fr, cr) respectively express conditions on reliability and other user
preferences concerning Web service behaviors.

Given a goal g, ()wsgΩ is a complex operator that provides information about

the WS profile, where ws satisfies g. The operator provides thus (i) the guarantees
promised by the WS, (ii) a record of WS monitored behavior, and (iii) WS behavior
as evaluated by other users. For conformity, we also refer to components (ii) and (iii)
as guarantees, however they are automatically calculated by IRS-III, and are not
strictly speaking guarantees. We should also note that, in principle, ws reputation and
its historical evaluation may not always reassure the user.

More formally, gΩ has three components:

()g
r

g
h

g
pg ,, ΠΠΠΩ =

Given a Web service ws, satisfying a goal g, ()wsg
pΠ supplies the component of

the ws profile published by ws itself. The ws guarantees, are pairs (feature, value):
{(fp1, vp1), ..., (fpm, vpm)}. The published guarantees can involve QoS parameters, certi-
ficated security parameters issued by Certification Authorities, or any ontological
statements certificated by TTP or simply provided by the WS for trust assurance pur-
poses. The values vp1,…, vpm are normalized and homogenized. They are normalized
to non-negative real numbers in the range [0,1]. Moreover, we assume that they are
homogeneously scaled, where higher values correspond to higher performance. For
example, higher performance for the parameter “execution time” would normally be
indicated by a smaller value, but we normalize to a scale where a higher value indi-
cates better performance. We are aware that this process can increase complexity, es-
pecially for those guarantees related to security issues, however, describing the
normalization process is out of the scope of our current work. For alleviating the dif-
ficulty of representing numerical normalized values, we use a number of previously
described heuristics.

()wsg
hΠ assigns the value vrL to the ws reliability frL, by stating the observable

(frL, vrL). Reliability is a measure of how the Web service behaviour conforms with its
related guarantees. Let Fp= {fp1,…, fpm} be the set of features with associated values of

 A Formal Model for Classifying Trusted Semantic Web Services 547

guarantees, and Fh= {fh1,…,fhk} the set of the monitored features for ws. We define Fph
= Fp ∩ Fh= {f1,…,fj}, as the set of both promised and monitored features for ws.
Whenever a feature is monitored more than once, we consider only the last observed,
because we assume that Web service performance can alter, and the last value is
closer to its predicted behavior.

We calculate the feature conformance, as defined by [16]. For every feature fi be-
longing to Fph with 1 ≤ i ≤ j, we determine the conformance of fi by value

p
i

p
i

h
i

v

vv −=δ , where h
iv is the normalized monitored value associated to fi, and

p
iv is its normalized promised value, for the Web service ws.

The conformance value δi falls in the range [-1, 1]. It is a negative value when the

promised value is better than the monitored one. It holds 0 when p
iv = h

iv , i.e., the

promised value corresponds to the monitored one. Finally, when the Web service be-
haviour around the feature fi is better than promised, δi is a positive value.

If δi ≥ 0 for every 1 ≤ i ≤ j, then ()wsg
hΠ will have the value 1, the maximum

value for reliability, otherwise, reliability is represented by the normalized arithmetic
average of each feature’s conformance:

()
j

vws

j

1i
i

rL
g

h

∑
===

δ
Π

Web service reliability, evaluated through the operator ()wsg
hΠ , provides a value

for the feature frL, where the observable (frL, vrL) is a component of the ws profile. vrL
is a guarantee that will be automatically generated by the adopted SWS broker by
processing the ws published and monitored guarantees. For example, IRS - our refer-
ence SWS broker - automatically logs all interactions with Web services [13] and thus
reliability is straightforward to compute.

The operator ()wsg
rΠ provides a measure of Web service reputation. Users who

have previously interacted with WS can supply ontological statements for describing
perceived trustworthiness. These statements are observables - pairs (feature, value) -
as annotated by users.

We introduce a reputation evaluation for making our model as context/user ori-
ented as possible, because some users may be interested in the opinions that come
from previous requesters. Nevertheless, we do not intend to emphasize this aspect of
our trust evaluation because reputation statements may derive from malicious users
interested in providing false evaluations for a variety of reasons. Therefore, we con-
sider only reputation statements that have high conformance.

Let Fr = {f1,…frr} be a set of features, and {(fi, vi1).., {(fi, vij)} the corresponding ws
observables for the feature fi, with 1 ≤ i ≤ rr, respectively reputed by the users {ui1,..
uij}. We consider the reputation around the feature fi can be estimated if and only if
the standard deviation SDi from the average of the normalized values {vi1.., vij} is
lower than a given threshold D.

548 S. Galizia, A. Gugliotta, and C. Pedrinaci

We can now define ()wsg
rΠ as the average trustworthiness perceived by the users

towards the Web service ws:

()
∑

∑

=

=== rr

1i
i

rr

1i
ii

r
g
r

w

vw
vwsΠ

Where wi is a weight that excludes the reputation statements that cannot be esti-
mated. It can hold {0,1}: wi = 1 when the SDi ≤ D, otherwise its value is 0. The value
vr is assigned to the feature fr, where the observable (fr, vr) is a component of the ws
profile, computed within IRS-III.

Having extracted the participant profiles, the operator Ψ classifies Web services,
i.e., it solves the problem of finding a class that best explains a set of known Web ser-
vice guarantees, according to user trust requirements. The output is binary: the WS
class exists or not, which corresponds to the trust or distrust value for the func-

tion ()wsT g
u .

5 Case Study: A Trusted Virtual Travel Agent

The proposed formal model has been implemented within an existing SWS execution
environment: IRS-III [2]. The reasons for adopting IRS-III are the following: firstly,
this framework has been designed and built within our institution; secondly, WSMO
(Section 2) has been incorporated and extended as the core IRS-III epistemological
framework; finally, the classification library we use and extend (Section 3) is repre-
sented in OCML [8], the ontological representation language used by IRS-III.

IRS-III is a platform and a broker for developing and executing SWS. By defini-
tion, a broker is an entity which mediates between two parties and IRS-III mediates
between a service requester and one or more service providers. A core design princi-
ple for IRS-III is to support capability-based invocation. A client sends a request
which captures a desired outcome or goal and, using a set of semantic Web service
descriptions, IRS-III will: a) discover potentially relevant Web services; b) select the
set of Web services which best fit the incoming request; c) mediate any mismatches at
the data, ontological or business process level; and d) invoke the selected Web ser-
vices whilst adhering to any data, control flow and Web service invocation con-
straints. Additionally, IRS-III supports the SWS developer at design time by
providing a set of tools for defining, editing and managing a library of semantic de-
scriptions and also for grounding the descriptions to either a standard Web service
with a WSDL description, a Web application available through an HTTP GET re-
quest, or code written in a standard programming language (currently Java and Com-
mon Lisp).

In our work, we implemented a new IRS-III module that exploits WSTO and thus
enhances the current functional-based (i.e. based on pre and post conditions, assumption

 A Formal Model for Classifying Trusted Semantic Web Services 549

and effect descriptions) selection mechanism of IRS-III with a trust-based selection
mechanism. Given several Web services, semantically annotated in IRS-III and all with
the same functional capability, but different trust guarantees, the class of Web services
selected will be the one that matches closest with the user trust requirements, according
to the classification mechanism introduced in the previous section.

As a test-bed for our module, we deployed a prototype application (the Virtual
Travel Agency) and compared the existing version of IRS-III (non trusted) with the
improved one (trusted). In the proposed scenario, IRS-III acts as SWS execution envi-
ronment as well as TTP, by storing participant profiles and reasoning on them. The
current prototype considers participant observables and needs, but it does not include
the reputation module and the historical monitoring. The prototype is implemented in
OCML and Lisp. The goal is to find the train timetable, at any date, between two
European cities. Origin and destination cities have to belong to the same country
(European countries involved in our prototype are: Germany, Austria, France and
England). The client that uses this application in IRS-III publishes her trust-profile,
with trust requirements and/or trust guarantees. In our prototype, we provide three
different user profiles and three different Web services, able to satisfy the user goal.
User profiles are expressed through trust requirements, without trust guarantees. All
user requirements are performed in terms of security parameters: encryption-
algorithm, certification-authority and certification-authority-country. Every user ex-
presses a qualitative level of preference for every parameter.

USER4
(def-class trust-profile-USER4 (trust-profile)
 ((has-trust-guarantee :type guarantee-USER4)
 (has-trust-requirement :type requirement-USER4)))

(def-class requirement-USER4 (security-requirement)
 ((encryption-algorithm :value high)
 (certification-authority :value medium)
 (certification-authority-country :value medium)))

USER5
........
(def-class requirement-USER5 (security-requirement)
 ((encryption-algorithm :value medium)
 (certification-authority :value low)
 (certification-authority-country :value low)))

USER6
........
(def-class requirement-USER6 (security-requirement)
 ((encryption-algorithm :value low)
 (certification-authority :value high)
 (certification-authority-country :value high)))

Listing 1. User Profiles

For instance, the user4 would like to interact with a Web service that provides a
high security level in terms of encryption algorithm, but she accepts medium value for
Certification Authority (CA) and CA country. Representing user requirements in a

550 S. Galizia, A. Gugliotta, and C. Pedrinaci

ENCRYPTION-ALGORITHM HEURISTIC
(def-instanceencryption-algorithm-abstractor abstractor
((has-body '(lambda (?obs)
 (in-environment
 ((?v . (observables-feature-value ?obs
 'encryption-algorithm)))
 (cond ((== ?v DES)
 (list-of 'encryption-algorithm 'high
 (list-of (list-of
 'encryption-algorithm ?v))))
 ((== ?v AES)
 (list-of 'encryption-algorithm 'medium
 (list-of (list-of
 'encryption-algorithm ?v))))

 ((== ?v RSA)
 (list-of 'encryption-algorithm 'low
 (list-of (list-of
 'encryption-algorithm ?v))))))))

Listing 2. Encryption Algorithm Heuristic

qualitative way seems to be more user-friendly. Heuristics are necessary for express-
ing quantitative representations in qualitative form. The listing below is an example of
heuristic.

The heuristic encryption-algorithm-abstractor establishes that whenever the en-
cryption algorithm adopted by a Web service provider is like DES, then its security
level is considered high. Whenever both User and Web service describe their profiles,
they implicitly agree with the qualitative evaluation expressed by the heuristic. In
turn, whenever the Web service provider makes use of an algorithm like AES, accord-
ing to the heuristic in Listing 2, its encryption ability is deemed medium, otherwise, if
the adopted algorithm is like RSA, the security level is low. Other heuristics provide
qualitative evaluations of CAs, and CA countries. For instance, security level of
globalsign-austria is retained high, conversely German CAs are considered medium-
secure.

The user can apply these heuristics, or define her own, sharing her expertise and
knowledge with other users. Alternatively, the user can even express her requirements
in a precise/quantitative way, by specifying the exact values expected from Web ser-
vice guarantees, for example, the CA issuing security token has to be VeriSign. Given
several Web services, semantically described in IRS-III, all with the same capability,
but different trust profiles, the class of Web service selected will be the one that
matches closest with the user trust profile.

We developed a user-friendly Web application to test our implementation, which is
available at http://lhdl.open.ac.uk:8080/trusted-travel/trusted-query.

The snapshot in Figure 1 shows the Web application interface. The user who would
like to know train timetable between two European cities enters the desired city
names and date. The user owns a trust profile associated to her name: dinar is in-
stance of user4 trust profile, vanessa of user5, stefania of user6.

Whenever the application starts, IRS-III recognizes from the user name, the trust
user profile. In the prototype, the requirements expressed by the user are treated as
candidate solutions within the classification goal.

 A Formal Model for Classifying Trusted Semantic Web Services 551

Fig. 1. Web Application

Fig. 2. Web Application Output of the user “dinar” Invocation

The class of Web services whose trust guarantees best match with user require-
ments is selected. As we applied the complete coverage criterion, the match is strict,
that means every user requirement is explained (matches with a Web service trust
guarantee) and none is inconsistent.

Figure 2 is a snapshot of the resulted trusted VTA booking. The application returns
the list of Web services able to satisfy the user goal, and that one invoked, which
matches with dinar trust requirements. It follows the Web service output, the re-
quested timetable. The application can easily be tested with the other user instances
implemented, vanessa and stefania. It can be noticed that vanessa trust profile
matches with Web service class get-train-timetable-service-T3, while stefania with
get-train-timetable-service-T2.

The “non-trusted” based version of the application is available at http:// lhdl. open.
ac.uk:8080/trusted-travel/untrusted-query. This application implements a virtual travel
agent based on the standard IRS-III goal invocation method. The output returns only
the train timetable requested, without any trust-based selection.

552 S. Galizia, A. Gugliotta, and C. Pedrinaci

6 Related Work

A number of current approaches model social aspects of trust [6], while some recent
efforts in the last few years concern service-oriented views of trust [1]. However, few
approaches provide methodologies for managing trust in a SWS, and none compre-
hensively incorporate all possible approaches of trust (policy, reputation TTP), as we
do in WSTO.

The work proposed by Vu and his research group [16,17], who use WSMX [20] as
an execution environment, is closely related to the work reported here. Vu et al. [16,
17] propose a methodology for enabling a QoS-based SWS discovery and selection,
with the application of a trust and reputation management method. Their approach
yields high-quality results, even under behaviour that involves cheating. With respect
to their work, the methodology we propose is less accurate in terms of service behav-
iour prediction. However, their algorithm is wholly founded on reputation mecha-
nisms, and is therefore not suitable for managing policy-based trust assumptions.
Currently, policy-based trust mainly considers access control decisions via digital
credentials. Our framework, by enabling participants to declare general ontological
statements for guarantees and requirements, is also able to accommodate a policy-
based trust framework.

Olmedilla et al. [11] propose a methodology for trust negotiation in SWS. They
employ PeerTrust [10], a policy and trust negotiation language, for establishing if
trust exists between a service requester and provider. The main aspect, which distin-
guishes their methodology from ours, is that they assume that trust is solely based on
policy. They do not propose any mechanism for managing reputation or monitoring
past service behaviour, as we do. Similar to our approach, they use WSMO as the un-
derlying epistemology. Moreover, they assume delegation to a centralized trust
matchmaker, where the participants disclose policies. Similarly, in our approach, we
assume that IRS-III plays the role of trust matchmaker. Furthermore, they also ad-
dress negotiation, which is an important issue in SWS interaction. We do not propose
a formal negotiation mechanism here, but, as both requester and provider disclose
their guarantees as credentials within IRS-III, we are able to automatically enable an
implicit negotiation process.

There are other approaches for managing trust in SWS which are less closely re-
lated to ours such as KAoS [15]. Within KAoS a set of platform-independent services
that enable the definition of policies ensuring the adequate predictability and control-
lability of both agents and traditional distributed systems is proposed. Even though
they present a dynamic framework, and recognize trust management as a challenge
for policy management, the framework is not specifically tailored to trust manage-
ment in SWS.

7 Conclusions and Future Work

In this paper, we have presented a formal model for managing trust in SWS and have
envisaged Web service selection and invocation as a classification problem, where the
solution takes the form of a class of Web services matching participating trust pro-
files. Embodied within the trust profiles are the participant priorities with respect to

 A Formal Model for Classifying Trusted Semantic Web Services 553

trust, which can be related to reputation, credentials, or actual monitored behavior.
Our definition of trust is described through a binary measure: whenever participant
trust profiles match, a trusted interaction can occur, otherwise trusted interaction is
deemed to not being feasible. We have adopted WSMO as underlying epistemology
for WS description, and used IRS-III as an execution environment.

Trust has different meanings within different contexts: trust can be based on ser-
vice ability or on reliability. In other contexts, trust can be related to reputation or
delegated to TTP evaluations. The main contribution of our approach is to provide a
framework that enables a comprehensive range of trust models to be captured. In fact,
the framework can easily capture the multiple trust parameters that characterize a spe-
cific scenario, by simply specializing the WSTO reference ontology. Future work will
extend our implementation to incorporate a comprehensive management suite for WS
reputation and reliability. Additionally, we also plan to import a range of sophisti-
cated reputation algorithms, and to improve the monitoring component.

References

1. Anderson, S., et al.: Web Services Trust Language (WS-Trust), May 2004, vol. 1.1 (2004),
 http://msdn.microsoft.com/ws/2004/04/ws-trust/

2. Domingue, J., Cabral, L., Galizia, S., Tanasescu, V., Gugliotta, A., Norton, B., Pedrinaci,
C.: IRS-III: A Broker-based Approach to Semantic Web Services. Journal of Web Seman-
tics 6(2), 109–132 (2008)

3. Fensel, D., Lausen, H., Polleres, A., De Bruijn, J., Stollberg, M., Roman, D., Domingue,
J.: Enabling Semantic Web Services: Web Service Modeling Ontology. Springer, Heidel-
berg (2006)

4. Fensel, D., Motta, E., Benjamins, V.R., Decker, S., Gaspari, M., Groenboom, R., Grosso,
W., Musen, M., Plaza, E., Schreiber, G., Studer, R., Wielinga, B.: The Unified Problem-
solving Method Development Language UPML. In: IBROW3 Project (IST-1999-19005),
vol. 1.1 (1999)

5. Galizia, S.: WSTO: A classification-based ontology for managing trust in semantic web
services. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011. Springer, Hei-
delberg (2006)

6. Golbeck, J., Hendler, J.: Inferring trust relationships in web-based social networks. ACM
Transactions on Internet Technology (2006)

7. Maximilien, E.M., Singh, M.P.: Toward Autonomic Web Services Trust and Selection. In:
Proceedings of 2nd International Conference on Service Oriented Computing (ICSOC
2004), New York (November 2004)

8. Motta, E.: Reusable Components for Knowledge Models: Principles and Case Studies in
Parametric Design Problem Solving. IOS Press, Amsterdam (1999)

9. Motta, E., Lu, W.: A Library of Components for Classification Problem Solving. In: Pro-
ceedings of PKAW 2000 - The 2000 Pacific Rim Knowledge Acquisition, Workshop, Syd-
ney, Australia, December 11-13 (2000)

10. Nejdl, W., Olmedilla, D., Winslett, M.: PeerTrust: Automated trust negotiation for peers
on the semantic web. In: Jonker, W., Petković, M. (eds.) SDM 2004. LNCS, vol. 3178, pp.
118–132. Springer, Heidelberg (2004)

554 S. Galizia, A. Gugliotta, and C. Pedrinaci

11. Olmedilla, D., Lara, R., Polleres, A., Lausen, H.: Trust Negotiation for Semantic Web Ser-
vices. In: 1st International Workshop on Semantic Web Services and Web Process Com-
position in conjunction with the 2004 IEEE International Conference on Web Services,
San Diego, California, USA (2004)

12. OWL-S working group, OWL-S: Semantic Markup for Web Services. OWL-S 1.2 Pre-
Release (2006), http://www.ai.sri.com/daml/services/owl-s/1.2/

13. Pedrinaci, C., Lambert, D., Wetzstein, B., Lessen, T., Cekov, L., Dimitrov, M.: SENTI-
NEL: A Semantic Business Process Monitoring Tool. In: Workshop Ontology-supported
Business Intelligence (OBI 2008) at 7th International Semantic Web Conference (ISWC
2008), Karlsruhe, Germany (2008)

14. Stefik, M.: Introduction to Knowledge Systems. Morgan Kaufmann, San Francisco (1995)
15. Uszok, A., Bradshaw, J.M., Johnson, M., Jeffers, R., Tate, A., Dalton, J., Aitken, J.S.:

KAoS Policy Management for Semantic Web Services. IEEE Intelligent Systems 19(4),
32–41 (2004)

16. Vu, L.H., Hauswirth, M., Aberer, K.: QoS-based Service Selection and Ranking with Trust
and Reputation Management. In: 13th International Conference on Cooperative Informa-
tion Systems (CoopIS 2005), Agia Napa, Cyprus, Oct. 31 - Nov. 4 (2005)

17. Vu, L., Hauswirth, H., Porto, M., Aberer, F., K.: A Search Engine for QoS-enabled Dis-
covery of Semantic Web Services. International Journal of Business Process Integration
and Management (IJBPIM) (2006)

18. W3C (2004). Web Services Architecture. W3C Working Draft (February 11, 2004),
 http://www.w3.org/TR/ws-arch/

19. Wielinga, B.J., Akkermans, J.K., Schreiber, G.: A Competence Theory Approach to Prob-
lem Solving Method Construction. International Journal of Human-Computer Studies 49,
315–338 (1998)

20. WSMX working group, Overview and Scope of WSMX (2005),
 http://www.wsmo.org/TR/d13/d13.0/v0.2/

21. Zhengping, W., Weaver, A.C.: Using Web Service Enhancements to Bridge Business
Trust Relationships. In: Fourth International Conference on Privacy, Security, and Trust
(PST 2006), University of Toronto, Institute of Technology, Markham, Ontario, Canada,
October 30-November 1 (2006)

Author Index

Alviano, Mario 106

Borchert, Charles 272, 375
Brank, Janez 315
Broekstra, Jeen 152

Cao, Tru H. 420, 479
Cao, Truong D. 479
Celino, Irene 434
Chen, Ling 257
Chen, Min 464
Cheng, Gong 449
Corcho, Oscar 227
Corcoglioniti, Francesco 434
Corno, Walter 434

d’Aquin, Mathieu 242
de Roeck, Anne 405
Della Valle, Emanuele 434

Embley, David W. 345

Fang, Qiming 91

Galizia, Stefania 540
Gao, Zhiqiang 302
Garćıa-Castro, Raúl 197
Garćıa-Silva, Andrés 167
Gitzinger, Thomas 360
Gómez-Pérez, Asunción 167, 197, 227
Grobelnik, Marko 315
Gugliotta, Alessio 540

Haase, Peter 1, 227
Harth, Andreas 76
Hayashi, Yusuke 524
Hogan, Aidan 76
Huang, Zhisheng 302
Hulzebos, J. Lars 152

Ianni, Giovambattista 106
Intarapaiboon, Peerasak 390

Jang, Hyun Chul 31
Ji, Qiu 1, 227

Kim, Chul 31
Kim, Hong-Gee 272, 375
Kim, Sang-Kyun 31
Kitamura, Yoshinobu 137
Koenderink, Nicole J.J.P. 152
Kontchakov, Roman 16
Kozaki, Kouji 524
Krestel, Ralf 257

Lee, Kyu-Chul 31
Li, Xiaofeng 508
Liang, Yan 182
Liu, Qiaoling 182, 330
Lynn, Stephen 345

Ma, Z.M. 46
Marano, Marco 106
Martello, Alessandra 106
Meng, Xiangfu 46
Mizoguchi, Riichiro 137, 524
Mladenić, Dunja 315
Motta, Enrico 242, 405
Muñoz-Garćıa, Óscar 197

Namgoong, Hyun 272
Nantajeewarawat, Ekawit 390
Nguyen, Hien T. 420
Nikolov, Andriy 405
Nixon, Lyndon J.B. 197

Palma, Raúl 227
Pan, Jeff Z. 61
Pan, Yingji 302
Pan, Yue 330
Pedrinaci, Carlos 540
Penin, Thomas 182, 493
Peroni, Silvio 242
Polleres, Axel 76

Qi, Guilin 1, 61, 464
Qiao, Xiuquan 508
Qu, Yuzhong 302, 449

Robertson, Dave 212

556 Author Index

Sasajima, Munehiko 137, 524
Schlobach, Stefan 122
Schopman, Balthasar A.C. 122
Segawa, Sho 137
Shakya, Aman 287
Smaill, Alan 212
Song, Mi-Young 31
Suárez-Figueroa, Mari Carmen 167
Sun, Lihao 508
Suntisrivaraporn, Boontawee 1

Takeda, Hideaki 287
Tarumi, Shinya 137, 524
Theeramunkong, Thanaruk 390
Top, Jan L. 152
Tran, Thang L. 479
Tran, Thanh 182, 493

Uren, Victoria 405

van Assem, Mark 152
Villazón-Terrazas, Boris 167

Wang, Hailong 46
Wang, Haofen 182, 330, 493
Wang, Shenghui 122
Wang, Yimin 464
Witte, René 360
Wuwongse, Vilas 287

Xu, Kaifeng 330
Xu, Renjie 302

Yang, Guangwen 91
Yang, Kyoung-Mo 272
Yang, Sung-Kwon 272
Yea, Sang-Jun 31
You, Tian 508
Yu, Yong 182, 330, 493

Zakharyaschev, Michael 16
Zhang, Fu 46
Zhang, Lei 330
Zhao, Ying 91
Zheng, Hai-Tao 375
Zheng, Weimin 91
Zurawski, Maciej 212

	Title Page
	Preface
	Organization
	Table of Contents
	Scalable Reasoning and Logic
	A Modularization-Based Approach to Finding All Justifications for OWL DL Entailments
	Introduction
	Preliminaries
	Justification Coverage in Locality-Based Modules
	Our Modularization-Based Algorithm
	Empirical Results
	Conclusion
	References

	$DL-Lite$ and Role Inclusions
	Introduction
	The $DL-Lite$ Family and Its Neighbours
	$DL-Lite^{\mathcal R}_{bool}$ and First-Order Logic with One Variable
	Satisfiability: $DL-Lite^{\mathcal {R,F}}_{core} Is ExpTime-Hard
	Instance Checking with Number Restrictions
	Conclusion
	References

	Temporal Ontology Language for Representing and Reasoning Interval-Based Temporal Knowledge
	Introduction
	A Temporal Description Logic
	A Temporal Web Ontology Language
	Requirements of TL-OWL
	Abstract Syntax
	Direct Model-Theoretic Semantics
	Mapping to RDF Graphs
	RDF-Compatible Model-Theoretic Semantics
	Reasoning in TL-OWL

	Related Work
	Conclusions
	References

	A Formal Semantics-Preserving Translation from Fuzzy Relational Database Schema to Fuzzy OWL DL Ontology
	Introduction
	The Fuzzy Relational Database Schema
	The Formal Definition of FRDBS
	The Fuzzy ER Model
	Extracting Fuzzy ER Model from FRDBS

	Fuzzy OWL DL Ontology
	Fuzzy OWL DL
	Fuzzy OWL DL Ontology

	Mapping between FRDBS and Fuzzy OWL DL Ontology
	Translating FRDBS into Fuzzy OWL DL Ontology
	Reasoning Problems on FRDBS

	Conclusion
	References

	A Tableau Algorithm for Possibilistic Description Logic \mathcal{ALC}
	Introduction
	Possibilistic Description Logic \mathcal{ALC}
	DL \mathcal{ALC}
	Syntax and Semantics of Possibilistic DL \mathcal{ALC}
	Possibilistic Inference in Possibilistic DLs

	Related Work
	Tableau Algorithms for Inference in Possibilistic DL \mathcal{ALC}
	The Reduction
	Tableau Expansion Rules for Computing the Inconsistency Degree of aPossibilistic \mathcal{ALC}-ABox
	Soundness and Completeness
	Complexity
	Terminological Axioms
	Optimization Techniques

	Conclusion and Future Work
	References

	SAOR: Authoritative Reasoning for the Web
	Introduction
	Pragmatic Inferencing for the Web
	Separating A-Box from T-Box
	Rule-Based OWL Reasoning
	Authoritative Reasoning against Ontology Hijacking

	Reasoning Algorithm
	Characteristics of Web Data
	Algorithm Overview
	Handling Structural Data
	Reasoning by Statement-Wise Scan
	Equality Reasoning

	Evaluation and Discussion
	Related Work
	Conclusion and Future Work
	References

	Scalable Distributed Ontology Reasoning Using DHT-Based Partitioning
	Introduction
	Distributed Ontology Reasoning
	The Approach Overview
	TBox Reasoning
	ABox Reasoning

	The DORS System
	Experimental Evaluation
	Experimental Settings
	Experimental Results

	Related Work
	Conclusion and Future Work
	References

	Versatile Semantic Modeling of Frame Logic Programs under Answer Set Semantics
	Introduction
	Syntax
	Semantics
	Modeling Semantics and Inheritance
	Properties of \sc{fas} Programs
	System Overview
	Related Work
	References

	Ontology Mapping
	Deriving Concept Mappings through Instance Mappings
	Introduction
	Application Problems
	Homogeneous Collections with Multiple Thesauri
	Heterogeneous Collections with Multiple Thesauri

	Method: From Instance Mappings to Concept Mappings
	Matching Instances
	Matching Concepts

	Experiment and Evaluation
	Evaluation of the Quality of Instance Mappings
	Mapping Thesauri over Homogeneous Collections
	Mapping Thesauri over Heterogeneous Collections

	Related Work
	Conclusion and Future Work
	References

	Deep Semantic Mapping between Functional Taxonomies for Interoperable Semantic Search
	Introduction
	Framework of Interoperable Semantic Search Based on Functional Annotation
	The Functional Taxonomies
	Reconciled Functional Basis (FB)
	The Functional Concept Ontology (FOCUS/Tx)

	Mapping Process Based on a Reference Ontology
	Mappings between Taxonomies
	Interoperable Semantic Search
	Functional Metadata
	Semantic Search System

	Related Work and Discussion
	Conclusion
	References

	Ontology Modeling and Management
	ROC: A Method for Proto-ontology Construction by Domain Experts
	Introduction
	Related Work
	Rapid Ontology Construction (ROC) Methodology
	Overview
	Building the Information Repository
	Creating the Proto-ontology

	Use Cases
	Case Study 1: The Geometric Proto-ontology
	Case Study 2: The Supply Chain Proto-ontology
	Experiences and Lessons Learned

	Evaluation
	Cost-Benefit Analysis
	Structure Analysis of the Resulting Proto-ontologies
	System-Based Analysis
	Use of the Information Repository

	Conclusion
	References

	A Pattern Based Approach for Re-engineering Non-Ontological Resources into Ontologies
	Introduction
	Types of Non-Ontological Resources
	Related Work
	Software Re-engineering
	Non-Ontological Resource Re-engineering

	Approach for Non-Ontological Resource Re-engineering
	General Model for Non-Ontological Resource Re-engineering
	Patterns for Re-engineering Non-Ontological Resources

	SEEMP Use Case
	Conclusions and Future Work
	References

	Efficient Index Maintenance for Frequently Updated Semantic Data
	Introduction
	Related Work
	Overview of Semplore
	Hybrid Query Capability
	Index Structure
	Query Evaluation

	Index Update Mechanisms
	Block Index Structure
	Single Update Operation
	Batch Update Operation

	Performance Analysis
	Space Requirement
	Query Performance
	Index Update Time

	Evaluation
	Experiment Setup
	Index Update Performance
	Query Response Time

	Conclusion
	References

	Towards a Component-Based Framework for Developing Semantic Web Applications
	Introduction
	Background
	Component-Based Software Engineering
	Software Architectures and Frameworks

	Semantic Web Applications
	Semantic Web Application Architectures

	The Semantic Web Framework
	Definition and Classification of Components

	Use Cases
	Semantic Aggregation of News Stories
	Results from Use Cases

	Conclusion and Future Work
	References

	Bounded Ontological Consistency for Scalable Dynamic Knowledge Infrastructures
	Introduction
	Novel Contribution

	Related Research
	The Notions Used and an Introductory Example
	The Framework and Its Layers
	The Reasoning Layer and Spheres of Consistency
	The Framework Middle Layer
	The Framework Top Layer

	Experiments
	Conclusions
	References

	An Editorial Workflow Approach For Collaborative Ontology Development
	Introduction
	Requirements for Collaborative Ontology Development
	Overview of the Fisheries Ontologies Lifecycle
	Functional Requirements

	A Workflow-Based Collaborative Ontology Development Approach
	Conceptual Models
	Implementation Support

	Related Work on Collaborative Ontology Development
	Discussion
	References

	Identifying Key Concepts in an Ontology, through the Integration of Cognitive Principles with Statistical and Topological Measures
	Introduction
	Our Approach
	Natural Categories
	Topology-Based Criteria: Density and Coverage
	Key Concepts Extraction: First Version
	Evaluation of the First Version of the Algorithm

	Revised Approach
	What Went Wrong? How Experts Select Key Concepts
	Revising the Algorithm
	Evaluation of the Revised Version of the Method

	Related Work
	Discussion
	Conclusions
	References

	Ontologies and Tags
	The Art of Tagging: Measuring the Quality of Tags
	Introduction
	Related Work
	Measure Tag Quality
	Problem Specification
	Tagging System Model
	Quality Propagation
	Seed Selection Strategies

	Evaluation
	Data Set
	Indirect Evaluation Method
	TRP-Rank Performance
	Data Reduction
	Discussion

	Conclusions and Future Work
	References

	STAN: Social, Trusted Annotation Network
	Introduction
	State of the Art
	Grouping Users with Document Identification
	Social, Trusted Annotation Network (STAN)
	STAN Framework
	STAN Mediator
	Private Repositories

	STAN Applications
	Collaborative Annotator
	Collaborative Document Finder

	Experimental Result
	Future Work and Conclusion
	References

	Consolidating User-Defined Concepts with StYLiD
	Introduction
	User Requirements
	Concept Consolidation
	Implementation
	Sharing Structured Data with User-Defined Concepts
	Consolidation of User Defined Concepts
	Creating Linked Data
	Querying Structured Data
	Embedding Machine Readable Data
	Technologies Used

	Related Work
	Conclusions and Future Work
	References

	Human Language Technologies and Machine Learning
	An Integrated Approach for Automatic Construction of Bilingual Chinese-English WordNet
	Introduction
	Background
	Our Approaches
	Minimum Distance Approach
	Intersection Approach
	Words Co-occurrence Approach
	MIW Approach

	Experiments and Results
	Experimental Materials
	Results

	Conclusion and Future Work
	References

	Predicting Category Additions in a Topic Hierarchy
	Introduction
	Comparing Ontology Snapshots to Identify Structural Changes
	The Open Directory Project Dataset
	Low-Level Structural Changes
	Heuristics for the Identification of Higher-Level Structural Changes
	Different Types of Category Additions
	Prediction of Category Additions as a Learning Problem

	Experimental Evaluation
	The Dataset
	Experimental Setup
	Results

	Conclusions and Future Work
	References

	Catriple: Extracting Triples from Wikipedia Categories
	Introduction
	Related Work
	Methods
	Step1: Recognizing Useful Name Patterns
	Step2: Extracting Explicit Properties and Values
	Step3: Voting Implicit Properties
	Step4: Creating Triples about Articles

	Experiments
	Evaluation
	Output

	Discussion and Future Work
	Applications

	Conclusion
	References

	Semantically Conceptualizing and Annotating Tables
	Introduction
	Semantic Enrichment Procedure
	Experimental Evaluation
	Discussion Points and Future Work
	Concluding Remarks
	References

	Semantic Assistants – User-Centric Natural Language Processing Services for Desktop Clients
	Introduction
	Requirements Analysis
	End User Requirements
	System Integrator Requirements
	System Requirements
	Related Work

	Semantic Assistants Design
	System Architecture
	The Semantic Assistants Ontology

	Implementation
	Language Service Description and Management
	Web Services
	The Client-Side Abstraction Layer (CSAL)
	Dynamic Assistant Generation
	Client Integration

	Application
	The OpenOffice.org Writer Plug-In
	Example Use Case

	Conclusions and Future Work
	References

	Exploiting Gene Ontology to Conceptualize Biomedical Document Collections
	Introduction
	Related Work
	The GOClonto Method
	Preprocessing and Term-Document Matrix Construction
	Key GO-Term Induction
	Document Allocation and Ontology Generation

	Experimental Results
	Experimental Setup
	Results and Discussion

	Conclusion and Future Work
	References

	Extracting Semantic Frames from Thai Medical-Symptom Phrases with Unknown Boundaries
	Introduction
	Framework Overview
	Rule Learning and Rule Application
	Rule Learning from Phrases with Extended Boundaries
	Rule Application Using Sliding Windows (RAW)

	Extraction Filtering
	Wildcard-Instantiation Filtering (WIF)
	Overlapping-Frame Filtering (OFF)

	Experimental Results and Discussion
	Data Sets and Output Templates
	Experimental Results

	Related Works
	Conclusions
	References

	Refining Instance Coreferencing Results Using Belief Propagation
	Introduction
	Related Work
	Overview
	Dempster-Shafer Belief Propagation
	Refining Coreference Mappings
	Exploiting Ontological Schema
	Influence of Context Mappings
	Provenance Data

	Evaluation
	Conclusion and Future Work
	References

	Named Entity Disambiguation: A Hybrid Statistical and Rule-Based Incremental Approach
	Introduction
	Background
	Wikipedia
	Creating the Disambiguation Dictionary
	Proposed Method
	Looking Up Candidates
	Narrowing Down Candidates
	Ranking Candidates
	Algorithm

	Evaluation
	Related Works
	Conclusion
	References

	Querying
	Exposing Heterogeneous Data Sources as SPARQL Endpoints through an Object-Oriented Abstraction
	Introduction
	Related Work
	Schema and Data Mapping
	Query Translation
	Analysis
	Translation
	Execution

	Implementation and Evaluation
	Conclusions
	References

	Integrating Lightweight Reasoning into Class-Based Query Refinement for Object Search
	Introduction
	Overview
	Demonstration of Functions
	Challenges
	Overview of the Approach

	Constructing Virtual Documents for SW Objects
	Neighbors in RDF Graph
	Construction of Virtual Documents

	Refining Keyword Queries with Class Restrictions
	Class-Based Refinement
	Filtering Axioms
	Transitive Reasoning

	Recommending Subclasses for Incremental Query Refinement
	Experiments
	Related Work
	Conclusion
	References

	A Segmentation-Based Approach for Approximate Query over Distributed Ontologies
	Introduction
	Related Work
	Preliminaries
	Segment-Based Conjunctive Query Answering over Distributed Ontologies
	Algorithms for Segment-Based Query Answering
	Evaluation and Discussion
	Experiment Settings
	Results and Discussions

	Conclusions and Outlook
	References

	A Robust Ontology-Based Method for Translating Natural Language Queries to Conceptual Graphs
	Introduction
	Basic Notions of Conceptual Graphs
	Construction of Query Conceptual Graphs
	Recognizing Specified Entities
	Recognizing Unspecified Entities
	Extracting Relational Phrases
	Determining the Type of Queried Entities
	Unifying Identical Entities
	Discovering Implicit Relations
	Determining the Types of Relations
	Removing Improper Relations

	Evaluation Experiments
	Conclusion
	References

	Snippet Generation for Semantic Web Search Engines
	Introduction
	RDF Sentence Graph and Topic Graph
	Semantic Similarity Measure
	Similarity between Two Lists of Words
	RDF Sentence Semantic Similarity
	Topic Similarity

	Snippet Generation Process
	Off-Line Step
	Online Step
	Natural Language Output
	Snippets
	Test Interface

	Evaluation
	Semantic Similarity Measure
	Snippet Quality
	Performance
	User Feedback

	Related Work
	Conclusion and Future Work
	References

	Semantic Web Services and Semantic Web Applications
	Semantic Telecommunications Network Capability Services
	Introduction
	The Vision of User Centric Intelligent Service Environment (UCISE)
	The Blueprint of UCISE
	Ubiquitous Convergent Service Ecosystem
	The Semantic Service Integration Architecture of Telecommunications Network and Internet

	Semantic Description Approach for Telecommunications Network Capability Services (TNCS)
	The Differences between TNCS and the Plain Web Services
	The Problem Statement of the Semantic Description of TNCS
	Prescribing OWL-S for the TNCS Description
	Telecommunication Service Domain Ontology (TSDO)
	The Application Ontology of TNCS

	The Experimental Environment and the Demo Service
	The Prototype of Experimental Environment
	The Demo Service: The Context-Awareness Cheapest Click-to-Call Service

	Discussions
	Conclusions
	References

	Understanding Semantic Web Applications
	Introduction
	Related Work
	The Method for Analyzing SW Applications
	Types of Usage of Ontology for a SW Application
	Types of Ontology
	Steps for Analyzing SW Applications from Ontological Viewpoint

	Results of Analysis and Considerations
	Distribution of Types of Usage of Ontology
	A Correlation between the Types of Usage and the Types of Ontology
	The Conference-by-Conference Transition of the Types of Usage
	The Combinations of the Types of Usage
	Application Domains
	Numbers of Concepts and Instances in Each Ontology

	Concluding Remarks and Future Work
	References

	A Formal Model for Classifying Trusted Semantic Web Services
	Introduction
	Background
	Our Approach
	The Formal Model
	Case Study: A Trusted Virtual Travel Agent
	Related Work
	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

